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Abstract 
The aim of this paper is to identify the different sources of persistence of output fluctuations. We 
propose an unobserved components model that allows us to decompose GDP series into a trend 
component and a cyclical component. We let the drift of the trend component to switch between 
different regimes according to a first-order Markov process. To calculate an appropriate p-value for a 
test of linearity we propose a bootstrap procedure, which allows for general forms of 
heteroskedasticity. The performance of the bootstrap is checked by means of a Monte Carlo 
simulation. Our study concerns the U.S. As suggested by the Endogenous Growth theory, cyclical 
shocks appear to play an important role on the observed persistence of output. We argue that the 
traditional explanation of persistence, which is related to Real Business Cycle models with exogenous 
productivity, is not consistent with our data. We also find that the majority of business cycle 
fluctuations in the U.S. are due to real shocks. 
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1 Introduction

An important stylized fact of business cycle is the persistence of output
fluctuations. With persistence of output fluctuations we refer to a shock
to output that is persistent and whose effect does not dissipate in the near
future. That is, output does not show a significant tendency to return to its
trend level after a shock. In an influential paper, Nelson and Plosser (1982)
show that output is better characterized as a nonstationary process with no
tendency to revert to a deterministic path. Thus, output has a unit root.
These results have been widely confirmed by other authors. For example,
Campbell and Mankiw (1987) find that quarterly GNP for G-7 countries
is highly persistent. They show that an unexpected change in real GNP
of 1 percent should change one’s forecast by over a long horizon by over
1 percent. Further, according with these results, Cogley (1990) finds high
persistence in output fluctuations for a similar sample of countries. Although
much disagreement remains among researchers using postwar quarterly data
over which are the shocks that cause business fluctuations, there is a broad
agreement on the fact that output fluctuations are highly persistent.

The presence of a stochastic trend in output series is consistent with sev-
eral economic models. It is possible to divide them into two categories: Real
Business Cycle (RBC) and Endogenous Growth (EG) models. In RBC model
(see Kydland and Prescott (1982), King et al. (1991) or Rebelo (2005) for
a complete survey), real shocks are the central driver of business cycle and
the only source of persistence in output fluctuations. Conventional RBC the-
ory assumes that GNP per capita follows a random walk with drift, where
the drift is exogenously determined by the rate of labor-augmenting techno-
logical progress. Only small deviations around a steady state solution are
analyzed and transitional growth dynamics are ignored. In this set-up, ex-
ogenous permanent shifts in the production function are the sole responsible
of the existence of a stochastic trend.

On the other hand, other authors related to EG literature (King et al.
(1988), Stadler (1990) and Fatás (2000)) notice that if we relax the hypothesis
that technological progress is exogenous, the notion of persistent fluctuation
may have a very different interpretation. More precisely, if we consider a
model where the technological progress depends on economic factors, there
are many types of shocks different from a permanent shift in the produc-
tion function, that can generate persistent fluctuations. In particular, any
temporary shock can stimulate learning and cause a rise in the accumulated
technical knowledge of the economy shifting the trend of GDP upward. As
a consequence, demand shocks, traditionally considered as temporary, can
have a permanent impact on the trend of the output.
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The two sets of models described above imply the presence of a stochastic
trend, so both are able to produce persistent output fluctuations. But while
the source of the stochastic trend is due to permanent shifts in the production
function in RBC models, it is attributable to cyclical shocks in EG models.
Therefore, their implications are different in terms of causes and welfare costs
of output fluctuations.

The objective of this paper is to find a stylized fact against which these
macroeconomic theories can be measured. We are conscious that it is impru-
dent to make definitive judgments regarding the above theories on the basis
of a unique stylized fact, but we believe that it is interesting to find empiri-
cal evidence that allows us to determine if cyclical shocks are an important
source of the persistence of output fluctuations.

With this in mind, we propose an unobserved components (UC)1 model
that allows us to decompose GDP series into a trend component and a cycli-
cal component. The former is assumed to follow a random walk with drift,
the latter is assumed to be a stationary second-order autoregressive process.
We let the drift of the trend component to switch between regimes according
to a first-order Markov process as in Hamilton (1989). It is thus possible to
capture business cycle asymmetry. By asymmetry we mean that the dynam-
ics of recessions are qualitatively distinct from those of expansions2. The
Endogenous Growth Hypothesis, i.e. cyclical shocks have a significant effect
on the trend component of the output, is introduced by allowing cyclical
shocks to have a lagged effect on the trend of the output series. This param-
eterization is at the basis of the hysteresis model3 of Jaeger and Parkinson
(1994), which postulates that the cyclical modifies permanently the trend.

A key problem which arises in actual applications is how to determine the
number of regimes of the model. Hamilton’s original paper offers a sugges-
tive evidence that the two-state Markov-switching model outperforms linear
models in terms of forecasts, but not statistical tests. Thus, the dominant
approaches in the empirical literature are to fix the number of regimes a
priori or to determine them in an informal manner by visual inspection of
data plots. Both approaches are evidently subjective, somewhat arbitrary
and leave much to be desired.

1See Harvey (1989), Kim and Nelson (1999) and Clark (1987) for a detailed description
of the Unobserved Component models.

2See Kim and Murray (2002) and Kim and Pigger (2002) for different strategies about
how to incorporate business cycle asymmetries in time series models.

3The hysteresis model of Jaeger and Parkinson (1994) was proposed for unemployment
to formalize the idea that a rise in cyclical unemployment can lead to a permanent increase
in the natural rate.
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A more formal statistical procedure for determining the number of regimes
is to perform a test of linearity using likelihood ratio tests. Such tests are
complicated because usual regularity conditions are not fulfilled due to the
presence of nuisance parameters that are not identified under the null hypoth-
esis (see Hansen (1996) and Andrews and Ploberger (1994)). This implies
that the scores are identically zero . Hence, standard regularity conditions
are not valid, and then conventional statistics do not have an asymptotic
standard distribution. In our case, the null hypothesis is a one-regime model
versus the alternative of two regimes. In this context, transition probabili-
ties are not identified under the null. Hansen (1992a,b) proposed a theory of
hypothesis testing to calculate the p-value of the test of interest under the
presence of nuisance parameters in Markov-switching models, but his proce-
dure is computationally burdensome and only delivers p-values which are an
upper bound for the true p-values. A less computationally demanding test
procedure was proposed by Garcia (1998), but his method is theoretically
little attractive since it overlooks the problem of the singular information
matrix. Moreover, both procedures ignore the power of the test. Recently,
Carrasco et al. (2004) propose a test procedure that does not require es-
timating the model under the alternative. This is a great advantage over
competing tests, as those of Garcia (1998) and Hansen (1992a,b), because
estimating a Markov-switching model is particularly burdensome. The prob-
lem is that Carrasco’s test only works with stationary data and in our paper
we employ a series which displays a non-stationary behaviour.

To circumvent these difficulties, we propose an alternative methodology
to test the number of regimes. We calculate exact p-values from a bootstrap
approximation to the null distribution of the likelihood ratio test statistic.
To our knowledge, there has so far been no work on the use of such method-
ology to select the number of regimes in the frame of UC models with the
parameters of interest switching between two different regimes according to a
first-order Markov process. Once we have determined the number of regimes,
we are able to perform a simple test to assess the Endogenous Growth Hy-
pothesis. It is clear that if we accept this hypothesis, the empirical evidence
suggests that cyclical shocks play an important role in the observed persis-
tence.

The rest of the paper is organized as follows. Section 2 specifies the model
and states the hypothesis testing procedure. Section 3 proposes a bootstrap
procedure to calculate the p-value of a linearity test within our framework of
interest. An empirical application for the U.S. is given in section 4. Section 5
assesses the finite sample performance of the proposed bootstrap procedure
by means of a Monte Carlo experiment. The conclusion is provided in the
last section. Estimation methods are relegated to Appendix A. Appendix B
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contains all the tables and figures.

2 The Model

We decompose the observed series into two additive unobservable compo-
nents: a nonstationary trend, Y N

t , and a stationary cyclical component, Y C
t ,

Yt = Y N
t + Y C

t .

Following Hamilton (1989), the growth rate of the trend component is
allowed to switch between different regimes. We consider the cycle modifies
also the trend, as Jaeger and Parkinson (1994) postulate in their hysteresis
model. Thus, the trend component is defined as a random walk with a
switching drift plus a term which captures the effect of the cyclical component
on it. That is,

Y N
t = µSt + Y N

t−1 + θY C
t−1 + εN

t ,

where parameter θ captures the possible impact of the cyclical component on
the trend, and St = {1, 2} indicates the regime of the economy. We consider
an economy with two regimes, one related to expansions and the other to
recessions. We also assume that St is driven by a first-order Markov process
with transition probabilities given by

Pr(St = 1|St−1 = 1) = p11,

Pr(St = 2|St−1 = 2) = p22,

with
2∑

j=1

pij = 1 for all i. The transition probability pij gives the probability

that state i will be followed by state j.
The cyclical component is assumed to follow a stationary second-order

autoregressive process,

Y C
t = φ1Y

C
t−1 + φ2Y

C
t−2 + εC

t .

The disturbances εN
t and εC

t are assumed to be mutually uncorrelated
shocks, which are normally distributed with variances σ2

N and σ2
C , respec-

tively. In order to test the number of regimes4, we perform a linearity test.
In our case, the null hypothesis of interest is that of a single regime against
the alternative of two regimes, that is,

4The extension to M states is straightforward.
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H0 : µ1 = µ2 vs H1 : µ1 6= µ2.

Note that transition probabilities, p11 and p22, are unidentified under the
null since any value between 0 and 1 leaves the likelihood function unchanged.
This implies that the information matrix is singular under the null, and hence
standard regularity conditions are not satisfied. Therefore, the asymptotic
null distribution of the likelihood ratio test statistic is not a χ2 with one
degree of freedom. To calculate an appropriate p-value for the test of linearity
we propose a bootstrap procedure.

Once the number of regimes has been determined, we are able to test the
Endogenous Growth Hypothesis, i.e. cyclical shocks have a significant effect
on the trend component of output, by simply performing an appropriate test
of the relevant null hypothesis, H0 : θ = 0. If we reject the null, the empirical
evidence then suggests that cyclical shocks play an important role in the
observed persistence. In fact, if this is the case, as it is pointed out by the EG
theory, cyclical shocks produce changes in the resources allocated to growth
and, consequently, may have permanent effects on the output level. On the
contrary, if we accept the relevant null hypothesis, cyclical shocks do not have
a permanent effect on the level of the economy. Therefore, as RBC theory
suggests, real shocks are the only source of persistence of output fluctuations.
In order to perform a test for H0 we can employ standard likelihood tests,
which are chi-squared distributed with one degree of freedom. The problem
of unidentified nuisance parameters under the null vanishes when this test is
individually considered.

3 Design of the experiment for computing

the bootstrap p-value for the linearity hy-

pothesis test

The objective of this section is to approximate the distribution of the test
statistic of interest by a consistent bootstrap procedure. We implement a
Wald test statistic. We propose a bootstrap procedure that allows for the
presence of general heteroskedasticity.

3.1 Heteroskedastic bootstrap

Our aim is to calculate a bootstrap distribution of the Wald test allowing
for the possibility of general heteroskedasticity. In particular, the resampling
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we propose is based on the idea of the wild bootstrap, which was studied
for the first time by Wu (1986) in the context of variance estimation in
heteroskedastic linear models. In our context, it looks like this:

STEP 1: We estimate the Wald test. To compute this test we just need
to estimate the model under the alternative hypothesis of nonlinearity. Once
the model in Section 2 is put into a state-space form, to estimate it we use
the Kim’s approximate maximum likelihood algorithm 5. It is well-known
that the likelihood function of state-space models with Markov switching is
severely ill-behaved, and it usually has numerous local optima. A nonlinear
maximization routine is employed to estimate the model. To implement such
a routine we need to set starting values, and their choice can have a dramatic
influence upon the maximum which is found. Thus, it is possible that we do
not detect the global maximum of the likelihood function. As a result, the
Wald test statistic will be an underestimate of the true Wald statistic. To
give robustness to our results, we use the Nelder-Mead simplex algorithm to
search for a set of parameters near the maximum, and we then estimate the
model using Kim’s algorithm.

The parameters of interest are γ1 = (σN , σC , µ1, µ2, θ, φ1, φ2, p11, p22)
′.

We calculate the maximum likelihood estimates γ̂1 = (σ̂N , σ̂C , µ̂1, µ̂2, θ̂, φ̂1,

φ̂2, p̂11, p̂22)
′ and compute the Wald test statistic,

W = Rγ̂1(RV̂ ar(γ̂1)R
′)−1(Rγ̂1)

′,

where R = (0 0 1 −1 0 0 0 0 0) is a vector (1 × 9), and V̂ ar(γ̂1) is
the heteroskedasticity-robust maximum likelihood estimator of the variance-
covariance matrix.

STEP 2: We compute the residuals under the null hypothesis of linearity,
i.e. H0 : µ1 = µ2. We construct estimates of the vector of unknown parame-
ters λ0 = (σN , σC , µ, θ, φ1, φ2)

′ and the vector of unobserved variables (Y N
t ,

Y C
t )′ using the Kalman filter methodology6. Let λ̃0 = (σ̃N , σ̃C , µ̃, θ̃, φ̃1, φ̃2)

′

and (Ỹ N
t , Ỹ C

t )′ denote the maximum likelihood estimates of coefficients and
unobserved components, respectively. We compute the residuals

ε̃C
t = Ỹ C

t − φ̃1Ỹ
C
t−1 − φ̃2Ỹ

C
t−2;

ε̃N
t = Ỹ N

t − µ̃− Ỹ N
t−1 − θ̃Ỹ C

t−1;

5See the Appendix for details about the algorithm proposed by Kim (1994).
6See Hamilton (1994) and the Appendix for a detailed description of the Kalman Filter

algorithm.
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Let T ∗ denote the sample size for the bootstrap.

STEP 3: We generate B bootstrap samples Z∗
T ∗b = {Z∗

tb = (Y ∗
t )′ : t =

1, ..., T ∗}, b = 1, ..., B. In order to do that, we propose the following algo-
rithm:

I. Generate ηN
t independent and identically distributed variables from a

fixed distribution7 such that E(ηN
t ) = 0 and E[(ηN

t )2] = E[(ηN
t )3] = 1. Define

εN∗
t = ε̃N

t ηN
t , where ε̃N

t is the tth residual calculated in Step 2. The boot-
strap error εN∗

t satisfies E∗(εN∗
t ) = 0 and E∗[(εN∗

t )2] = (ε̃N
t )2........ Similarly,

generate ηC
t and construct εC∗

t = ε̃C
t ηC

t .
II. We set the following initial conditions (Y ∗N

0 , Y ∗C
0 , Y ∗C

−1 ) = (Y0, 0, 0),
that is, the underlying natural component at time 0 is assumed to be equal to
the observed value of the GDP series at time 0, whereas the cyclical elements
were assumed to be zero. For t = 1, 2, ..., T ∗, we set (Y ∗N

t , Y ∗C
t ) = (Ỹ N

t , Ỹ C
t ),

that is, unobserved bootstrap components are generated with conditionally
fixed design on the estimated unobserved components in Step 2,

Y ∗N
t = µ̃ + Ỹ N

t−1 + θ̃Ỹ C
t−1 + εN∗

t ;

Y ∗C
t = φ̃1Ỹ

C
t−1 + φ̃2Ỹ

C
t−2 + εC∗

t .

III. We next define the bootstrap observations,

Y ∗
t = Y ∗N

t + Y ∗C
t .

The parameters used to construct the data are the parameter values es-
timated in Step 2.

STEP 4: Each bootstrap sample {Z∗
Tb : b = 1, ..., B} is then used to

re-estimate the parameters under H1. Let γ̂∗1 denote the estimator of γ1

when using the bootstrap sample. We then compute the Wald test statistic
associated with the bootstrap sample as

W ∗ = Rγ̂∗1(RV̂ ar(γ̂∗1)R
′)−1(Rγ̂∗1)

′,

STEP 5: Repeating this for b = 1, ..., B gives a sample {W ∗ : b = 1, ..., B}
of W values. This sample mimics a random sample of draws of W under the
null hypothesis. We compute the bootstrap p-value as pB = card(W ∗ ≥
W )/B, that is the fraction of W ∗ values that are greater than the observed
value W .

We carry out B = 1000 bootstrap replications.

7In particular, the variable ηN
t was sampled from Mammen’s (1993, p.257) two-point

distribution attaching masses (5+
√

5)/10 and (5−√5)/10 at the points −(
√

5−1)/2 and
(
√

5 + 1)/2, respectively.
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4 Empirical results

4.1 Data

The economic series employed is the quarterly real gross domestic product
(GDP) for the United States. The time range of the data is 1952:1 to 2005:2.
Data series is taken from the OECD Main Economic indicators Database.
GDP series is obtained as seasonally adjusted and is in natural logs.

4.2 Evidence for unit root

We have imposed that the natural component contains a unit root. Thus, we
are interested in testing for a unit root in GDP series. We employ the Phillips-
Perron test for unit roots. We obtain that GDP displays a nonstationary
behaviour. This result is presented in Table 1.

4.3 Estimation results and hypothesis testing

The result for the linearity test is reported in Table 2. The p-value obtained,
0.000, is calculated following the bootstrap technique described in Section
3. The diagnosis checking of the residuals of the linear model8 leads us to
implement a heteroskedastic bootstrap. According to the bootstrap p-value,
we reject the null hypothesis of a linear model at the 1%-significance level.
Results concerning the estimated nonlinear model are available in Table 3.

We define asymmetry as the different dynamic of a macroeconomic series
during recessions and expansions. Therefore, we are interested in checking
if the estimated smooth probabilities coincide with the timing of recessions
for the U.S. economy. Figure 1 shows these probabilities along with NBER
recession dates. The business cycle peaks derived from the model are quite
close to NBER. Thus, our model identifies those recession periods when the
growth rate of the trend undergoes changes in its dynamic.

The sign of the growth rate of the trend component is positive during ex-
pansions, µ1 = 0.009, and negative during recessions, µ2 = −0.01 This result
confirms Hamilton’s conclusions about real GNP growth is well characterized
by recurrent shifts between positive and negative growth periods.

We also obtain that the standard deviation of the trend, σ̂N = 0.006, is
larger than the standard deviation of the cycle innovation, σ̂C = 0.001. The

8The assumptions underlying the errors of the linear model are tested via appropri-
ate autocorrelation, heteroskedasticity and normality test statistics. We find evidence in
favour of non-autocorrelation and heteroskedasticity. All results are available from the
author upon request.
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ratio of standard deviations, σ̂N/σ̂C , is greater than one. This indicates that
most of the output variation can be attributed to the trend component. This
result is in contrast to the evidence presented by other studies that find that
the majority of output fluctuations in the U.S. are due to cyclical shocks (see
Clark, 1987). On the other hand, our result is consistent with the evidence
presented by Nelson and Plosser (1982) and Murray and Papanyan (2004).

We next move to the Endogenous Growth Hypothesis, i.e. H0 : θ = 0. We
reject the null hypothesis at the 5% significance level, with a p-value equal
to 0.000. This means that cyclical shocks have a permanent impact on the
trend component of GDP, thus they are an important source of the observed
persistence of output fluctuations. Therefore, this persistence cannot be
reduced to the presence of exogenous permanent shifts, as it was pointed
out in section 1 in relation to RBC theory. Even if real shocks dominate
as the source of output fluctuations, these shocks do not work through the
mechanisms highlighted in RBC models. Real shocks affect the economy
through some Keynesian channel, as the EG theory suggests. The positive
sign of parameter θ implies that there is a positive correlation between cyclical
shocks and the trend component. This means that a positive cyclical shock
leads to a permanent increment in the GDP trend.

We conclude that, if our goal is to study the persistence of output fluc-
tuations, RBC theory may be misleading.

5 Monte Carlo Experiment

This section reports a simple Monte Carlo experiment that is conducted
in order to gauge the finite sample performance of the linearity test. The
experiments are based upon the model design described in Section 2. The
parameter values defining the 11 selected data-generating processes (DGPs)
are listed in Table 4.

It is worth noting that DGP0 corresponds to a single regime model (i.e.
µ1 = µ2), whereas from DGP1 to DGP10 we have a two-regime model (i.e.
µ1 6= µ2). This involves generating data from DGP0 to explore the empirical
size of the test, while the remaining ten parameterizations are considered to
explore the empirical power of the test. Parameter values for DGP1 corre-
spond with the point estimates of our model.

Transition probabilities (p11, p22) = (0.6, 0.4) imply that the regime in-
dicator variables {St} are uncorrelated. In the case of (p11, p22) = (0.9, 0.9)
or (p11, p22) = (0.9, 0.98), the two regimes are highly persistent, with the
regime corresponding to St = 2 being almost absorbing in the later case (the
stationary distribution of {St} is (0.5, 0.5) and (0.1167, 0.8333), respectively).
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The experiments proceed by generating an artificial time series of length
T + 50 according to each one of the DGPs under study, with T ∈ {100, 250}
and initial values for both the cyclical component and the trend set to zero.
The initial value of the Markov chain {St} was drawn randomly from its
stationary distribution, that is, p(st = 1) = (1 − p22)/(2 − p11 − p22) and
p(st = 2) = (1 − p11)/(2 − p11 − p22). The first 50 pseudo-data points are
then discarded to minimize the effect of initial conditions and the remaining
T points are used to compute the test statistic. For each simulated sample,
the p-values were calculated using 250 bootstrap replications.

In Table 5 we report the rejection frequencies in 1000 Monte Carlo repli-
cations at the 5% and 10% significance levels. The empirical size of the test is
remarkably close to its nominal value even for a small sample size T = 100.
If the sample size is increased to T = 250, the empirical size is more ac-
curate. The power of the test is also quite good. Especially noteworthy
is the sensitivity of the results with regard to the magnitude of parameter
change. It is evident that the test performance improves as the difference
between the values of parameters in the two regimes increases. In addi-
tion, the magnitude of the transition probabilities significantly affects the
power of the test. More precisely, in both cases, (p11, p22) = (0.9, 0.9) and
(p11, p22) = (0.9, 0.98), we observe a high power. A loss in power is observed
in the case of (p11, p22) = (0.6, 0.4). As expected, it can be seen for each
design point that, as T increases, the power improves considerably.

To sum up, the general conclusion that can be drawn from the simulation
findings is that the proposed test performs quite well.

6 Conclusions

We have claimed that one of the important stylized facts of business cycle is
the persistence of output fluctuations. The aim of this paper is to identify
the source of this observed persistence for the case of the U.S. economy. With
this in mind, we propose an unobserved components model that allows us
to decompose GDP series into a trend component and a cyclical component.
We model the trend component as a random walk with drift. The transitory
component is supposed to follow a stationary second-order autoregressive
process. Following Hamilton (1989), we allow the growth rate of the trend
component to switch between different regimes according to a first-order
Markov process.

To determine the number of regimes, we propose a bootstrap procedure
that allows for general forms of heteroskedasticity. We investigate the per-
formance of the proposed bootstrap procedure by means of a Monte Carlo
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simulation. We find that it works correctly. Hypothesis testing suggests that
cyclical shocks are an important source of persistence in output fluctuations.

We conclude that the persistence of output fluctuations cannot be simply
reduced to the presence of exogenous permanent shifts in the production
function, as it is usually assumed by the RBC theory. As the EG theory
suggests, cyclical shocks need to be take into account.
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Appendix A: Estimation procedures
In this appendix we present different filters which have been proposed in

the relevant literature for estimating the sort of model described in Section 2.
Firstly, we examine the Kalman filter, which allows us to estimate the linear
model. Secondly, we present Kim’s approach, which combines unobserved
components models with the Markov-switching methodology.

The Kalman Filter
In 1960, R.E. Kalman published a famous paper describing a recursive

solution to the discrete data linear filtering problem. Since that time, due
in large part to advances in digital computing, the Kalman filter has been
the subject of extensive research and applications, particularly in the area of
autonomous or assisted navigation.

The Kalman filter9 is a set of mathematical equations that provides an
efficient recursive computational procedure to estimate the state of a process,
in a way that minimizes the mean squared error (MSE). The filter is very
powerful in several aspects: it supports estimations of past, present, and even
future states, and it can do so even when the precise nature of the modeled
system is unknown.

To start with, consider an (n× 1) vector of observed variables at date t,
yt. These observable variables are related to a possibly unobserved (r × 1)
vector ht, known as the state vector, via a measurement equation,

yt = H ′ht + A′xt + wt, (1)

where H ′ and A′ are matrices of parameters of dimension (n×r) and (n×k),
respectively, xt is an (k×1) vector containing exogenous or lagged dependent
variables, and the (n× 1) vector wt is a white noise disturbance vector with
covariance matrix given by:

E(wtw
′
τ ) =

{
R for t = τ
0 otherwise

,

where R is an (n× n) matrix.
Despite the fact that the variables of ht are, in general, not observable,

they are known to be generated by a first-order Markov process,

ht = Fht−1 + Π′xt + vt, (2)

9See Hamilton (1994, Chapter 13) and Harvey (1989, Chapter 3) for a more detailed
description of the Kalman filter.
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where F and Π′ are matrices of parameters of dimension (r× r) and (r× k),
respectively. The (r × 1) vector vt is a withe noise disturbance vector:

E(vtv
′
τ ) =

{
Q for t = τ
0 otherwise

,

where Q is an (r × r) matrix. Equation (2) is the transition equation.
The disturbances vt and wt are assumed to be uncorrelated at all lags:

E (vtw
′
τ ) = 0 for all t and τ.

Further assumptions on measurement and transition disturbances are as
follows: i) they are uncorrelated with the exogenous variables; ii) they are
assumed to be normally distributed in order to calculate the likelihood func-
tion.

The state space form (SSF) that represents the dynamics of the univariate
time series yt is composed of equations (1) and (2). The information set at
time t − 1 is given by matrix Ψt−1 ≡ (y′t−1, y

′
t−2, ......y

′
1, x

′
t−1, x

′
t−2, ......., x

′
1)
′.

Note that there are two set of unknowns: the parameters of the model in H ′,
A′, R, F, Π′ and Q (these matrices will be referred as the system matrices)
and the elements of the state vector ht........ The goal of the Kalman filter
procedure is to form a forecast of the unobserved state vector at time t based
on the information at date t−1. For now, we will assume that the particular
numerical values of system matrices are known. Let ĥt|t−1 denote the linear
forecast of the state vector ht based on (xt, Ψt−1), and Pt|t−1 denote the MSE
matrix associated with this forecast.

Because the filter is a recursion, it is started assuming initial values for the
mean and variance of the state variables, ĥ1|0 and P1|0, respectively. Then,
we can conduct the Kalman filter in four major steps. First, we calculate the
one-period-ahead forecast of the unobserved state vector and the associated
MSE matrix :

ĥt|t−1 = E [ht|xt, Ψt−1] = Fĥt−1|t−1 + Π′xt,

Pt|t−1 = E
[
(ht − ĥt|t−1)(ht − ĥt|t−1)

′|Ψt−1

]
= FPt−1|t−1F

′ + Q.

The next step is to calculate the one-step forecast of the measurement
variable yt at date t− 1 knowing information up to and including t− 1,

ŷt|t−1 = E(yt|xt, Ψt−1) = H ′ĥt|t−1 + A′xt. (3)

Once the new observation yt becomes available at date t, we can calculate
the forecast error on the observed variable and its MSE:

λt = yt − ŷt|t−1,

Λt = E[(yt − ŷt|t−1)(yt − ŷt|t−1)
′|Ψt] = H ′Pt|t−1H + R, (4)
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and it is possible to update the estimated state vector and its MSE matrix:

ĥt|t = E [ht|Ψt] = ĥt|t−1 + Φtλt,

Pt|t = (I − ΦtH
′)Pt|t−1,

where Φt = Pt|t−1H(Λt)
−1 is known as the filter gain since a certain fraction

of the difference between the observable and the predicted state is added to
the previous prediction. These last two terms that are generated using the
updating equations correspond to the inputs of the next filter iteration.

Hence, if the system matrices were known the Kalman filter would yield as
outcome the sequences {ĥt|t−1}T

t=1 and {Pt|t−1}T
t=1. We can view the Kalman

filter as a sequential updating procedure that consists of forming a prior
guess about the state of nature and then adding a correction to this guess,
this correction being determined by how well the guess has performed in pre-
dicting the next observation. However, the state space model is not entirely
estimated since we usually do not known the parameters of the system ma-
trices. Considering that {vt, wt}T

t=1 are Gaussian, then the distribution of yt

conditional on (xt, Ψt−1) is Gaussian with mean given by equation (3) and
variance given by equation (4). We use the prediction error decomposition to
construct the logarithm of the distribution function, so that for a Gaussian
model it has the form:

ln f(yt|xt, Ψt−1) = −N

2
ln 2π − 1

2
ln |Λt| − 1

2
λ′tΛ

−1
t λt.

Finally, to estimate the parameters of the system matrices we maximize
the log-likelihood function

ln L =
T∑

t=1

ln f(yt|xt, Ψt−1)

with respect to the underlying unknown parameters using nonlinear opti-
mization techniques.

The Kim Filter
The aim of the Kim filter is to extend the Markov-Switching methodol-

ogy to a general state-space framework, where measurement and transition
equations may both switch between regimes. The state-space representation
becomes:
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yt = H ′
st
ht + A′

st
xt + wt,

ht = Fstht−1 + Π′
st
xt + νt,

with

(wt, vt)
′ ∼ N

(
0,

(
Rst 0
0 Qst

))
,

where st is a latent process which reflects the state of the system. It can take
values 1, 2, ...M, with M standing for the number of states. As in Hamilton
(1989), st is supposed to follow an M-state first-order Markov process with
transition probabilities:

pij = Pr (st = j|st−1 = i, st−2 = k...) = Pr(st = j|st−1 = i)

where
M∑

j=1

pij = 1.

The goal of this filter is to construct a forecast of ht and its associated
mean square error, based not only on Ψt−1 but also on the random variable
st taking value j and st−1 taking value i:

ĥ
(i,j)
t|t−1 = E [ht|Ψt−1, st = j, st−1 = i]

P
(i,j)
t|t−1 = E

[(
ht − ĥt|t−1

)(
ht − ĥt|t−1

)′
|Ψt−1, st = j, st−1 = i

]

The Kim filter proceeds as follows. We first apply the Kalman filter
algorithm conditioning on st = j and st−1 = i:

ĥ
(i,j)
t|t−1 = Fjĥ

i
t−1|t−1 + Π′

jxt

P
(i,j)
t|t−1 = FjP

i
t−1|t−1F

′
j + Qj

λ
(i,j)
t|t−1 = yt −H ′

jĥ
(i,j)
t|t−1 − A′

jxt

Λ
(i,j)
t = H ′

jP
(i,j)
t|t−1Hj + Rj

ĥ
(i,j)
t|t = ĥ

(i,j)
t|t−1 + Φ

(i,j)
t λ

(i,j)
t|t−1

P
(i,j)
t|t =

(
I − Φ

(i,j)
t H ′

j

)
P

(i,j)
t|t−1
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with
Φ

(i,j)
t = P

(i,j)
t|t−1Hj[Λ

(i,j)
t ]−1

representing the filter gain, and so on.

Each iteration of the Kalman filter produces an M-fold increase in the
number of cases to be considered, which will turn the algorithm into some-
thing computationally unfeasible even for the simplest case. To do the filter
operable, Kim proposes the following approximations:

ĥj
t|t =

∑M
i=1 Pr(st−1 = i, st = j|Ψt)ĥ

(i,j)
t|t

pr (st = j|Ψt)
,

P j
t|t =

∑M
i=1 Pr(st−1 = i, st = j|Ψt)

[
P

(i,j)
t|t +

(
ĥj

t|t − ĥ
(i,j)
t|t

)(
ĥj

t|t − ĥ
(i,j)
t|t

)′]

Pr (st = j|Ψt)

The weighted state vector ĥj
t|t (and its variance) constitutes the input

of the modified Kalman filter for the next iteration. The probabilities are
computed using a filter similar to that of Hamilton (1989) and are based on
the Markov-switching assumption.

At first step, knowing the regime transition matrix, Pr(st = j|st−1 =
i), and the probability of being in state i at (t − 1), Pr(st−1 = i|Ψt−1), it is
possible to calculate:

Pr(st−1 = i, st = j|Ψt−1) = Pr(st = j|st−1 = i) ∗ Pr(st−1 = i|Ψt−1).

This allows us to calculate the joint conditional density function of yt and
(st, st−1):

f(yt, st−1 = i, st = j|Ψt−1) = f(yt|st−1 = i, st = j|Ψt−1)∗Pr(st−1 = i, st = j|Ψt−1),

with

f(yt|st−1 = i, st = j, Ψt−1) = (2π)−n/2|Λ(i,j)
t |−1/2 exp(−1

2
(λ

(i,j)
t|t−1)

′Λ(i,j)−1

t λ
(i,j)
t|t−1)

standing for the likelihood derived from the model.
We finally obtain the probabilities needed for the last collapsing opera-

tion:

Pr(st−1 = i, st = j|Ψt) =
f(yt, st−1 = i, st = j|Ψt−1)

f(yt|Ψt−1)
,
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with

f(yt|Ψt−1) =
M∑
i=1

M∑
j=1

f(yt, st−1 = i, st = j|Ψt−1),

and

Pr(st = j|Ψt) =
M∑
i=1

Pr(st−1 = i, st = j|Ψt).

A direct inference for the unobserved component is:

ĥt|t =
M∑

j=1

Pr(st = j|Ψt)ĥ
j
t|t.

As in the usual kalman filter, the filter is conducted under the assumption
that the parameters to be estimated are constant and known. The log-
likelihood is a by-product of the filter and is calculated as follows:

ln L =
T∑

t=1

ln f(yt|Ψt−1).

We maximize the log-likelihood function with respect to the underlying
unknown parameters using non-linear optimizations routines.
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Appendix B: Tables and Figures

Table 1: Unit Root Tests

Phillips-Perron test on GDP series
U.S. 0.050

Note 1: For the Phillips-Perron test, we use Mackinnon critical values for rejecting of
hypothesis of a unit root. We do not reject the null hypothesis of a unit root at 1%, 5%
and 10%.

Table 2 : Linearity test

H0 : µ1 = µ2

U.S. P − value = 0.000∗

*Significant at 1%.

Table 3 : Estimation Results for the U.S.‡

NONLINEAR MODEL
Natural Component Equation i = 1 i = 2

µi
0.009

(0.001)
−0.010
(0.003)

θ
2.403

(0.256)

σN 0.006
(0.0002)

Cyclical Component Equation

φ1
1.356

(0.195)

φ2
−0.722
(0.128)

σC 0.001
(0.0003)

Transition Probabilities

p11
0.960

(0.059)

p22
0.280

(0.091)

‡standard errors in parentheses.
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Table 4 : Parameter Values for the DGP

φ1 φ2 σC µ1 µ2 θ σN p11 p22

DGP0 0.5 -0.06 0.02 0.2 0.2 0.06 0.5 0 0
DGP1 1.4 -0.7 0.001 0.009 -0.01 2.4 0.006 0.96 0.28
DGP2 1.6 -0.6 0.004 0.9 0.7 0.03 0.005 0.6 0.4
DGP3 1.6 -0.6 0.004 0.9 0.7 0.03 0.005 0.9 0.9
DGP4 1.6 -0.6 0.004 0.9 0.7 0.03 0.005 0.9 0.98
DGP5 1.6 -0.6 0.004 0.9 0.5 0.03 0.005 0.6 0.4
DGP6 1.6 -0.6 0.004 0.9 0.5 0.03 0.005 0.9 0.9
DGP7 1.6 -0.6 0.004 0.9 0.3 0.03 0.005 0.9 0.98
DGP8 1.6 -0.6 0.004 0.9 0.3 0.03 0.005 0.6 0.4
DGP9 1.6 -0.6 0.004 0.9 0.3 0.03 0.005 0.9 0.9
DGP10 1.6 -0.6 0.004 0.9 0.3 0.03 0.005 0.9 0.98

Table 5 : Monte Carlo Size and Power

T = 100 T = 250
Level 0.05 0.10 0.05 0.10

DGP0 0.042 0.092 0.048 0.099
DGP1 0.690 0.702 0.913 0.920
DGP2 0.325 0.496 0.422 0.528
DGP3 0.572 0.633 0.730 0.757
DGP4 0.555 0.610 0.675 0.700
DGP5 0.462 0.525 0.605 0.778
DGP6 0.632 0.679 0.777 0.895
DGP7 0.619 0.670 0.751 0.770
DGP8 0.534 0.661 0.731 0.756
DGP9 0.772 0.899 0.950 0.996
DGP10 0.668 0.695 0.932 0.976
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Figure 1: Smooth probability of regime St = 2 (GDP: 1952:I-2005:II)
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