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1 Introduction

The Analytic Hierarchy Process (AHP) of Saaty (1977, 1980, 1986) is a technique

for establishing priorities in multi-criteria decision making. It can be applied to both

individual and group decisions. At the individual level, the procedure starts with

the decision maker measuring on a ratio scale the relative dominance between any

pair of items relevant in a decision problem: namely, for any pair of items i and j

from a set of size n, the decision maker elicits the ratio wi/wj , in terms of underlying

priority weights w = (w1, ..., wn)
T, with w1 > 0, ..., wn > 0. The procedure gives

rise to n(n− 1)/2 subjective ratio assessments, which the AHP conveniently stores

in a subjective comparison matrix A = [αij ]. Various prioritization procedures can

then be used to extract the priority vector from A. However, due to inconsistencies

in the elicitation, the theoretical vector w cannot be known exactly, but only some

perturbed vector u can be obtained. Therefore, a fundamental question in the AHP

concerns the extent to which the empirical priority vector u provided by different

methods represents an accurate approximation of the vector w of interest. Standard

prioritization methods used in the AHP include: the classical maximum-eigenvalue

(introduced by Saaty and defended since; Saaty 1977, 2003); the logarithmic least

squares method (see Crawford and Williams 1985, de Jong 1984, Genest and Rivest

1994); the conceptually close row geometric mean method (Crawford and Williams

1985), which can be further distinguished in some different forms depending on the

type of normalizations applied (e.g., Barzilai and Golany 1994, Escobar, Aguarón

and Moreno-Jiménez 2004).

When applied to group decision making, several additional normative and behav-

ioral issues arise, including considerations about the nature of the group formation

and the relations between its members. Starting from classical works by Aczél and

Saaty (1983) and Saaty (1989), a large and important literature has developed sev-

eral techniques to extend AHP to group decisions. Further fundamental aspects

in the definition of the aggregating procedures concern the level of aggregation,
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which can apply to individual priorities or individual judgments;1 and the averaging

methods, which refer to the question whether the arithmetic mean or the geometric

mean (weighted or not) is used in the aggregation. Many possible combinations of

techniques can be applied to AHP group decision making (discussions in Dyer and

Forman 1992, Ramanathan and Ganesh 1994, Forman and Peniwati 1998), which

can be supported by different normative models (analyses in Bryson 1996, Van Den

Honert and Lootsma 1996, Van Den Honert 2001, Escobar and Moreno-Jiménez

2007, Dong et al. 2010, and references therein).

In Section 2 of the paper we will review the main issues arising in the above liter-

ature and will survey several methods of aggregation. One feature of the aggregating

procedures which in our view still needs further scrutiny concerns the empirical per-

formance of the various methods and their similarities on empirical grounds. In this

paper we are concerned with the distance that, given the aggregation techniques em-

ployed, there is between the theoretical vector w of interest and its approximation u.

Often, in the AHP, the quality of the approximation u is assessed on the basis of the

consistency of the response matrix A. Important contributions in such a line for the

AHP in group decision making have been obtained by several authors, including Xu

(2000), Escobar, Aguarón and Moreno-Jiménez (2004), Moreno-Jiménez, Aguarón

and Escobar (2007), Aull-Hyde, Erdogan and Duke (2006), Lin et al. (2008). Our

approach complements those analyses. While near consistency is obviously a de-

sirable normative property holding in response matrices in which perturbations are

small, the converse is not true and a pairwise comparison matrix may be perfectly

consistent, but “irrelevant and far off the mark of the true priority vector” (Saaty

2003, p. 86). We discuss in more detail this issue in Section 2.

We develop our approach in Sections 3 and 4. In Section 3 the algebraic ex-

pressions of vectors u’s and w’s obtained by different prioritization methods and

aggregation rules are derived and compared theoretically and empirically. We ap-

proach the problem using the theory of matrix differentials (Magnus and Neudecker

1It should be clear that aggregating decision makers’ preferences, whether in the form of judg-
ments or priorities, is not the same as aggregating criteria.
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1999), taking the first-order expansion of vector u around w. We identify five main

classes of aggregation methods which provide identical expressions for the first-order

expansions of vectors u’s around w’s. We show the validity of the approximations

by applying the theoretical expressions to comparison matrices obtained in three

experiments conducted with human subjects in the domain of tangibles.

In Section 4, we analyse more closely the nature of the perturbations affecting

the group’s comparisons. In classical AHP the error terms of the comparison matrix

A have been typically interpreted as caused by factors like trembling, rounding,

computational mistakes, lapses of concentration. As a result, perturbation terms

have generally been treated as stochastically unpredictable white noise errors (see,

e.g., Genest and Rivest 1994). More recent studies in mathematical psychology

have analysed theories of subjective ratio judgments belonging to a class of so-called

separable representations (see Narens 1996, 2002, and Luce 2002, 2004). In these

models people’s ratio judgments, in addition to random errors, are affected by sys-

tematic distortions. These are due to a subjective weighting function which trans-

forms numerical mathematical ratios into subjective perceived ratios. Various recent

experimental evidence has given support to the predictions of models of separable

representations (Ellermeier and Faulhammer 2000, Zimmer 2005, Steingrimsson and

Luce 2005a, 2005b, 2006, 2007, Bernasconi, Choirat and Seri 2008, Augustin and

Maier 2008). In previous works we have shown how the transformation function of

separable representations can be fruitfully applied in the analysis of the AHP re-

sponse matrices used for individual decision making (Bernasconi, Choirat and Seri

2010, 2011). Here we study the implications of separable representations for group

decision making. We first provide a general method to decompose, in the first-order

approximation of the difference between u and w, a stochastic component due to

random errors, and a deterministic component due to the individual subjective trans-

formation functions. The properties of the decomposition are discussed theoretically

and then applied to the data of our three experiments for one aggregation method

as an example. The decompositions clearly show that the deterministic components

of the aggregated perturbation terms are substantially larger than the ones due to
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random noise. Partly, this is consistent with the evidence found in previous analyses

of perturbation terms in individual decision making; partly, it follows from the fact

that, while the individual random noises tend to cancel out by the group averaging

procedures, the deterministic components are not exposed to the same effect. In

fact, given the similarity of the individual subjective weighting functions estimated

across subjects, we observe a tendency for the associated distortions to be reinforced

by the aggregating procedure of the AHP. We discuss methods to correct system-

atic distortions. In the concluding Section 5, we summarise how our analysis can

contribute to the implementation of AHP in group decision making.

2 Basic issues in AHP-group aggregation

In this section we review some fundamental issues in AHP-group aggregation. We

start to introduce some notation. For a n−vector a, let ā be the n−vector defined

by ā = [āi] =
[

a−1
i

]

; un is a n−vector composed of ones; In is the (n× n)−identity

matrix; Un is a (n× n)−matrix composed of ones; ei is a vector of zeros with a one

in the i−th position. A
T is the transpose of the matrix A. A

ℓ denotes the ordinary

product of the matrix A by itself, repeated ℓ times. The notations lnA, expA

and A
⊙ℓ denote the element-wise application of natural logarithm, exponential and

power function (of degree ℓ) to a matrix A.
∑n

j=1 Aj and
⊙n

j=1 Aj respectively

denote the sum and the element-wise product of a series of matrices.

We consider K individuals. In the following we will use an apex (k) to indicate

any quantity for the k−th individual. As an example, A
(k) =

[

α
(k)
ij

]

is the pairwise

comparison matrix of the k−th individual. We say that the individual comparison

matrix A
(k) =

[

α
(k)
ij

]

respects the reciprocal symmetry property if α
(k)
ij = 1/α

(k)
ji for

every i and j. This is an important requisite for the α
(k)
ij to be measured on a ratio

scale. In theory, a reciprocally symmetric matrix A
(k) =

[

α
(k)
ij

]

is said to satisfy the

property of cardinal consistency when for any three ratio judgments α
(k)
ij , α

(k)
il , α

(k)
lj ,

the following holds: α
(k)
ij = α

(k)
il · α

(k)
lj . In practice, cardinal consistency is violated

by individuals due to errors: these may be due to trembling, rounding and other
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unpredictable events. Indeed, we do not know of any fully (cardinally) consistent

matrix from practice of order 5 or higher. A weaker requirement less often violated

in practice is ordinal consistency, implying that when α
(k)
il > 1 and α

(k)
lj > 1 then

also α
(k)
ij > 1.2

Starting with Saaty (1977), a large literature has proposed different consistency

indexes to evaluate the quality of the ratio assessments both for individuals decisions

and for group decisions (recent contributions in Escobar, Aguarón and Moreno-

Jiménez 2004, Moreno-Jiménez, Aguarón and Escobar 2007, Aull-Hyde, Erdogan

and Duke 2006, Lin et al. 2008). As however remarked in the Introduction, it

should be clear that consistency is only a proxy for the quality of the assessments.

This is because while the theoretical case of no errors always implies full consistency,

the converse is not true. A simple example is a judgment matrix A
(k) in which a

decision maker always elicits responses α
(k)
ij = 1 in all pairwise comparisons (i, j)

and in any context. The resulting judgment matrix is fully consistent, but unlikely

to be without errors.

We denote the priority weights in the theoretical case of no errors in the judgment

matrix as w
(k). Then, if A

(k) is the comparison matrix of individual k, we define

the matrix of deviations, called dE(k), through the equality A
(k) =

(

w
(k)

w(k)
T

)

⊙

exp
(

dE(k)
)

or dE(k) = ln
[

A
(k) ⊙

(

w(k)w(k),T
)]

= lnA(k) + ln
(

w(k)w(k),T
)

, with

dE(k) = 0 corresponding to the case of no deviations. The vectors of priority weights

obtained from A
(k) with different prioritization methods are denoted as u

(k). In

Bernasconi et al. (2011) we discuss the algebraic properties of u
(k).

When applied to group decision making, techniques are used to obtain a vector

of priority weights valid for the group as a whole. In this article we are interested

in comparing the difference (u − w), where u is the group priority vector obtained

by the application of various techniques starting from the individual comparison

matrices A
(k), and w is the vector that would be obtained by the application of the

2For example, in a test of ordinal consistency conducted with 69 subjects performing three
independent ratio estimation tasks, we observed only 7 violations of ordinal consistency in the sum
of the three experiments, less than 3.5% (see Bernasconi et al. 2010). Similar positive results are
reported in test of the monotonicity property, which is the equivalent of ordinal consistency in the
context of ratio production tasks in psychophysics (see, e.g., Agustin and Maier 2008).
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same techniques in the theoretical case in which dE(k) = 0 for all k.

2.1 Group formation and member weights

A particularly important issue that arises in the AHP when applied to group decision

making concerns how the group is formed and whether the members of the group

are of equal importance. In many situations it is natural to assume that agents

who agree to act as a group also agree to have equal importance in the group.

There are however also many contexts in which members may be assigned different

importance, for example because the group is already a well-established hierarchy

in an organization, or because in the group there are agents more experts than

others. It is then possible to use weights β1, . . . , βK to measure the importance

of every member of the group (see Forman and Peniwati 1998, Ramanathan and

Ganesh 1994, Saaty 1994). In particular, the weights satisfy βk ≥ 0 for every k and

∑K
k=1 βk = 1. In the simplest case, when all individuals have equal importance,

it is βk = K−1 for every k. Consensus on different weights may be more difficult

to achieve. In some situations, there can be an external source determining the

weights or, as is sometimes referred to, a ‘supra decision maker’ (Ramanathan and

Ganesh 1994). When this does not exist, it is in principle possible to use the AHP

to determine the priorities weights for the group members. The problem is then to

decide who should give the judgments to obtain the member weights. If it is the

group itself, the issue is to determine the member weights for this meta-problem

(Forman and Peniwati 1998). One possibility is to assume equal member weights

at this upper level problem. An alternative way proposed by Ramanathan and

Ganesh (1994) adopts a methodology in which each member of the group evaluate

the importance of all group members, including himself or herself.3 A problem of

this approach is that the decision maker can exaggerate her importance if she has an

advantage from doing that. A limit to this tendency could come from the fact that

individuals who are discovered overrating themselves, giving biased judgments, or

3The method is based on an eigenvector approach which assumes that the members priority
weights for the original decision problem and for the meta-problem should be the same (see Ra-
manathan and Ganesh 1994, p. 257 for details).
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not being really expert, will be penalized in subsequent decisions by lower weights

presumably assigned by others.4 Other scholars have proposed approaches in which

members only provide evaluations to some of the other members, which typically do

not include themselves, with specific techniques proposed to recover member weights

from incomplete pairwise comparisons (Lootsma 1997, Van Den Honert 2001). Other

techniques can be applied to assign weights to members of homogeneous subgroups

(Bollojou 2001). In any case, we remark that the analyses which will be developed

in this paper apply and the results hold regardless of the methods used to weight

the different decision makers.

2.2 Levels of aggregation

Following a large literature (Aczél and Saaty 1983, Saaty 1989, Dyer and Forman

1992, Ramanathan and Ganesh 1994, Forman and Peniwati 1998, Van Den Honert

and Lootsma 1996, Van Den Honert 2001, Dong et al. 2010), the aggregation can be

performed at two levels: AIJ (aggregation of individual judgments) consists in the

aggregation of the individual comparison matrices A
(k) into one judgment matrix

A valid for the group as a whole, and then in the computation of the group decision

vector u from this matrix; AIP (aggregation of individual priorities) consists in the

computation of the individual weights u
(k) from each A

(k) first, and then in obtaining

the aggregated vector u from these. According to Forman and Peniwati (1998), the

two methods may be seen to correspond to two different ways of considering the

group: in the first, the group is taken as a sort of new individual, different from the

simple collection of all its members; whereas in the second, the group is seen as a

collection of independent agents maintaining their own identities. Others neglect this

interpretation and compare the two methods simply on the basis of the axiomatic

justifications of the procedures of aggregation.

4Obviously, such a system of sanctions can work the better the more possibilities there are to
actually monitor the biases in the decision makers’ judgments in various contexts. In a subsequent
part of the paper we will further comment on the possibility to evaluate the extent to which a
decision maker provides accurate judgments in the various contexts.
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2.3 Procedures of aggregation

Indeed, depending on the level chosen for aggregation, different averaging proce-

dures can be used for aggregation. In the context of the AIJ, the main aggregation

method in the literature is the WGM (weighted geometric mean method) that is

based on the computation of the element-wise weighted geometric mean of the com-

parison matrices, i.e. of the aggregated matrix A = [αij ] whose generic element is

αij =
∏K
k=1

(

α
(k)
ij

)βk

, where βk is the weight for individual k. The use of this method

in the context of the AIJ has sometimes been criticized because it violates the Pareto

Principle with respect to individual priorities (e.g., Ramanathan and Ganesh 1994).

However, according to Forman and Peniwati (1998), the Pareto Principle with re-

spect to priorities is inapplicable in the context of AIJ precisely because aggregation

concerns judgments, not priorities. On the other hand, when aggregating judgments,

it has been demonstrated that WGM is indeed the only method which preserves the

reciprocally symmetric structure of the judgment matrices5 and satisfies the Pareto

Principle over judgments and the so-called homogeneity condition,6 whereas other

procedures like the arithmetic mean do not (see Aczél and Saaty 1983, Aczél and

Alsina 1986, Forman and Peniwati 1998). Sometimes in the AIJ in particular, as-

signment of different weights βk’s among agents k’s may reflect different expertise

with the purpose of assigning greater weights to judgments of more expert agents.

In the context of the AIP, the vectors of priorities u
(k) =

[

u
(k)
i

]

are first com-

puted and then aggregated. For the AIP both the geometric and the arithmetic

average satisfy the Pareto Principle over priorities and can therefore be used. In

particular, for the AIP, the methods based on the weighted geometric mean con-

sidered in the literature are of two kinds: the normalized weighted geometric mean

method (NWGM) is based on the computation of the geometric mean of the eigen-

vectors and on the normalization of the vector, and yields a vector u whose i−th

element is given by ui =
∏K

k=1

(

u
(k)
i

)βk
/
∑n

h=1

∏K
k=1

(

u
(k)
h

)βk ; the unnormalized weighted

5An aggregation procedure preserves the reciprocally symmetric structure if the aggregated
matrix A = [αij ] is reciprocally symmetric when the individual matrices A

(k) are.
6The homogeneity condition requires that if all individuals judge a ratio λ times as large as

another ratio, then the aggregated judgments should be λ times as large.
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geometric mean method (UWGM) is based on the computation of the geometric

mean of the eigenvectors without normalization (see, e.g., Forman and Peniwati

1998), and yields a vector u whose i−th element is given by ui =
∏K
k=1

(

u
(k)
i

)βk

.

The weighted arithmetic mean method (WAM) is based on the arithmetic mean of

the vectors, and yields a vector u whose i−th element is given by ui =
∑K

k=1 βku
(k)
i

and is guaranteed to be normalized.

It is also worth noticing that a preference for geometric mean methods over

arithmetic mean methods as aggregation procedures is sometimes justified on the

ground that arithmetic methods are typically relevant when measurements possess

only an interval scale meaning. However, in the context of AHP, in which mea-

surements occurs on ratio scale and have precisely the meaning of representing how

many more times an alternative dominates (in terms of preference or judgment)

another alternative, the geometric mean is more suitable for aggregation since it

directly implements the homogeneity condition (recent discussion in, e.g., Escobar

and Moreno-Jiménez 2007).

2.4 Prioritization

Prioritization is the process of computing the priority vector from the judgments

matrix. In the AIP, prioritization applies to the individual matrices A
(k), whereas

in the AIJ it applies to the group matrix A directly.

In either case, the computation of the vectors can be performed using different

methods. The classical one is the maximum eigenvalue (ME). It has been proposed

by Saaty in his classical writings (1977, 1980) and confirmed since then (Saaty 1990,

2003). In the AIP, for a generic matrix A
(k) =

[

α
(k)
ij

]

, the maximum eigenvalue (ME)

method yields the vector u
(k) defined as A

(k)
u

(k) = λ(k)
u

(k) where λ(k) denotes the

Perron root (maximum eigenvalue) of A
(k) and

∑n
i=1 u

(k)
i = 1. For the theoretical

case of a judgment matrix with no errors, w(k) is the vector containing the underlying

priority weights. For this case, the ME is known to deliver w
(k) directly with the

maximum eigenvalue being at its minimum λ(k) = n. The classical AHP argument

is to use the ME method even for the practical cases in which the matrices A
(k)’s
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contain errors and are therefore not fully consistent, provided inconsistencies fall

within given bounds. Therefore, the main normative justifications to use the ME

lies in its algebraic properties (Saaty 2003).

A different prioritization method is the logarithmic least squares (LLS)

method. It yields a vector u
(k) whose i−th element is given by u

(k)
i =

(
∏n

j=1 αij)
1/n
/
∑n

h=1(
∏n

j=1 αhj)
1/n. The main characteristic of this method is that it

can be justified on the basis of statistical properties (classical references in de Jong

1984, and Genest and Rivest 1994). A variant of LLS studied by Crawford and

Williams (1985) and applied to AHP in group decision making by Escobar, Aguarón

and Moreno-Jiménez (2004) is the row geometric mean (RGM). It yields a vector

u
(k) such that its i−th element is given by u

(k)
i =

(

∏n
j=1 α

(k)
ij

)1/n
.

In the AIJ the same prioritization methods can be used to obtain the group

priority vector u from the aggregated matrix A.

3 Comparisons of (u − w) in AHP-group aggregations

One important question regarding the above aggregation procedures which we be-

lieve the previous literature has not fully addressed concerns the difference between

the various methods on empirical grounds. In particular, how much empirical differ-

ence can we expect from the various techniques when applied to actual data, given

the mathematical properties on which the techniques are based?

3.1 Classes of aggregation methods

To answer the above question we now analyze the algebraic characteristics of the

priority weights u computed according to the different methods and compare the

differences (u − w) obtained under the various methods. The results of the analysis

are summarised in Table 1. In the table, we use the following notation. We introduce

the matrices W ,
(

diag [w] − w · wT
)

and W
(k) ,

(

diag
[

w
(k)
]

− w
(k) · w(k),T

)

.

We recall that the matrix of errors of individual k, with respect to the case of

consistency is dE(k) = lnA(k) + ln
(

w(k)w(k),T
)

. We also notice that, whatever the
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method of aggregation, there is no guarantee that ln
[

A ⊙
(

ww
T
)]

is a well-defined

matrix of deviations from consistency (see Lin et al. 2008, p. 675, equation 16).

The first three columns of the table report the three dimensions of aggregations

discussed above, namely the levels of the aggregation, the averaging procedures for

the aggregation, the prioritization methods. The formulas for u and w obtained

by the various techniques are shown in columns 3 and 5, respectively. To compare

the formulas it is necessary to consider the different normalizations employed by

the techniques. In particular, most prioritization methods (ME, LLS) require that

the vector is such that
∑n

j=1w
(k)
j = 1; nevertheless, other methods (RGM) require

a vector such that
∏n
j=1w

(k)
j = 1. This introduces a small difficulty, since w

(k) is

normalized in different ways according to the method. In order to avoid complica-

tions, the table indicates the vector with the same symbol, specifying in each case

the kind of normalization. The same fact happens with w that can be given by a

weighted arithmetic mean of the individual w
(k)’s or by a weighted geometric mean

of the same vectors; in the latter case, it can be normalized through the alterna-

tive constraints
∑n

j=1wj = 1 or
∏n
j=1wj = 1. Also in this case, we use the same

symbol, leaving the specification of the kind of vector to the context. A further

problem is that, even if the individual vectors are normalized as
∑n

j=1w
(k)
j = 1 or

∏n
j=1w

(k)
j = 1, some aggregation methods yield a resulting aggregated vector with

no normalization (see below for details).

The analytic derivations of all the expressions in Table 1 are obtained using the

theory of matrix differentials (Magnus and Neudecker 1999) and are given in the

Appendix. We remark that, up to the first order, all methods have the same kind

of expansion, since they are given by:

u ≃ w +
1

n

K
∑

k=1

βk · B
(k)dE(k)

un (1)

where the matrix B
(k), that is different across methods and can vary across individ-

uals, is given in Table 1.

Comparing the formulas for u’s and w’s, the table identifies 5 different classes

12



Table 1: Characteristics of priority weights

Priorities

Formula of u B
(k) Norm. of u Formula of w Norm. of w Norm. of w

(k) Class

AIJ WGM ME — W u
T

nu = 1
⊙K

k=1(w
(k))

⊙βk

[

u
T
n·
⊙

K
k=1(w(k))⊙βk

] u
T

nw = 1 u
T

nw
(k) = 1 1

LLS — W u
T

nu = 1
⊙K

k=1(w
(k))

⊙βk

[

u
T
n·
⊙

K
k=1(w(k))⊙βk

] u
T

nw = 1 u
T

nw
(k) = 1 1

RGM
⊙K

k=1

(

u
(k)
)⊙βk

diag (w)
∏n

j=1 uj = 1
⊙K

k=1

(

w
(k)
)⊙βk ∏n

j=1 wj = 1
∏n

j=1 w
(k)
j = 1 2

AIP NWGM ME
⊙K

k=1(u
(k))

⊙βk

u
T
n

⊙

K
k=1(u(k))⊙βk

W u
T

nu = 1
⊙K

k=1(w
(k))

⊙βk

[

u
T
n·
⊙

K
k=1(w(k))⊙βk

] u
T

nw = 1 u
T

nw
(k) = 1 1

LLS
⊙K

k=1(u
(k))

⊙βk

u
T
n

⊙

K
k=1(u(k))⊙βk

W u
T

nu = 1
⊙K

k=1(w
(k))

⊙βk

[

u
T
n·
⊙

K
k=1(w(k))⊙βk

] u
T

nw = 1 u
T

nw
(k) = 1 1

RGM
⊙K

k=1(u
(k))

⊙βk

u
T
n

⊙

K
k=1(u(k))⊙βk

W u
T

nu = 1
⊙K

k=1(w
(k))

⊙βk

[

u
T
n·
⊙

K
k=1(w(k))⊙βk

] u
T

nw = 1
∏n

j=1 w
(k)
j = 1 1

UWGM ME
⊙K

k=1

(

u
(k)
)⊙βk

diag (w) − w · w
(k),T none

⊙K
k=1

(

w
(k)
)⊙βk

none u
T

nw
(k) = 1 3

LLS
⊙K

k=1

(

u
(k)
)⊙βk

diag (w) − w · w
(k),T none

⊙K
k=1

(

w
(k)
)⊙βk

none u
T

nw
(k) = 1 3

RGM
⊙K

k=1

(

u
(k)
)⊙βk

diag (w)
∏n

j=1 uj = 1
⊙K

k=1

(

w
(k)
)⊙βk ∏n

j=1 wj = 1
∏n

j=1 w
(k)
j = 1 2

WAM ME
∑K

k=1 βku
(k)

W
(k)

u
T

nu = 1
∑K

k=1 βkw
(k)

u
T

nw = 1 u
T

nw
(k) = 1 4

LLS
∑K

k=1 βku
(k)

W
(k)

u
T

nu = 1
∑K

k=1 βkw
(k)

u
T

nw = 1 u
T

nw
(k) = 1 4

RGM
∑K

k=1 βku
(k) diag

(

w
(k)
)

none
∑K

k=1 βkw
(k) none

∏n
j=1 w

(k)
j = 1 5



of methods according to the first-order expansion of the vector u in terms of the

matrix dE(k).

Methods of class 1 (AIJ-WGM-ME/LLS, AIP-NGWM-ME/LLS/RGM) yield a

vector u such that u
T
nu = 1, and u ≃ w+ 1

n

∑K
k=1 βk ·WdE(k)

un. These methods are

insensitive to the normalization adopted for u
(k): this is due to the fact that they are

homogeneous of degree 1 in each vector, so that different eigenvectors can even be

normalized in different ways. As remarked above, this is a very appealing property

of WGM. Moreover, AIJ-WGM-LLS and AIP-NWGM-LLS/RGM yield exactly the

same priority vector. Clearly, the remarkable result for the models of this class

is that they obtain the same priority vectors regardless whether the aggregation

procedures are applied at the level of judgments (AIJ) or of priorities (AIP).

The two methods of class 2 (AIJ-WGM-RGM and AIP-UWGM-RGM) yield

exactly the same priorities (see Escobar, Aguarón and Moreno-Jiménez 2004). In this

case, u is normalized so that
∏n
j=1 uj = 1 and u ≃ w+ 1

n

∑K
k=1 βk ·diag (w)·dE(k)

un.

Methods of class 3 (AIP-UWGM-ME/LLS) yield the formula u ≃ w+ 1
n

∑K
k=1 βk·

(

diag (w) − w · w(k),T
)

· dE(k)
un. Unfortunately, the priority vector so obtained is

not normalized.

Methods of class 4 (AIP-WAM-ME/LLS) yield a vector u normalized as u
T
nu = 1,

with expansion u ≃ w + 1
n

∑K
k=1 βk · W

(k) · dE(k)
un.

The only method of class 5 (AIP-WAM-RGM) yields u ≃ w + 1
n

∑K
k=1 βk ·

diag
(

w
(k)
)

·dE(k)
un. The problem of this aggregation method is that the eigenvector

is not normalized in any way.

3.2 Empirical computations

In Table 2, we compute the vectors of priority weights aggregated according to the

different methods for three experiments described in Bernasconi, Choirat and Seri

(2010). In the experiments, 69 individuals were asked to elicit individual comparison

matrices in three domains respectively concerning 5 probabilities from games of

chances, 5 distances of Italian cities from Milan, and the rainfalls in 5 European cities
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Table 2: Aggregations of priority weights by different methods

a) Chances experiment

Methods Weights Class

AIJ WGM ME 0.13579354 0.04955144 0.44610785 0.08617203 0.28237514 1

LLS 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1

RGM 0.9085515 0.3335138 2.9947533 0.5859083 1.8808145 2

AIP NWGM ME 0.13542866 0.04855110 0.44577453 0.08675934 0.28348636 1

LLS 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1

RGM 0.13553307 0.04975188 0.44674197 0.08740280 0.28057028 1

UWGM ME 0.12688924 0.04548973 0.41766634 0.08128876 0.26561121 3

LLS 0.12703102 0.04663093 0.41871767 0.08191999 0.26296999 3

RGM 0.9085515 0.3335138 2.9947533 0.5859083 1.8808145 2

WAM ME 0.14088845 0.05057028 0.43650269 0.09161485 0.28042373 4

LLS 0.14072004 0.05222758 0.43764566 0.09114555 0.27826117 4

RGM 0.9871902 0.3640906 3.1903676 0.6399945 2.0140510 5

b) Distances experiment

Methods Weights Class

AIJ WGM ME 0.25623855 0.45062333 0.16563406 0.05025878 0.07724528 1

LLS 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1

RGM 1.7255649 2.9990583 1.1091133 0.3354151 0.5194280 2

AIP NWGM ME 0.25859236 0.44989872 0.16458325 0.05010357 0.07682210 1

LLS 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1

RGM 0.25798675 0.44838493 0.16582196 0.05014743 0.07765893 1

UWGM ME 0.25132578 0.43725633 0.15995837 0.04869563 0.07466336 3

LLS 0.25101157 0.43626196 0.16133863 0.04879159 0.07555927 3

RGM 1.7255649 2.9990583 1.1091133 0.3354151 0.5194280 2

WAM ME 0.25371327 0.44514466 0.16635863 0.05295901 0.08182443 4

LLS 0.25379045 0.44391684 0.16718922 0.05277836 0.08232513 4

RGM 1.7616022 3.1411006 1.1353818 0.3501750 0.5459828 5

c) Rainfalls experiment

Methods Weights Class

AIJ WGM ME 0.05764504 0.22923164 0.44891332 0.17619264 0.08801735 1

LLS 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1

RGM 0.3690836 1.4745569 2.8715770 1.1298991 0.5663092 2

AIP NWGM ME 0.05758913 0.22966776 0.44501392 0.17920920 0.08851999 1

LLS 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1

RGM 0.05756653 0.22998892 0.44788431 0.17623212 0.08832813 1

UWGM ME 0.05341867 0.21303581 0.41278716 0.16623133 0.08210960 3

LLS 0.05334509 0.21312346 0.41504023 0.16330873 0.08185089 3

RGM 0.3690836 1.4745569 2.8715770 1.1298991 0.5663092 2

WAM ME 0.05973668 0.23167645 0.42525063 0.18546677 0.09786947 4

LLS 0.05950081 0.23215688 0.42752466 0.18299506 0.09782259 4

RGM 0.3982207 1.6170153 3.0168890 1.2651230 0.6623847 5



in November 2001.7 The computations in the Table aggregate individual judgments

or individual priorities, depending on the method, over the 69 individuals using equal

weights. The results of the computations confirm the validity of the approach and

of the classification discussed above. In particular, consistently with the algebraic

expressions derived in Table 1, we find that the differences between the methods

belonging to each of the 5 classes are very small, namely 0 up to the third decimal

in all the three experiments; while they are larger between methods of different

classes. It is just worth remarking that this finding is virtually independent of the

size of the group, since the group size n is not an asymptotic parameter for any

class.

We also observe that since the methods differ only in the second and higher

orders, the results indirectly support the validity of the first order approximation,

as previously indicated for individual decision making.8

3.3 Discussion and implications

The classification in Table 1 and the empirical computations in Table 2 put also

some order on the issues discussed in Section 2. First of all, although the anal-

ysis identifies five main classes of methods, two of them (classes 3 and 5) imply

that the priority vectors obtained are not normalized and are therefore unsuitable

for actual implementation. Methods in class 2 are characterized by the use of the

RGM as prioritization procedure (when applied in combination with AIJ/WGM and

AIP/UWGM). It is quite interesting that, even if this method is often considered

similar to LLS, the two can produce results that are more different than those ob-

tained under LLS and ME. On the contrary, notwithstanding the disputes between

the latter two methods often encountered in the literature, it is remarkable that

on the empirical ground ME and LLS generate virtually identical priorities when

applied in all aggregating procedures. Overall, the analysis of this Section can be

7The instructions and the full data set of the experiments are available from authors.
8For individual decision making (in Bernasconi, Choirat and Seri 2011), we have actually com-

puted the second-order term and shown that it is much smaller that the first-order one. Similar
computations are available here for the interested reader.
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viewed to speak moderately in favour of models of class 1. In addition to the in-

teresting properties listed above, including the equivalence of the priority vectors

obtained under AIP and AIJ, the use of the WGM as averaging procedure for the

models of this class can be supported over (for example) models of class 4, on the

basis of the normative argument outlined in Section 2, namely that the geomet-

ric mean fits better than the arithmetic mean the notion of ratio scale measures

underlying both judgments and priorities.

4 Decomposition of (u − w) in group aggregation meth-

ods: the effect of systematic distortions

What does it cause the departure of u from its true value w? Classical AHP

has not generally spent much attention to discuss the nature of the perturbations

occurring in ratio estimation tasks and has generally assumed that they are due to

random errors.9 In recent years, studies in mathematical psychology have focussed

on systematic distortions occurring in subjective ratio estimations, which can be

formalised in so-called separable forms (Narens 1996, 2002, and Luce 2002, 2004).

4.1 Separable representations

Following the literature on separable forms, from now on we assume that the elicited

ratios in the AHP are generated according to the following model:10

αij = W−1

(

ψ(xi)

ψ(xj)

)

· eij (2)

where the functions ψ and W are respectively called psychophysical and subjective

weighting function, W−1(·) is the inverse of W (·), ψ(x1), ..., ψ(xn) are the psycho-

logical perceptions of the stimuli intensities corresponding to the priority weights

wi = ψ(xi)
∑

j ψ(xj)
(for i = 1, ..., n); and where eij are the more classical multiplicative

9See de Jong (1984) and Genest and Rivest (1994) for classical works on the stochastic structure
of the error terms in the AHP.

10For a more general discussion on the relation between the AHP and the modern theory of
separable representations we refer to Bernasconi, Choirat and Seri (2010).
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random error terms introduced by the AHP. The functions ψ and W indicate that

two independent transformations may occur in a ratio estimation: one of the stimuli

intensities (embodied in ψ), and the other of numbers (entailed in W ). Support for

separable forms has been found in a series of recent experiments which have been

conducted to test some of their underlying properties and which have estimated

different functional specifications of ψ and W (see, among others, Ellermeier and

Faulhammer 2000, Zimmer 2005, Steingrimsson and Luce 2005a, 2005b, 2006, 2007,

Bernasconi, Choirat and Seri 2008). Specifically relevant are the distortions caused

by W , which are sometimes interpreted as cognitive ones. In fact, findings have

shown that systematic distortions of numbers (actually, ratios) due to W follow a

very intuitive pattern: namely, people tend to overestimate low ratios and underes-

timate high ratios, with the tendency to underestimate increasing as the ratios get

increasingly larger than one. Such tendency is also consistent with the probabil-

ity transformations observed to affect people decisions under conditions of risk and

uncertainty and used to develop descriptive models of choice in that area (like the

famous Cumulative Prospect Theory by Tversky and Kahneman 1992).

4.2 Deterministic distortions in (u − w)

Here we study the effect of deterministic distortions due to the subjective weighting

function W in group aggregation methods. We set eij = exp (νij), where νij = −νji

and the νij ’s are independent and identically distributed random variables with

E (νij) = 0 and V (νij) = σ2. Then, the previous formula (2) can be rewritten as:

αij =
wi
wj

· exp

{

ln

[

wj
wi

·W−1

(

wi
wj

)]

+ νij

}

=
wi
wj

· edεij (3)

where:

dεij = ln

[

wj
wi

·W−1

(

wi
wj

)]

+ νij . (4)

In order to respect the property of reciprocal symmetry, we need dεij = −dεji.

Taking a polynomial approximation, it is then possible to write W−1 (·) as (see,
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e.g., Bernasconi, Choirat and Seri 2011, p. 156):

W−1 (x) = exp

{

L
∑

ℓ=0

φℓ · [ln (x)]ℓ
}

= x · exp

{

L
∑

ℓ=2

φℓ · [ln (x)]ℓ
}

(5)

so that, when ‖φℓ‖∞ = max2≤ℓ≤L |φℓ| ↓ 0, W−1 (x) → x. Coefficients φℓ’s therefore

approximate the effect of the systematic distortion. Substituting in equation (4) we

obtain:

dεij = ln

[

wj
wi

·W−1

(

wi
wj

)]

+ νij =
L
∑

ℓ=2

φℓ · [ln (wi/wj)]
ℓ + νij . (6)

Thus, under the hypotheses that ‖φℓ‖∞ = max2≤ℓ≤L |φℓ| ↓ 0 and σ ↓ 0, dεij is

asymptotically negligible. This expansion holds for all the individuals in the group,

so that we put an apex (k) on the quantities appearing in the above formula; for

ease of notation, we suppose that L is independent of k, since this can always be

achieved introducing some zero coefficients φ
(k)
ℓ ’s.

We define the vectors of weights w
(k) ,

[

w
(k)
i

]

, the matrices of distortions

dE(k) ,

[

ε
(k)
ij

]

and of random errors N
(k) ,

[

ν
(k)
ij

]

. In matrix notation, it is possible

to write:

dE(k) =
L
∑

ℓ=2

φ
(k)
ℓ ·

[

ln

(

w
(k)

w(k)
T

)]⊙ℓ

+ N
(k) + o (‖φℓ‖∞) + oP (σ)

=
L
∑

ℓ=2

φ
(k)
ℓ ·

[

(

lnw(k)
)

· uT

n − un ·
(

lnw(k)
)T
]⊙ℓ

+ N
(k) + o (‖φℓ‖∞) + oP (σ) .(7)

While the order of the approximation can obviously be extended to any desired

degree, we retain the approximation in the first non-zero term:11

dE(k) ≃ φ
(k)
3 ·

[

(

lnw(k)
)

· uT

n − un ·
(

lnw(k)
)T
]⊙3

+ N
(k). (8)

11Remark that here and in the following φ
(k)
2 is zero since the function ln

[

W (k)
]−1

(exp (·)) is

supposed to be skew-symmetric.
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This is indeed sufficient to characterize the regularities appearing in several empirical

data of individual decision making (Bernasconi, Choirat and Seri 2008, 2010). All

of the theoretical computations can evidently be repeated within the more general

model introduced above.

Replacing now dE(k) in the general formula (1) for u, we obtain:

u ≃ w +
1

n

K
∑

k=1

βk · B
(k)dE(k)

un

≃ w +
1

n

K
∑

k=1

βk · φ
(k)
3 · B(k)

[

(

lnw(k)
)

· uT

n − un ·
(

lnw(k)
)T
]⊙3

un

+
1

n

K
∑

k=1

βk · B
(k)

N
(k)

un. (9)

The variance of the stochastic part is given by:

V

(

1

n

K
∑

k=1

βk · B
(k)

N
(k)

un

)

=
1

n

K
∑

k=1

β2
kσ

(k),2 ·

{

B
(k) ·

(

In −
1

n
Un

)

· B(k),T

}

; (10)

the “bias” due to the deterministic part is given by:

E

(

1

n

K
∑

k=1

βk · B
(k)dE(k)

un

)

=
1

n

K
∑

k=1

βk·φ
(k)
3 ·B(k)

[

(

lnw(k)
)

· uT

n − un ·
(

lnw(k)
)T
]⊙3

un.

(11)

Equations (10) and (11) provide the basis to assess the relative contributions

on the difference du ≃ u − w of the stochastic components due to ν
(k)
ij and of the

deterministic distortions due to the subjective weighting function W (k) (·). In fact,

for the case of individual decision making (K = 1), it is shown in Bernasconi,

Choirat and Seri (2011) that when |φ3| is equal to the standard error of the noise σ

and the elements of w range on a small interval, then the effects of the deterministic

distortions and of the stochastic terms are comparable; while when the stimuli in

w are very different, the effects of the deterministic distortions are much larger

than those due to the stochastic errors. This result is in line with the so-called

homogeneity axiom of the AHP (Saaty 1986), which requires that the stimuli used

in the AHP must be in a range of comparability.
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The same result holds here for
∣

∣

∣φ
(k)
3

∣

∣

∣ = σ(k), provided that the w
(k)’s (and the

B
(k)’s as a consequence) are not too dissimilar between individuals.12 Moreover, it is

important to emphasize that, in the latter case, the summands for the individuals in

equation (11) are also comparable and do not tend to cancel out across individuals.

On the other hand, equation (10) shows that when K is large enough and the

βk’s are far away from the extreme case in which one β is 1 and the other ones

are 0, the variance of the stochastic terms (due to β2
kσ

(k),2) tends to get smaller

with K. Therefore, this means that, whereas the stochastic component tends to be

averaged out in group decision making, the same does not necessarily happen to the

deterministic part.

In order to illustrate how the decomposition of equation (9) works in practice, the

previous formulas (10) and (11) are applied to the data of the experiments described

above with methods of class 1. In that case, B
(k) = W =

(

diag [w] − w · wT
)

, so

that the variance of the stochastic part and the bias due to the deterministic part

are respectively given by:

V

(

1

n

K
∑

k=1

βk · B
(k)

N
(k)

un

)

=
1

n
·

(

K
∑

k=1

β2
kσ

(k),2

)

· W2

E

(

1

n

K
∑

k=1

βk · B
(k)dE(k)

un

)

=
1

n
· W ·

K
∑

k=1

βk · φ
(k)
3 ·

[

(

lnw(k)
)

· uT

n − un ·
(

lnw(k)
)T
]⊙3

un.

In Table 3, we provide a comparison of the different contributions to u.13

In the computations, the parameters w
(k)’s and φ

(k)
3 ’s appearing in the above

12In this respect we also remark that evidence available in Bernasconi, Choirat and Seri (2010)

shows that the coefficients φ
(k)
3 ’s assume in fact quite similar values across individuals.

13With the above expressions, a limiting case that well illustrates the averaging effect can be
obtained when all individuals are equally weighted (βk = K−1), have the same variances (σ(k),2 =

σ2), the same deterministic distortions (φ
(k)
3 = φ3), and the w

(k)’s are equal so that w
(k) = w. In

such a case:

V

(

1

n

K
∑

k=1

βk · B
(k)

N
(k)

un

)

=
1

nK
· σ2

· W
2

E

(

1

n

K
∑

k=1

βk · B
(k)dE(k)

un

)

=
1

n
· W · φ3 ·

[

(

lnw
)

· u
T

n − un ·

(

lnw
)T
]⊙3

un.

Therefore, the deterministic distortion is equal to the one of a single individual. On the other hand,
the variance of the stochastic part is equal to the same quantity for a single individual divided by
K.
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Table 3: Decomposition of factors contributing to aggregated priority weights - methods of class 1

a) Chances experiment

w 0.10394883 0.02773954 0.52207564 0.05891376 0.28732224

Effect of W 0.031213212 0.016974320 -0.078534838 0.023084544 0.007262762

Effect of noise -0.001433746 -0.000182062 0.008228877 0.001401058 -0.008014128

remainder: AIJ-WGM-ME 0.002065247 0.005019648 -0.005661833 0.002772673 -0.004195734

remainder: AIJ-WGM-LLS 0.001804774 0.005220089 -0.005027708 0.004003439 -0.006000594

remainder: AIP-NWGM-ME 0.001700367 0.004019311 -0.005995150 0.003359983 -0.003084512

remainder: AIP-NWGM-LLS 0.001804774 0.005220089 -0.005027708 0.004003439 -0.006000594

remainder: AIP-NWGM-RGM 0.001804774 0.005220089 -0.005027708 0.004003439 -0.006000594

b) Distances experiment

w 0.24313450 0.54210640 0.13481816 0.02807432 0.05186662

Effect of W 0.02535673 -0.09595689 0.03184458 0.01723847 0.02151710

Effect of noise -0.005262513 0.005719404 -0.000790453 -0.000296605 0.000630167

remainder: AIJ-WGM-ME -0.006990169 -0.001245584 -0.000238222 0.005242587 0.003231388

remainder: AIJ-WGM-LLS -0.005241967 -0.003483988 -0.00005032866 0.005131237 0.003645046

remainder: AIP-NWGM-ME -0.004636354 -0.001970196 -0.001289040 0.005087379 0.002808211

remainder: AIP-NWGM-LLS -0.005241967 -0.003483988 -0.00005032866 0.005131237 0.003645046

remainder: AIP-NWGM-RGM -0.005241967 -0.003483988 -0.00005032866 0.005131237 0.003645046

c) Rainfall experiment

w 0.03335836 0.21287038 0.54011748 0.15225254 0.06140124

Effect of W 0.01955399 0.02501103 -0.09549464 0.02746318 0.02346643

Effect of noise -0.000622832 -0.003889342 0.006172079 -0.001863904 0.000203999

remainder: AIJ-WGM-ME 0.005355531 -0.004760431 -0.001881604 -0.001659171 0.002945675

remainder: AIJ-WGM-LLS 0.005277020 -0.004003153 -0.002910622 -0.001619700 0.003256455

remainder: AIP-NWGM-ME 0.005299617 -0.004324307 -0.005781009 0.001357388 0.003448311

remainder: AIP-NWGM-LLS 0.005277020 -0.004003153 -0.002910622 -0.001619700 0.003256455

remainder: AIP-NWGM-RGM 0.005277020 -0.004003153 -0.002910622 -0.001619700 0.003256455



formulas are replaced by their estimates (see below on how to obtain the es-

timates). Here vectors w’s in the various experiments are computed accord-

ing to the methods of class 1 (see Table 1). The “effect of W” is given by

1
n · W ·

(

1
K

∑K
k=1 ·φ

(k)
3 ·

[

(

lnw(k)
)

· uT
n − un ·

(

lnw(k)
)T
]⊙3
)

· un and the “effect of

noise” is given by 1
nW ·

(

1
K

∑K
k=1 N

(k)
)

· un. The “remainder” is u − w − du and

may be different according to the various aggregation methods of the class. It is

evident that both the effect of the noise and of the remainders computed according

to any method are much smaller than the effect of the deterministic distortions due

to W .

4.3 Corrections of deterministic distortions

The results of the previous subsection shows that it is important to correct for

systematic distortions in group aggregation. A direct way to make the corrections

is provided by the computations underlying Table 3, which decompose the various

terms affecting u. The method is based on individual-specific estimates of parameters

φ
(k)
3 . Obviously, the closer are the individual estimates to the true parameters

φ
(1)
3 , ..., φ

(K)
3 , the better are the corrections.

A method to obtain consistent estimates, denoted with φ
(1)
3 , ..., φ

(K)
3 , from any

judgment matrix A
(k) is developed in Bernasconi et al. (2010). The method is in fact

a generalization of the LLS approach to obtain the priority vector w
(k), according to

the analysis of Genest and Rivest (1994). The procedure has been used in the three

experiments eliciting probabilities in games of chances, distances between cities, and

rainfalls in European cities. Estimates have found values of φ
(k)
3 between −1 and 0

for the large majority of the 69 subjects participating in the study, with medians

of the individual estimates very close to −0.03 in all the three experiments. The

findings are consistent with the tendency of people to overestimate low ratios and

underestimate high ratios, as predicted by cognitive arguments.

Subject-specific estimates of φ
(k)
3 ’s are useful to rank the extent of systematic

biases of different individuals. Indeed, if one believes that cognitive biases in the

perception of numbers are related to a more general attitude of agents to produce
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inconsistent reasonings,14 subject-specific estimates φ
(k)
3 ’s might also be useful to

determine the weights of the subjects in the group. For example, greater weights

β1, . . . , βK could be assigned to members with lower φ
(k)
3 ’s because considered more

generally capable to provide coherent judgments.

In some cases, it may be too costly to obtain a full set of subject-specific esti-

mates of φ
(k)
3 . A possibility in these cases is to use a “representative” model of φ3 to

correct all individual judgment matrices A
(k)’s.15 Representative models are com-

putationally simpler and statistically less demanding to estimate than individual-

specific models. Approaches based on “representative” agents are adopted in many

theories of decision making. For example, in the contexts of theories for decision

under risk there are many studies which provide estimates to be used generally for

the probability subjective weighting function. This is precisely possible because the

individual probability transformation function is stable across contexts and similar

between individuals.

A “representative” model based on the median values of the subject-specific

estimates of φ
(k)
3 to obtain corrected individual w

(k)
j is discussed in Bernasconi et al.

(2010). The results of that paper shows that corrections based on individual-specific

estimates are similar to those obtained by the median representative model. The

analysis conducted here indicates that corrections of the median model may be even

more performing in group decision making: when averaging over individuals, the

use of a representative agent may be able to remove (almost) all of the effect of

systematic distortions, while the law of large numbers remove the effect of the noise.

14For example, in the classical expected utility theory of choice under risk, outcome-probabilities
correspond to decision weights and agents who subjectively transform probabilities are often con-
sidered exposed to a form of irrational behaviour (on this issue see, e.g., discussion in Neilson
2003).

15For example, a simple model that can be used to correct the entries of a judgment matrix can

be obtained replacing α
(k)
ij with α

(k)
ij = exp

{

ln α
(k)
ij − φ

(k)

3 ·

[

ln α
(k)
ij

]3
}

, where φ
(k)

3 is an estimate

of φ
(k)
3 . Substituting the expression in equations (5) and (6) (and using the fact that the errors are

asymptotically negligible), one obtains:

ln α
(k)
ij ≃ ln

(

w
(k)
i /w

(k)
j

)

+
(

φ
(k)
3 − φ

(k)

3

)

·

[

ln
(

w
(k)
i /w

(k)
j

)]3

.

Clearly, the expression confirms that the closer are the estimates φ
(k)

3 ’s to the true φ
(k)
3 ’s, the better

are the corrections. Using a “representative” estimate φ3 for all the members of a group can in some
cases be a simplifying procedure which reduces the cost of estimating subject-specific distortions.
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5 Conclusion

Here we have developed a framework to compare the theoretical priority vector of

interest w with the empirical priority vector u, which can be obtained by various

combinations of prioritization methods and aggregation rules in the AHP for group

decision making. The analysis based on the first-order differential of u around w has

shown how to identify five main classes of combinations of procedures which predict

very similar values for vectors u’s. The predictions are confirmed in experimental

tests conducted with real human subjects in the domain of tangibles.

Our results are useful for implementation of group aggregation. As discussed

in Section 2, a large literature has debated on different aspects of the aggregating

techniques which can be employed in AHP group decision making. The theoretical

analysis has shown, and the empirical applications have confirmed, that some aspects

of the dispute may be less relevant than previously thought. On the one hand,

the choice of the levels at which to conduct the aggregation, namely whether of

individual judgments (AIJ) or individual priorities (AIP), has little relevance for

the empirical results of the aggregation when the weighted geometric mean method

is used as averaging procedure. In this respect, there seems to be little reason to

dispute whether the group should be considered as a ‘new agent’ or a ‘collection

of independent individuals’ as sometimes argued in connection with the choice of

the level of aggregation.16 On the other hand, the aggregated empirical results

seem to be more sensitive to the averaging procedures chosen in the aggregation

and the prioritization methods. Regarding the former issues, we have shown that

several aggregating techniques discussed in the literature yield an aggregated priority

vector that is not normalized. This implies a degree of indeterminacy in the vectors

obtained which rules out the procedures. We have classified various aggregating

methods which should not be considered for this reason. As concerns the methods

of prioritization, our analysis has shown that, in practice, there are effectively no

differences between the classical maximum eigenvalue (ME) and the logarithmic

16This issue can be more relevant in the choice of the weights βk’s.
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least squares (LLS) when applied in the various aggregating procedures used in the

AHP. Quite interestingly, we have shown that there is more difference between the

previous two methods and the row geometric mean (RGM), despite the latter is

often considered in the literature as similar to LLS.

The analysis has also shown how to decompose the first-order difference du ≃

u−w in the components due to random errors and the components caused by sys-

tematic cognitive distortions in the perception of ratios consistent with the so-called

separable representations of mathematical psychology. The importance to distin-

guish the two components has been previously documented, for individual decision

making, both theoretically and empirically. In particular, deterministic distortions

tend to be larger than those due to stochastic errors. The results are confirmed

here for group decision making. Moreover, in group decision making, the effect of

the deterministic distortions may become even more important because, while the

stochastic errors tend to be averaged out with the size of the group, the determin-

istic distortions do not necessarily follow the same law. This implies that it is even

more important to correct for deterministic distortions in group decision making

than in individual decision making. The correction procedure can be based either

on individual-specific estimates of the parameters of the distortions (parameters

φ
(k)
3 ’s in Section 4), or on representative agent estimates, if the computational cost

of estimation are too high.

The proposed analysis has focussed on the empirical properties of group prefer-

ence aggregation methods in the AHP. It complements more standard approaches

which look at consistency measures and judge the quality of u on the basis of those

measures. Consistency is a very important requirement in order to use AHP tech-

niques properly, both in individual and in group decision making; but, by itself,

consistency doesn’t say anything on the quality of u to represent the true priority

vector w of interest (Saaty 2003). Future research must better integrate consistency

considerations with the evaluation and decomposition of the (first-order approxima-

tion) difference du ≃ u − w into a unified framework.
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A Proofs

In the proofs we introduce the notation α
(k)
0,ij = w

(k)
i /w(k)

j . A
(k)
0 =

[

α
(k)
0,ij

]

is the

matrix filled with the elements α
(k)
0,ij . Moreover, in general we will prove the results

for the maximal eigenvector (ME) method and we will extend these results to the

logarithmic least squares (LLS) method using the equivalence up to the first order

proved in Genest and Rivest (1994, equation (6)).

A.1 Proofs - AIJ-WGM-ME/LLS

The generic element of matrix A is:

αij =
K
∏

k=1

(

α
(k)
ij

)βk

=
K
∏

k=1

(

α
(k)
0,ij

)βk

· e
∑K

k=1 βk·dε
(k)
ij . (12)

Therefore, it is possible to reason as if α0,ij =
∏K
k=1

(

α
(k)
0,ij

)βk

and dεij =

∑K
k=1 βk · dε

(k)
ij . It is clear that, if all the matrices A

(k)
0 =

[

α
(k)
0,ij

]

for k =

1, . . . ,K are consistent, then also the matrix A0 = [α0,ij ] is consistent. Indeed

α0,ijα0,jℓα0,ℓi =
∏K
k=1

(

α
(k)
0,ijα

(k)
0,jℓα

(k)
0,ℓi

)βk

= 1. Moreover the Perron right eigen-

vector of the matrix A0 is proportional to
⊙K

k=1

(

w
(k)
)⊙βk and is determined

in such a way that its elements sum up to 1: therefore, it is given by w ,

⊙K
k=1

(

w
(k)
)⊙βk /

[

u
T
n ·
⊙K

k=1

(

w
(k)
)⊙βk

]

. Using results in Section 4 in Bernasconi,
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Choirat and Seri (2011), up to the first order, the maximal eigenvector is given by

u ≃ w + 1
n

∑K
k=1 βk · W · dE(k)

un.

A.2 Proofs - AIJ-WGM-RGM

The generic element of matrix A is given in (12). The i−th element of u obtained

through the RGM is:

ui =





n
∏

j=1

K
∏

k=1

(

α
(k)
ij

)βk





1/n

=







K
∏

k=1

w
(k)
i

(

∏n
j=1w

(k)
j

)1/n







βk

· e
1
n

∑n
j=1

∑K
k=1 βk·dε

(k)
ij

=

(

K
∏

k=1

w
(k)
i

)βk

· e
1
n

∑K
k=1 βk·

∑n
j=1 dε

(k)
ij .

The matrix formulation is obtained setting w =
⊙K

k=1

(

w
(k)
)⊙βk and remarking

that

u = w ⊙ exp

{

1

n

K
∑

k=1

βk · dE
(k)

un

}

≃ w ⊙

(

un +
1

n

K
∑

k=1

βk · dE
(k)

un

)

= w +
1

n

K
∑

k=1

βk · diag (w) · dE(k)
un.

A.3 Proofs - AIP-UWGM-ME/LLS

In this case, the method is based on the aggregation of the individual vectors as

u =
⊙K

k=1

(

u
(k)
)⊙βk , i.e. without normalization. The vector of priorities is given

by:

u ≃
K
⊙

k=1

(

w
(k) + du(k)

)⊙βk

=
K
⊙

k=1

[

w
(k) ⊙

(

un + diag
(

w(k)
)

· du(k)
)]⊙βk

=

K
⊙

k=1

(

w
(k)
)⊙βk

⊙
(

un + βk · diag
(

w(k)
)

· du(k)
)

≃ w + w ⊙
K
∑

k=1

βk · diag
(

w(k)
)

· du(k) = w +
K
∑

k=1

βk · diag (w) diag
(

w(k)
)

· du(k)
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where w ,
⊙K

k=1

(

w
(k)
)⊙βk . Replacing the formula for du(k) we get the desired

result:

u ≃ w +
1

n

K
∑

k=1

βk ·
[

diag (w) diag
(

w(k)
)

W
(k)
]

· dE(k)
un

= w +
1

n

K
∑

k=1

βk ·
(

diag (w) − w · w(k),T
)

· dE(k)
un.

A.4 Proofs - AIP-UWGM-RGM

See Escobar, Aguarón and Moreno-Jimenéz (2004) for a proof of the equality of

AIP-UWGM-RGM and AIJ-WGM-RGM.

A.5 Proofs - AIP-NWGM-ME/LLS

In this case u =
⊙K

k=1(u(k))
⊙βk

uT
n

⊙K
k=1(u(k))

⊙βk
. We start from AIP-UWGM-ME and we normalize

it; remark that at present w =
⊙K

k=1

(

w
(k)
)⊙βk where u

T
nw

(k) = 1. The vector of

priorities is given by:

u ≃
w + 1

n

∑K
k=1 βk ·

(

diag (w) − w · w(k),T
)

· dE(k)
un

uT
nw ·

[

1 +
1
n

∑K
k=1 βk·u

T
n(diag(w)−w·w(k),T)·dE(k)un

uT
nw

]

≃

(

w

uT
nw

+
1
n

∑K
k=1 βk ·

(

diag (w) − w · w(k),T
)

· dE(k)
un

uT
nw

)

·

·

(

1 −
1
n

∑K
k=1 βk · u

T
n

(

diag (w) − w · w(k),T
)

· dE(k)
un

uT
nw

)

≃
w

uT
nw

+

(

In −
wu

T
n

uT
nw

)

·
1
n

∑K
k=1 βk ·

(

diag (w) − w · w(k),T
)

· dE(k)
un

uT
nw

=
w

uT
nw

+
1

n

K
∑

k=1

βk ·

(

diag (w)

uT
nw

−
ww

T

(uT
nw)

2

)

· dE(k)
un.

If we redefine w ,
⊙K

k=1

(

w
(k)
)⊙βk /

[

u
T
n ·
⊙K

k=1

(

w
(k)
)⊙βk

]

, we have u ≃ w +

1
n

∑K
k=1 βk · W · dE(k)

un.
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A.6 Proofs - AIP-NWGM-RGM

Starting from AIP-UWGM-RGM (or equivalently AIJ-WGM-RGM) and normaliz-

ing it, we get that the i−th weight is:

(

∏n
j=1

∏K
k=1

(

α
(k)
ij

)βk
)1/n

∑n
h=1

(

∏n
j=1

∏K
k=1

(

α
(k)
hj

)βk
)1/n

.

On the other hand, for AIP-UWGM-LLS, the i−th element is

∏K
k=1

(
(

∏n
j=1 α

(k)
ij

)1/n

∑n
h=1

(

∏n
j=1 α

(k)
hj

)1/n

)βk

. From this, the element for AIP-NWGM-LLS

is easily seen to be:

∏K
k=1

(
(

∏n
j=1 α

(k)
ij

)1/n

∑n
h=1

(

∏n
j=1 α

(k)
hj

)1/n

)βk

∑n
ℓ=1

∏K
k=1

(
(

∏n
j=1 α

(k)
ℓj

)1/n

∑n
h=1

(

∏n
j=1 α

(k)
hj

)1/n

)βk
=

∏K
k=1

(

(

∏n
j=1 α

(k)
ij

)1/n
)βk

∑n
ℓ=1

∏K
k=1

(

(

∏n
j=1 α

(k)
ij

)1/n
)βk

that coincides with the above expression for AIP-NWGM-RGM.

A.7 Proofs - AIP-WAM-ME/LLS

Set u =
∑K

k=1 βku
(k) and w =

∑K
k=1 βkw

(k). The vector of priorities is given by:

u ≃
K
∑

k=1

βk

(

w
(k) + du(k)

)

= w +
K
∑

k=1

βkdu
(k)

from which the result easily follows.
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A.8 Proofs - AIP-WAM-RGM

The generic element of the vector is given by

ui =
K
∑

k=1

βku
(k)
i =

K
∑

k=1

βk





n
∏

j=1

α
(k)
ij





1/n

=
K
∑

k=1

βk





n
∏

j=1

α
(k)
0,ij · e

dε
(k)
ij





1/n

=
K
∑

k=1

βk
w

(k)
i

(

∏n
j=1w

(k)
j

)1/n
· e

1
n

∑n
j=1 dε

(k)
ij ,

from which:

u =
K
∑

k=1

βk
w

(k)

(

∏n
j=1w

(k)
j

)1/n
⊙exp

{

1

n
dE(k)

un

}

≃ w+
1

n

K
∑

k=1

βk ·diag
(

w
(k)
)

·dE(k)
un

where w =
∑K

k=1 βkw
(k).
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