
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Monica Billio, Roberto 
Casarin and Anthony 

Osuntuyi 
 

Markov Switching GARCH 
models for Bayesian 

Hedging on Energy Futures 
Markets 

 
 
 
ISSN: 1827-3580 
No. 07/WP/2014 
 

 
      



W o r k i n g  P a p e r s   
D e p a r t m e n t  o f  E c o n o m i c s   

C a ’  F o s c a r i  U n i v e r s i t y  o f  V e n i c e   
N o .  0 7 / W P / 2 0 1 4  

ISSN 1827-3580 

The Working Paper Series  
is available only on line    

(http://www.unive.it/nqcontent.cfm?a_id=86302) 
For editorial correspondence, please contact: 

wp.dse@unive.it  

 Department of Economics 
Ca’ Foscari University of Venice 
Cannaregio 873, Fondamenta San Giobbe 
30121 Venice Italy 
Fax: ++39 041 2349210 
 

 

 

 
 

Title: Markov Switching GARCH models for Bayesian Hedging 
on Energy Futures Markets 

 
 

 Monica Billio                                  Roberto Casarin 
University Ca’ Foscari of Venice                          University Ca’ Foscari of Venice 

 
Anthony Osuntuyi 

Obafemi Awolowo University 
 

2 June 2013 
 
 
Abstract 
A new Bayesian multi-chain Markov Switching GARCH model for dynamic hedging in energy 
futures markets is developed by constructing a system of simultaneous equations for the return 
dynamics on the hedged portfolio and futures. More specifically, both the mean and variance 
of the hedged portfolio are assumed to be governed by two unobserved discrete state 
processes, while the futures dynamics is driven by a univariate hidden state process. The noise 
in both processes are characterized by a MS-GARCH model. This formulation has two main 
practical and conceptual advantages. First, the different states of the discrete processes can be 
identified as different volatility regimes. Secondly, the parameters can be easily interpreted as 
different hedging components. Our formulation also provides an avenue to analyze the 
contribution of the volatility dynamics and state probabilities to the optimal hedge ratio at each 
point in time. Moreover, the combination of the expected utility framework with regime-
switching models allows the definition of a robust minimum variance hedging strategy to also 
account for parameter uncertainty. Evidence of changes in the optimal hedging strategies 
before and after the financial crisis is found when the proposed robust hedging strategy is 
applied to crude oil spot and futures markets. 
 
Keywords 
Energy futures; GARCH; Hedge ratio; Markov-switching. 
 
JEL Codes 
C1, C11, C15, C32, F31, G15. 

Address for correspondence: 
Roberto Casarin 

Department of Economics 
Ca’ Foscari University of Venice 

Cannaregio 873, Fondamenta S.Giobbe 
30121 Venezia - Italy 

Phone: (++39) 041 2349149 
Fax: (++39) 041 2349210 
e-mail: r.casarin@unive.it  

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions 
expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or 
incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character

 



Markov Switching GARCH models for Bayesian Hedging on Energy
Futures Markets
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aDepartment of Economics, University Ca’ Foscari of Venice, Fondamenta San Giobbe 873, 30121, Venice, Italy
bDepartment of Mathematics, Obafemi Awolowo University, 220005, Ile-Ife, Nigeria

Abstract

A new Bayesian multi-chain Markov Switching GARCHmodel for dynamic hedging in energy futures markets
is developed by constructing a system of simultaneous equations for the return dynamics on the hedged
portfolio and futures. More specifically, both the mean and variance of the hedged portfolio are assumed
to be governed by two unobserved discrete state processes, while the futures dynamics is driven by a
univariate hidden state process. The noise in both processes are characterized by a MS-GARCH model.
This formulation has two main practical and conceptual advantages. First, the di↵erent states of the discrete
processes can be identified as di↵erent volatility regimes. Secondly, the parameters can be easily interpreted
as di↵erent hedging components. Our formulation also provides an avenue to analyze the contribution of
the volatility dynamics and state probabilities to the optimal hedge ratio at each point in time. Moreover,
the combination of the expected utility framework with regime-switching models allows the definition of a
robust minimum variance hedging strategy to also account for parameter uncertainty. Evidence of changes
in the optimal hedging strategies before and after the financial crisis is found when the proposed robust
hedging strategy is applied to crude oil spot and futures markets.

Keywords: Energy futures, GARCH, Hedge ratio, Markov-switching

1. Introduction

Hedging is an investment position taken to mitigate the adverse e↵ect arising from changes in the price of
a companion investment. A crucial issue is the determination of the optimal hedge ratio, i.e. the number
of derivative contracts to buy (or sell) for each unit of the underlying asset on which the investor bears risk
(see for example Chen et al. (2003) for a review).5

In this paper, we propose a new hedging model based on minimizing the risk of a hedged portfolio. The result
of this minimization exercise is the Minimum Variance (MV) hedge ratio defined as the ratio of the covariance
between the underlying spot and futures returns to the variance of the futures return (see Johnson (1960)).
To apply this optimum hedge ratio in practice, Ederington (1979) suggests regressing the underlying spot
returns against the futures returns, and using the estimate of the slope as an MV hedge ratio. This approach10

has been widely criticized on the grounds that some of the well known stylized facts about asset returns are
ignored. Accordingly, to improve the hedging performance, time-varying hedge ratios have been proposed
in the literature and its estimation have been developed along two major lines. The first approach involves
the estimation of the conditional second order moments of the underlying spot and futures returns. The
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have been proposed for this15

by Haigh and Holt (2002) and Chang et al. (2010), among others. The later approach treats the hedge ratio
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as a time-varying regression coe�cient, and focuses on the estimation of such a parameter (e.g. see Alizadeh
and Nomikos (2004), Lee et al. (2006), and Chang et al. (2010)). Note that this hedging strategy works by
re-balancing the hedged portfolio on a period-by-period basis. As this may involve huge transaction costs, it
may not be worthwhile to use this particular instrument for hedging. It has also been well documented in the20

empirical literature that the class of GARCH models exhibits high persistence of the conditional variance, i.e.
the process is close to being nearly integrated. In view of this, some authors allow the optimal hedge ratio to
be state-dependent. Alizadeh et al. (2008), Lee and Yoder (2007a), Lee and Yoder (2007b), among others,
propose various multivariate Markov-switching (MS) GARCH (MS-GARCH) models. More precisely, due to
the path dependence problem of MS-GARCH models, these authors implement the multivariate extension25

of Gray (1996) model with di↵erent characterizations of the time-varying covariance matrix. While Gray’s
model is attractive, its analytical intractability is a drawback since it cannot be derived using any standard
analytical approximation technique.

Our hedging model builds on the Billio et al. (2014) approach to MS-GARCH modeling and inference by
extending it to a bivariate GARCH model with multiple and possibly dependent MS processes (multichain30

MS). More specifically, we assume a system of simultaneous equations modeling both return dynamics on
the hedged portfolio and futures. Each component of this system is characterized by a path dependent MS-
GARCH process. Our modeling framework is close to Alizadeh and Nomikos (2004), but we di↵er in two
ways. The first di↵erence lies in the characterization of the time-varying variance process. While Alizadeh
and Nomikos (2004) consider a time-varying variance defined by an exponential function of the lagged 4-week35

moving average of the di↵erence between the logarithm of the underlying and the logarithm of the futures,
we consider a MS-GARCH model. The second di↵erence relates to the properties of the underlying hidden
process governing the observable processes. Alizadeh and Nomikos (2004) either assume that the conditional
variances of futures returns is regime independent or that the hidden process characterizing the dynamics of
the hedged portfolio is independent of the one influencing the futures returns process. We account for these40

limitations in our econometric framework. Still regarding the MS-GARCH framework, Sheu and Lee (2012)
argue that the dependence of both the derivative and the spot on the same hidden state process might
be inappropriate. Thus, the authors propose the use of a multichain Markov regime switching GARCH
(MCSG) model. In this paper, we also extend the work of Sheu and Lee (2012) by allowing for simultaneous
dependence between the Markov chains of the MSCG model.45

Another aim of the paper is to develop a robust hedging approach within the MS-GARCH framework. In
practice, the parameters in the optimal hedge ratio are unknown, thus optimal hedge ratios are estimated
by replacing the unknown parameters by their corresponding estimates. This approach is referred to in the
literature as the “plug-in” or Parameter Certainty Equivalent (PCE) principle. Generally speaking, decision
makers are left to provide, using an estimation technique of their choice, estimates of the model parameters,50

and to substitute them directly in the theoretical model. One of the problems with this approach is that it
completely ignores estimation risk. Depending on the econometric specification considered for estimating the
optimal hedge ratio, large di↵erences are observed in the estimated MV hedge ratios on the same commodity.
This observation further suggests that it may be very costly to ignore estimation risk. Moreover, possible
relevant non sample information (such as insider information or subjective prior) could be available to the55

hedger but discarded in the decision making process.

We thus recast the MV hedging model as an expected utility model and deal with the estimation risk
problem within this framework. It may be argued that a rational decision maker would choose an action
that maximizes its expected utility over the unknown parameter space. Early studies on this problem
have been pursued by Rai↵a and Schlaifer (1961) and DeGroot (2005), among others. A review of the60

application of this theory to portfolio choice, prior to 1978, is provided in Bawa et al. (1979). A more
recent applications can be found in Kan and Zhou (2007). As appealing as the expected utility theory
sounds, it is laden with a number of computational issues. In many empirical analysis, analytical solutions
to either the optimization exercise and/or the integration problem are often not achievable. Accordingly,
alternative solutions, such as approximation or simulations, are called for. Müller et al. (2004), Müller et al.65

(2004), among others, proposes simulation-based approaches to the expected utility optimization problem.
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In this paper, we propose a robust hedging ratio that accounts not only for parameter uncertainty, but also
for di↵erent states of the market. We follow a Bayesian decision rule (see, for example, Lence and Hayes
(1994a) and Lence and Hayes (1994b)) to account for parameter uncertainty in the definition of optimal
hedging strategies.70

The structure of the paper is as follows. In the next section, we present the conventional MV hedge ratio
as well our revised approach and the Bayesian hedging strategy. In Section 3, we discuss the empirical
application of our proposed model to West Texas Intermediate (WTI) crude oil spot and futures prices and
compare the result with the conventional OLS method proposed by Ederington (1979). Section 4 concludes
the paper.75

2. Bayesian optimal hedging

Let (Y,Y, P✓) be a probability observation space, with {P✓}✓2⇥ a parametric family of probability distri-
butions and ✓ a parameter in the measurable parameter space (⇥,F⇥). Let yt = (RSt, RFt)0 2 Y ⇢ R2,
t = 1, . . . , T , be an observable process, where RSt, RFt, respectively, correspond to returns on the underlying
and returns on the derivative (e.g., option, futures) at time t. Let us define the information set available at80

time t, as the �-algebra Ft = �({ys}st) generated by yt, t = 1, . . . , T and denote with ys:t = (ys, . . . ,yt)
a collection of observable variables.

Considering on the basic paradigm of expected utility theory and following the standard hedging literature
on commodities (e.g., see Haigh and Holt (2002) and references therein), the optimal hedge ratio at time t,
ht, is the solution of the following optimization problem

argmax
h2H

E(U |F⇥
t�1) = argmax

h2H

Z

Y

U(r(h,yt))p(yt|y1:t�1, ✓)dyt, (1)

where, E(·|F) is the conditional expectation operator, conditioning on a �-algebra F , F⇥
t = �(Ft _ F⇥)

the information set generated by the collection of past values of observable process and parameter prior
information, U(·) is the utility function, r(h,y) is a function of decision variable, h, and a vector of random
variables y, H is the feasible set of hedge ratios, p(yt|y1:t�1, ✓) is the joint probability density function (pdf)
corresponding to yt conditional on the past values y1:t�1 and the parameter ✓. The minimum variance (MV)
hedge ratio proposed by Johnson (1960) fits into this setting by assuming that: (i) the utility function is
quadratic, and (ii) the function r(h,y) is the returns on the hedged portfolio (RSt � hRFt). Under these
assumptions, the solution of the problem 1 is

ht =
Cov(RSt, RFt|F⇥

t�1)

V (RFt|F⇥
t�1)

. (2)

An implicit, and important assumption in (1) is that p(yt|y1:t�1✓) is known with certainty. Unfortunately,
in practice we are faced with incomplete knowledge of the parameter value, ✓ (parameter uncertainty).

If the hedger does not know the values of ✓, the optimal hedge ratio cannot be evaluated since it is a function
of ✓. The classic solution to this problem follows the “plug-in” principle (i.e. a point estimate ✓̂ 2 Ft�1 is
substituted for the unknown parameter vector ✓). Upon appropriate substitution, (1) becomes

argmax
h2H

E(U |Ft�1) = argmax
h2H

Z

Y

U(r(h,yt))p(yt|y1:t�1, ✓̂)dyt. (3)

In the technique described above, we act as if the parameters are known, thus suggesting the name parameter
certainty equivalent (PCE), as this technique is sometimes referred to in the literature (Lence and Hayes
(1994a)). The uncertainty about the parameters in (1) are completely ignored in this approach and this
clearly calls for care when applying this method. Based on this, we adopt the Bayes’ decision criterion (see
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Lence and Hayes (1994a)) by integrating out the unknown parameters in the product of E(U |F⇥
t�1) and the

posterior distribution of ✓, i.e.

argmax
h2H

E(E(U |F⇥
t�1)|Ft�1) =

= argmax
h2H

Z

⇥

✓Z

Y

U(r(h,yt))p(yt|y1:t�1, ✓)dyt

◆
p(✓|y1:t�1)d✓

= argmax
h2H

Z

Y

U(r(h,y))p(yt|y1:t�1)dyt,

(4)

where p(yt|y1:t�1) is the marginal posterior predictive distribution. Unlike (1), (4) does not involve any
unknown parameter, but requires some information about the parameters. The information can come from
past values of the observation process or from other prior information included in F⇥ and in the prior
distribution of the parameters. In this case, the MV hedge ratio is

hBAY
t =

E(Cov(RSt, RFt|F⇥
t�1)|Ft�1)

E(V (RFt|F⇥
t�1)|Ft�1)

. (5)

As highlighted in Bawa et al. (1979), applying Bayes’ criterion (4) in place of the PCE approach has at85

least three benefits. First, Bayes’ criterion is supported by the basic axioms postulated by von Neumann-
Morgenstern, whereas the PCE has no such axiomatic foundation. Second, all relevant (sample or non-
sample) information about ✓ are taken into consideration through the posterior distribution in Bayes’
method. In contrast, sample information contained in the point estimates ✓̂ are only needed to imple-
ment the PCE. Lastly, optimal average risk decision is arrived at by using Bayes’ criterion. This framework90

can be further enriched by accounting for ambiguity. See Guidolin and Rinaldi (2013) for a review.

In many situations, obtaining an analytical solution to the Bayesian optimal hedge ratio problem in (4)
can be a daunting task. This is because, in some cases, neither the maximum nor the integrals in (4) can
be computed analytically, thus demanding alternative approaches such as simulation based methods (see
Müller (1999)). For example, the integrand may be too complex to integrate or the number of parameters95

to integrate over might be too large to evaluate analytically. In such a scenario, it is possible to approximate
the optimization problem in (4) by using draws from the posterior distribution of ✓ given Ft�1, which is
a natural output of the MCMC approximation of the ✓ posterior distribution (see Amzal et al. (2006) and
Müller et al. (2004)). It is worth noting that our approach is general and can be applied to several alternative
specifications of the utility function existing in the literature for deriving the optimal hedge ratio (see, for100

example, Lence and Hayes (1994b) and Haigh and Holt (2002)), other than the quadratic function. In the
following, we shall limit our attention to the MV hedge ratio as it is the most commonly used optimal hedge
ratio.

2.1. Econometric model specification

A popular econometric model used for calculating the optimal hedge ratio is the linear model proposed by
Ederington (1979). In this model a linear relationship is assumed between the underlying spot and futures
returns

RSt = µ+ ⌫RFt + ✏t, ✏t
iid⇠ (0,�2), (6)

where µ, ⌫ and � are the regression parameters. The ordinary least square (OLS) estimate of the coe�cient105

of RFt, ⌫, is then the MV hedging ratio. The assumption of constant variance and covariance in (6) implies
time-invariant hedge ratio and thus makes this approach easy to implement. However, as highlighted by
Myers (1991), this method fails to properly account for all relevant conditioning information available to
hedgers when making their decision. Also, this method fails to account for some of the well known stylized
facts, such as conditional heteroscedasticity and volatility clustering, commonly observed in financial data.110

In view of this and to allow for changes in the market conditions to a↵ect the hedge ratios, Equation (6) is
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extended to an M state Markov switching model with a time-varying volatility process also characterized
by regime switching.

Let us define two measurable spaces (X,X ) and (Z,Z) and unobserved processes, st 2 (X,X ), and zt 2
(Z,Z), t = 1, . . . , T , which represent, respectively, the hedging regime of the portfolio and the volatility
state of the futures market at time t. Let FX

t and FZ
t be the sigma algebras generated respectively by su,

and zu, u  t. The following model defines the relationship between the hedged portfolio and the futures
market volatility:

RSt = µ(st) + ⌫(st, zt)RFt + �t⌘t, ⌘t
iid⇠ N (0, 1),

�2
t = �(st) + ↵(st)✏

2
t�1 + �(st)�

2
t�1,

RFt = a(zt) + ⌧t⇣t, ⇣t
iid⇠ N (0, 1),

⌧2t = (zt) + !(zt)⇠
2
t�1 +  (zt)⌧

2
t�1,

(7)

where, ✏t = �t⌘t, ⇠t = ⌧t⇣t, µ(st, zt), ⌫(st), �(st) > 0, ↵(st) � 0, �(st) � 0, a(zt), (zt) > 0, !(zt) � 0,
 (zt) � 0. As regards the hedging and volatility states, (st, zt), we asume that they take values in the set
{1, . . . ,M}2, t = 1, . . . , T and follow a first order Markov chain with transition probabilities

⇡ij,kl = p(st = i, zt = j|st�1 = k, zt�1 = l),
MX

i=1

MX

j=1

⇡ij,kl = 1 8 k, l = 1, 2, . . . ,M. (8)

The parameter shift functions µ(st), a(zt), �(st), ↵(st), �(st), (zt), !(zt) and  (zt) describe the dependence
of parameters on the realized regimes st and zt i.e.

µ(st) =
MX

i=1

µiIst=i, a(zt) =
MX

j=1

ajIzt=j , with Ist=i =

(
1, if st = i

0, otherwise,

The parameter shift function ⌫(st, zt) plays a crucial role in our model, since it allow to separate the
contribution of the spot and futures market volatilities to the hedging strategy. We assume:

⌫(st, zt) =
MX

i,j=1

⌫ijIst=iIzt=j .

In order to simplify the exposition, we define su:t = (su, . . . , st), zu:t = (zu, . . . , zt), (s, z)u:t = {(sr, zr)}r=u:t,
RSu:t = (RSu, . . . , RSt), RFu:t = (RFu, . . . , RFt) whenever u < t, ✓⇡ = ({⇡ij,kl}i,j,k,l=1,...,M ), ✓RS

u =115

(µ1, . . . , µM , ⌫11, . . . , ⌫MM ), ✓RF
a = (a1, . . . , aM ), ✓� = (�1, . . . , �M , ↵1, . . . ,↵M , �1, . . . ,�M ), ✓⌧ = (1, . . . ,M ,

!1, . . . ,!M , 1, . . . , M ) and ✓ = (✓⇡, ✓RS
u , ✓RF

a , ✓�, ✓⌧ ).

We summarize the theoretical implication of this extension on the optimal hedge ratio in the following
proposition.

Proposition 1. Suppose ✓ is known and assume that the observations are generated by the process described
in (7). Then the conditional minimum variance hedge ratio at time t, is the solution to

ht = argmin
h2H

V (RSt � hRFt|F⇥
t�1) (9)

which is given by

ht =
Cov(µ(st), a(zt)|F⇥

t�1)

V (RFt|F⇥
t�1)| {z }

level-shift hedging

+
MX

i,j=1

⌫ijwij

| {z }
volatility hedging

, (10)

5



where

wij =

⇣P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

⌘

PM
i,j=1

⇣P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

⌘ ,

E(a(zt)|F⇥
t�1) =

X

(s,z)1:t�1

MX

i,j=1

aj⇡ij,..p((s, z)1:t�1|Ft�1, ✓),

Cov(µ(st), a(zt)|F⇥
t�1) =

X

(s,z)1:t�1

MX

i,j=1

�
µiaj � µiE[a(zt)|F⇥

t�1]
�
⇡ij,..p((s, z)1:t�1|Ft�1, ✓),

V (RFt|F⇥
t�1) =

MX

i,j=1

0

@
X

(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

1

A ,

⇡ij,.. = p(st = i, zt = j|st�1, zt�1, ✓),

and ⌧2t (k) = k + !k⇠
2
t�1 + �k⌧

2
t�1 for k = 1, . . . ,M and t = 1, . . . , T .120

Proof: See AppendixA.

Proposition 1 states that the optimal hedge ratio at any point in time can be determined by two components.
The first one, which we termed “level-shift hedging”, is given by the conditional covariance between the
intercepts (a(zt) and µ(st)) scaled by the conditional variance of RFt. If ⌫(st, zt) = 0 and the spot and
futures returns go on average in the same direction within the same regime then the hedge ratio increases.125

The second component, is customarily called “volatility hedging”, is a weighted average of the hedge ratios
conditioning on the di↵erent states (⌫ij , i, j = 1, . . . ,M). The weights are driven by the volatility of the
returns on the derivative. This suggests that the dynamics of the variance process on the derivative plays
an important role in estimating the MV hedge ratio. The role of the derivative’s volatility in the hedging
strategy is clear when the spot return level is regime independent. See Remark 2.130

Remark 2. If a(zt) is constant, then the optimal hedge ratio in (10) reduces to the volatility hedging
component

ht =
MX

i,j=1

⌫ij

0

@

⇣P
(s,z)1:t�1

⌧2t (j)p(st = i, zt = j|st�1, zt�1, ✓)p((s, z)1:t�1|Ft�1, ✓)
⌘

PM
i,j=1

⇣P
(s,z)1:t�1

⌧2t (j)p(st = i, zt = j|st�1, zt�1, ✓)p((s, z)1:t�1|Ft�1, ✓)
⌘

1

A . (11)

The e↵ect of the dependence between hedging regimes st and futures variance states zt on the hedge ratio is
discussed in the following remarks. We consider the two cases of maximal dependence, i.e. st = zt (Remark
3) and maximal independence, both lagged and simultaneous independence (Remark 4).

Remark 3. If the dynamics of both the hedged portfolio and the derivative are govern by the same unobserved
state process, st, then the optimal hedge ratio at time t is given by

ht =
Cov(µ(st), a(st)|F⇥

t�1)

V (RFt|F⇥
t�1)

+
MX

j=1

⌫jwj , (12)

where

wj =

⇣P
s1:t�1

(a2j + ⌧2t (j)� ajE[a(st)|F⇥
t�1])p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓)

⌘

PM
j=1

⇣P
s1:t�1

(a2j + ⌧2t (j)� ajE[a(st)|F⇥
t�1])p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓)

⌘ ,

6



E(a(st)|F⇥
t�1) =

X

s1:t�1

MX

j=1

ajp(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓),

Cov(µ(st), a(st)|F⇥
t�1) =

X

s1:t�1

MX

j=1

�
µjaj � µjE[a(st)|F⇥

t�1]
�
p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓),

V (RFt|F⇥
t�1) =

MX

j=1

0

@
X

s1:t�1

(a2j + ⌧2t (j)� ajE[a(st)|F⇥
t�1])p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓)

1

A ,

and ⌧2t (k) = k + !k⇠
2
t�1 + �k⌧

2
t�1 for k = 1, . . . ,M and t = 1, . . . , T .

Remark 4. If st and zt are independent given (st�1, zt�1), and zt�1 (st�1) does not cause st (zt) one step
ahead (see Billio and Di Sanzo (2006)) given st�1 (zt�1), then, under the further assumption ⌫(st, zt) = ⌫(st),
the result by Alizadeh and Nomikos (2004) is obtained, that is

ht =
MX

j=1

⌫j

0

@

⇣P
s1:t�1

p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓)
⌘

PM
j=1

⇣P
s1:t�1

p(st = j|st�1, ✓)p(s1:t�1|Ft�1, ✓)
⌘

1

A

=
MX

j=1

⌫jp(st = j|F1:t�1, ✓).

(13)

We expect a more flexible and e�cient hedging strategy using the above outlined framework over constant135

hedge ratio since the model allows for shifts in the mean and volatility of both RSt and RFt and recognizes
the relationship between them. As noted in Section 2, the model parameters in Equation (10) are not known
in practice. In this respect, a natural approach to solving this problem will be to apply the PCE principle.
Alternatively, following the Bayesian paradigm outlined above we have the following proposition.

Proposition 5. Assume that the observations are generated by the process described in (7). Then under
certain regularity conditions the Bayesian conditional minimum hedge ratio at time t is the solution to

hBAY
t = argmin

h2H
{E(V (RSt � hRFt|F⇥

t�1)|Ft�1))} (14)

which is given by

hBAY
t =

R
⇥[Cov(µ(st), a(zt)|F⇥

t�1)]p(✓|y1:t�1)d✓R
⇥[V (RFt|F⇥

t�1)]p(✓|y1:t�1)d✓| {z }
integrated level-shift hedging

+
MX

i,j=1

Z

⇥
⌫ijwij(✓|y1:t�1)d✓

| {z }
integrated volatility hedging

, (15)

where,

wij(✓|y1:t�1)

=

P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1, ✓|y1:t�1)

PM
i,j=1

⇣R
⇥

P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1, ✓|y1:t�1)d✓

⌘ ,

⇡ij,.. = p(st = i, zt = j|st�1, zt�1, ✓),

⌧2t (k) = k + !k⇠
2
t�1 + �k⌧

2
t�1 for k = 1, . . . ,M , t = t̄, . . . , T and t̄ is the minimum number of observations140

needed for the posterior distribution of ✓ to be proper.
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Proof: See AppendixB.

Similar to Proposition (1), Proposition (5) states that the Bayesian optimal hedge ratio at any point in time
can be determined by two components. The first component measures the expected covariance between
the intercepts divided by the expected variance of the returns on futures after incorporating all available145

information about the unknown parameters through their joint posterior distribution. Conditional on past
observations, the second component is the expected hedge ratio subject to a modified joint posterior distri-
bution of the unknown parameters.

2.2. Computational issues

An important ingredient needed in the computation of the optimal hedge ratio in (15) is the posterior150

distribution of the augmented parameter vector p((s, z)1:t�1, ✓|y1:t�1), t = t̄, . . . , T . These quantities
cannot be identified with any known distribution. This limitation makes the evaluation of (15) non-trivial.
We shall address this problem by using a simulation based technique.

The computation of the MV hedge ratio will be broken down into two main stages. The first part consists of
approximating the posterior distribution of the unknown parameters vector given past observations, while155

the second part involves evaluating the hedge ratio.

Following Billio et al. (2014), we propose an e�cient simulation based technique for Bayesian approxima-
tion of the posterior probability, p((s, z)1:t�1, ✓|y1:t�1). The proposed approach is based on MCMC Gibbs
algorithm which allows us to circumvent the path dependence problem inherent in MS-GARCH models and
e�ciently sample the state trajectories. The samples generated by this MCMC algorithm are used in the160

second stage for approximating the moments in (15).

We assume fairly informative prior for ✓⇡ and independent uniform prior for ✓RS
u , ✓RF

a , ✓� and ✓⌧ and
denote with f(✓) the joint prior density. To avoid label switching we assume the identifiability restriction:
�1 < �2 < · · · < �M , 1 < 2 < · · · < M . In order to generate samples from the posterior density of the
augmented parameter vectors:

f(✓, (s, z)1:t|RS1:t, RF1:t) / f(RS1:t|(s, z)1:t, ✓, RF1:t)f(RF1:t|(s, z)1:t, ✓)p((s, z)1:t|✓)f(✓) (16)

our Gibbs sampler iterates over the following steps:

1. p((s, z)1:t|✓, RS1:t, RF1:t),
2. f(✓⇡|✓RF

u , ✓RS
a , ✓�, ✓⌧ , (s, z)1:t, RS1:t, RF1:t) = f(✓⇡|(s, z)1:t), and

3. f(✓RS
u , ✓RF

a , ✓�, ✓⌧ |✓⇡, (s, z)1:t, RS1:t, RF1:t) = f(✓RS
u , ✓RF

a , ✓�, ✓⌧ |(s, z)1:t, RS1:t, RF1:t).165

The full joint distribution of the state variables, s1:t and z1:t, given the parameter values and return series

p((s, z)1:t|✓, RS1:t, RF1:t) / f(RS1:t|RF1:t, ✓, (s, z)1:t)f(RF1:t|✓, (s, z)1:t) (17)

is a non-standard distribution. In view of this, we consider a Metropolis Hastings (MH) strategy for gen-
erating proposals for the state variables. We construct the proposal distribution by first considering an
approximation of the regime switching GARCH model and then derive the joint distribution of the state
variables. See Billio et al. (2014) for alternative approximations. Samples of the state trajectory are then
drawn by Forward Filter Backward sampling scheme. Details of the proposal construction and the MH170

algorithm are given in Appendix AppendixC.

In the second stage, G MCMC samples from p((s, z)1:t�1|✓,F⇥
t�1) are used to approximate the hedge ratio:

ĥBAY
t =

PG
g=1[Cov(µ(g)(st), a(g)(zt)|F⇥

t�1)]
PG

g=1[V ar(g)(RFt|Ft�1)]
+

1

G

MX

i,j=1

GX

g=1

⌫
(g)
ij wij(✓

(g)|y1:t�1)
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wij(✓
(g)|y1:t�1)

=
((⌧ (g)t )2(j) + (a(g)j )2 � a

(g)
j E[a(g)(zt)|F⇥

t�1])p
(g)(st = i, zt = j|s(g)t�1, z

(g)
t�1, ✓

(g))

1
G

PM
j,k=1

PG
g=1(((⌧

(g)
t )2(k) + (a(g)k )2 � a

(g)
k E[a(g)(zt)|F⇥

t�1])p
(g)(st = j, zt = k|s(g)t�1, z

(g)
t�1, ✓

(g)))
.

It is worth noting that the decision problem characterized by Proposition 5 may be classified as a sequential
estimation problem. This is because, in contrast to a fixed decision problem, as new observation yt+1 arrives,
the hedger updates the posterior distribution, f(✓|y1:t), about the unknown parameters and by induction
revises the hedge ratio. In our computational procedure, at each date t an MCMC algorithm is employed for175

drawing samples from the posterior probability distribution of the unknown parameters which are then used
in computing the moments in the Bayesian hedge ratio. A drawback of our Bayesian estimation approach
is the potential computational burden involved running the MCMC algorithm on the posterior probability
distribution at each date. However, it can be argued that, the procedure remains feasible in practice since
the computation of hedging ratio only requires about an hour on daily basis. Alternative procedures such as180

the sequential MCMC or sequential Monte Carlo may be used to reduce the computing time when a timely
updating of the hedge ratio is required.

3. An application to energy markets

The goal of this section is twofold. First, we aim to apply our model to provide empirical evidence of the
e↵ects of the recent financial crisis on the crude oil markets. Second we want to assess the e�ciency of the185

proposed hedging models and to compare them.

3.1. Hedging on the crude oil market

We consider daily closing energy prices for West Texas Intermediate (WTI) crude oil futures for the period
September 14, 2001 to July 31, 2013 (2967 observations). Both spot and futures daily settlement prices
were obtained from the US Energy information Agency (http://www.eia.doe.gov). The daily returns are190

computed using the first di↵erence of the natural logarithm of the daily settlements. Figure (1) displays the
sample path of the crude oil squared returns on spot and futures. We observe volatility clustering, which
calls for the use of MS-GARCH models.

0 500 1000 1500 2000 2500 3000
0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 1: Graphs for daily squared returns on WTI crude oil spot and futures from September 14/09/2001 to 31/07/2013

Before proceeding with the evaluation of the hedge ratio, we consider a full sample estimation of the param-
eters of the MS-GARCH model under di↵erent assumptions on the hidden state process (i.e. independent,195

dependent and same state variable). This analysis will allow us to investigate some volatility features of the
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spot and futures oil markets. Moreover, the specification used for the bivariate spot and futures MS-GARCH
model will allow us to draw some conclusions on the optimal hedging strategy to use in these markets.

We perform 10000 Gibbs iterations after convergence according to the Geweke’s diagnostic (Geweke (1992)).
To reduce serial correlation of the draws, we consider every 10th draw after convergence of the Gibbs iteration200

to obtain the results presented below. Table 1 to 4 show the estimation results for two-state models using
the full sample of observation described above. From the estimated parameters in Table 1, regime 1 may be
labeled as the low volatility state. With the exception of the constrained multichain MS-GARCH model,
we observe from Table 1 that the volatility persistence of the hedged portfolio measured by the sum of
GARCH parameter, �, and the ARCH parameter, ↵, is higher in regime 1 than in regime 2. In other words,205

large persistence tends to be associated with a low volatility regime. This result may largely be a reflection
of the dependence assumption between the chains driving the two series as observed in the unconstrained
multichain MS-GARCH model, and the single chain MS-GARCH model case.

Transition probabilities in Table 2 show that the probability that the hedged portfolio and futures return
simultaneously remain in the high regime is very low. Whereas, from Table 4 we observe that the single210

chain MS-GARCH model gives a relatively high probability for the two variables being in the high state
simultaneously. The implication of this observation is that, when possible misalignments between the states
of the chains driving the two dynamics are not taken into account, our results may be a reflection of an under-
or over-estimation of the volatility. Nevertheless, a robust deduction from all the MS-GARCH specifications
under consideration is that when both returns are in the low regime at time t � 1, it is likely that this215

scenario will be maintained in the next period. Also, Table 2 suggests that when the returns on the hedged
portfolio are in a di↵erent state with respect to the returns on the futures at time t � 1, then the most
probable scenario at time t will be the alignment of the futures to the same scenario of the hedged portfolio.

Table 1: Parameter estimate of the MSGRACH model and standard deviation in parenthesis.

MC-f-MSGARCH MC-c-MSGARCH SC-MSGARCH
⌫11 0.994(0.0011) 0.993(0.0014) 0.991(0.0013)
⌫12 0.629(0.0097)
⌫21 0.947(0.0011) 0.875(0.0128) 0.829(0.0189)
⌫22 0.055(0.0097)
�1 1.23e-06(4.93e-08) 1.62e-06(7.85e-08) 1.64e-06(2.15e-07)
�2 8.33e-05(6.06e-06) 1.14e-04(9.67e-06) 1.65e-04(1.79e-05)
↵1 0.560(0.0369) 0.363(0.0310) 0.868(0.0501)
↵2 0.586(0.0554) 0.632(0.0708) 0.091(0.0503)
�1 0.037(0.0022) 0.005(0.0032) 0.022(0.0086)
�2 0.292(0.0525) 0.325(0.0675) 0.442(0.0873)
1 9.76e-06(3.25e-06) 1.11e-06(8.99e-07) 7.14e-06(3.315e-06)
2 9.70e-05(4.37e-05) 5.48e-05(1.34e-05) 4.73e-05(1.813e-05)
!1 0.073(0.0104) 0.026(0.0062) 0.062(0.0122)
!2 0.093(0.0144) 0.122(0.0220) 0.084(0.0226)
 1 0.908(0.0123) 0.965(0.0067) 0.918(0.0176)
 2 0.794(0.0097) 0.789(0.0388) 0.872(0.0370)

Notes: SC-MSGARCH stands for single chain MS-GARCH; MC-c-MSGARCH stands for constrained Multichain
MS-GARCH model; and MC-f-MSGARCH stands for unconstrained Multichain MS-GARCH

Given the current volatility states across markets, the unconstrained multichain MS-GARCH framework
provides an avenue to studying the influence of a change in the state of the futures on the probability of the
hedged portfolio remaining in the same regime, and vice versa, i.e.

p(st = i|st�1 = h, zt�1 = r) and p(zt = j|st�1 = h, zt�1 = r) 8 i, j, h, r = 1, 2
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Table 2: Transition matrix for MC-f-MSGARCH model.

st�1 = 1, zt�1 = 1 st�1 = 1, zt�1 = 2 st�1 = 2, zt�1 = 1 st�1 = 2, zt�1 = 2
st = 1, zt = 1 0.9124 0.6383 0.2672 0.2176
st = 1, zt = 2 0.0026 0.0866 0.0168 0.2635
st = 2, zt = 1 0.0766 0.0534 0.6682 0.3781
st = 2, zt = 2 0.0084 0.2217 0.0478 0.1408

Table 3: Transition matrix for MC-c-MSGARCH model.

(a) Hedged portfolio

st�1 = 1 st�1 = 2
st = 1 0.894 0.383
st = 2 0.106 0.617

(b) Futures

zt�1 = 1 zt�1 = 2
zt = 1 0.974 0.059
zt = 2 0.026 0.941

Table 4: Transition matrix for SC-MSGARCH model.

st�1 = 1 st�1 = 2
st = 1 0.930 0.424
st = 2 0.070 0.576

In Table 5, we report these probabilities. The influence of zt�1 on the changes in regime for the hedged220

portfolio are evident; in fact, the probability of a hedged portfolio staying in regime 1, when the futures is
in regime 1 in the previous month, is 0.92, but decreases to 0.72 when the futures is in regime 2. In a similar
way, the futures remains in regime 1 with a 98% chance when the hedged portfolio is in the same regime,
but switches to regime 2 with a probability equal to 31% when the hedged portfolio is in regime 2.

Table 5: Conditional probabilities for the MC-f-MSGARCH model.

st�1 = 1, zt�1 = 1 st�1 = 1, zt�1 = 2 st�1 = 2, zt�1 = 1 st�1 = 2, zt�1 = 2
st = 1 0.9150 0.7249 0.2840 0.4811
st = 2 0.0850 0.2751 0.7160 0.5189
zt = 1 0.9890 0.6917 0.9354 0.5957
zt = 2 0.0110 0.3083 0.0646 0.4043

Lastly, the correlations between the returns on the spot and the futures can be obtained by evaluating

⇢t =
1q

�2
t

⌫2
t ⌧

2
t
+ 1

.

Di↵erently from the single chain MS-GARCH model with two correlations, the multichain MS-GARCH225

models have four correlation regimes at each point in time. To get an idea of the relative importance of the
correlations in each MS-GARCH specifications, we replace the time varying variance with their respective
regime unconditional variances. In the unconstrained (constrained) multichain case, when both the spot
and futures are in the high volatility regime, the correlation is equal to 0.997 (0.989), and when both of
them are in the low volatility regime, the correlation is equal to 0.016 (0.389). When the spot return is230

in the high volatility regime and the futures return is in the low volatility regime, the correlation is equal
to 0.995 (0.998), and when the spot return is in the low volatility regime and the futures return is in the
high volatility regime, the correlation is equal to 0.634 (0.185). In brief, we find that the correlation of spot
and futures return series tends to be higher when the spot is in the low volatility regime. The estimated
correlations for the first and second regime of the single chain MS-GARCH model are equal, respectively, to235
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0.979 and 0.822. These values are somewhere between the highest and the lowest correlation estimated from
the multichain MS-GARCH model. Overall, more model flexibility may be achieved with the unconstrained
MS-GARCH model, since it is the one with the widest correlation range, among the models considered in
the analysis.

Based on the previous discussion, it can be deduced that multichain MS-GARCH models have an important240

role to play in the optimal hedge ratio theory.

3.2. Hedge ratio

To check whether our proposed model is of practical interest, we conduct a sequential estimation exercise to
investigate its performance. Moreover, the sequential analysis allows us to provide evidence of time-changes
in the volatility transmission mechanisms, and in the correlation between the two markets. We exploit the245

hedge ratio interpretation of one of the parameters used in our model to study the e↵ects on the optimal
hedging strategy due to possible time-variations in the volatility and correlation structures of these markets.
For each hedging model, an out-of-sample analysis of its hedging performance with a daily re-balancing is
carried out. Accordingly, on a daily basis, an estimate of the MV hedge ratio is obtained, and the futures
position to be taken at the end of that day until the following day is also determined. The sample is then250

extended by one day, the hedge ratios re-estimated, and the hedge rebalanced and held until the end of the
next day. For each MS-GARCH specification we consider the sequential estimation of the hedge ratio for
three sub-periods i.e. 08/08/2006 to 03/01/2007, 01/10/2008 to 25/03/2009 and 15/02/2013 to 31/07/2013.
These periods correspond, respectively, to the period before, during, and after the 2008/2009 global financial
crisis.255

Figure 2 - 6 shows how the di↵erent regime-specific hedge ratios, conditional variances and prediction
probabilities have evolved over the three sub-sample periods. For the unconstrained MS-GARCH model,
we observe a small range of values for the regime specific hedge ratios (see 2(a)), and high variability in
the conditional variance of the futures (see 3(a)), prior to the 2008/2009 global financial crisis. However,
after the 2008/2009 global financial crisis, we observe a clear separation of the hedge ratios (2(e)) into two260

groups determining the change in the hidden process on the futures returns. Also, the variability of the
conditional variance of the futures is very low (2(e)) relative to our observation prior the global financial
crisis. One possible argument is that investors are more careful and learned from their experience during
financial crisis. The application of the single chain MS-GARCH model tends to su↵er from an under-or
over-estimation problem arising from the use of a single chain (see 4(a)-4(e)). In the case of the constrained265

MS-GARCH model, there is no significant di↵erence in the evolution of the hedge ratio before and after
the global financial crisis. A direct comparison between the hedge ratios formed by the unconstrained and
constrained MS-GARCH suggests that the unconstrained model is more flexible as it produces a wider range
of values for the hedge ratio. Overall, the unconstrained MS-GARCH model seems to perform best among
the set of models under comparison. Also, the high probability of staying in the low volatility regime implies270

low transaction costs because the investor only needs to re-balance his/her portfolio occasionally.

In the above exercise, it is assumed that the prevailing state of the world is known. However the current
state of the world cannot be correctly identified by the hedger. In this situation, the mean hedge ratio
implemented is:

ht = E✓E[⌫(st, zt)|Ft�1,⇥] = E✓

2

4
MX

m,m0=1

⌫mp(st = m, zt = m0|Ft�1,⇥)

3

5 , (18)

and has been approximated using,

ht =
1

G

GX

i=1

MX

m,n=1

⌫(i)m,np
(i)(st = m, zt = n|Ft�1,⇥), (19)

where G is the number of Gibbs samples.
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis
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(f) Regime specific weights after the crisis

Figure 2: Regime specific hedge ratio and corresponding weights for the unconstrained multichain MS-GARCH model (MC-
f-MSGARCH). first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to
31/07/2013.
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(a) Regime specific conditional variance before the crisis

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time
 

 
p11
p12
p21
p22

(b) Regime specific prediction probability before the crisis
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(c) Regime specific conditional variance during the crisis
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(d) Regime specific prediction probability during the crisis
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(e) Regime specific conditional variance after the crisis
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(f) Regime specific prediction probability after the crisis

Figure 3: Regime specific conditional variance and corresponding predicted probabilities for the unconstrained multichain MS-
GARCH model (MC-f-MSGARCH). first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and
15/02/2013 to 31/07/2013.
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis
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(f) Regime specific weights after the crisis

Figure 4: Regime specific hedge ratio and corresponding weights for the single chain MS-GARCH model (SC-MSGARCH).
first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013.
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(a) Regime specific conditional variance before the crisis
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(b) Regime specific prediction probability before the crisis
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(c) Regime specific conditional variance during the crisis
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(d) Regime specific prediction probability during the crisis
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(e) Regime specific conditional variance after the crisis
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(f) Regime specific prediction probability after the crisis

Figure 5: Regime specific conditional variance and the corresponding prediction probabilities for the single chain MS-GARCH
model (SC-MSGARCH). first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and 15/02/2013
to 31/07/2013.
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(a) Regime specific hedge ratio before the crisis
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(b) Regime specific weights before the crisis
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(c) Regime specific hedge ratio during the crisis
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(d) Regime specific weights during the crisis
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(e) Regime specific hedge ratio after the crisis

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time
 

 
p1

(f) Regime specific weights after the crisis

Figure 6: Regime specific hedge ratio and corresponding prediction probabilities for the constrained multichain MS-GARCH
model (MC-c-MSGARCH). first row 08/08/2006 to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and
15/02/2013 to 31/07/2013.
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In Figure 7, we report the estimation results for each model and compare them with the OLS hedge ratio over
the three subsamples. The MS-GARCH hedge ratios display similar time-varying characteristics. However,
we occasionally observe that the time varying hedge ratios fall below the OLS hedge ratio. Also, the hedge275

ratios are observed to shift closer to 1 after the global financial crisis. This confirms our earlier intuition
that hedgers seem to have become more careful in their investment decisions after the global financial crisis.

3.3. Hedging e↵ectiveness

Following the estimation of the hedge ratios, we formally assess the performance of these hedges by first
constructing the portfolio implied by the computed hedge ratios and then calculate the variance of the
returns of these portfolios over each subsample period on a daily basis. In mathematical forms, we evaluate

V (RSt � h⇤
tRFt) (20)

where h⇤
t are the estimated hedge ratios. The relatuve variance improvement of the MS-GARCH model

against the OLS model is calculated as follows

V (OLS)� V (MS-GARCH)

V (OLS)
⇥ 100, (21)

where V (OLS) and V (MS-GARCH) are respectively the variance of the returns on the hedged portfolio280

(Equation (20)) estimated using hedge ratios obtained from the OLS and MS-GARCH models. A positive
value of 21 is an evidence that the MS-GARCH hedge ratio performs better than the OLS hedge ratio.
Three di↵erent measures of the hedge ratio h⇤

t in 21 are considered. The first is the average hedge ratio
given by 19, the second is the average hedge ratio at time t given the most probable state at time t� 1, and
the third measure assumes the most probable hedge ratio at time t given the most state of the market at285

time t.

Table 6: Hedging E↵ectiveness of MS-GARCH against Constant Hedge ratio.

h⇤
t = E[⌫(st, zt)] h⇤

t = E[⌫t|ŝt�1, ẑt�1] h⇤
t = ⌫(ŝt.ẑt)

before during after before during after before during after
SC-MSGARCH 6.9 7.8 �3.8 0.8 9.3 4.5 2.2 16.4 4.6

MC-c-MSGARCH 6.3 5.9 �6.3 6.9 5.9 �6.3 11.7 12.1 �14.9
MC-f-MSGARCH 3.9 4.7 �4.8 1.9 4.6 0.2 �5.9 1.0 �3.3

Notes: (ŝt, ẑt)=argmax p(st, zt|Ft�1), Percentage variance reduction are calculated as the di↵erences of variance of hedged
portfolio using OLS estimate and estimated variances of alternative models over variance of hedged portfolio using OLS
estimate position multiplied by 100, before, during and after respectively signifies the period before, during and after the
2008/2009 global financial crisis. SC-MSGARCH stands for single chain MS-GARCH; MC-c-MSGARCH stands for
constrained Multichain MS-GARCH model; and MC-f-MSGARCH stands for unconstrained Multichain MS-GARCH

From Table 6, it appears that Markov-switching models provide more e�cient hedge ratios relative to the
OLS estimate, both before and during the 2008/2009 global financial crisis. The OLS hedge ratio, on the
other hand, seems to perform better than MS-GARCHmodels after the financial crisis. This observation may
be due to the low conditional variance of the markets after the 2008/2009 global financial crisis. Among the290

MS-GARCH specifications under consideration, the constrained multichain MS-GARCH model provides the
most consistent measure of hedging e↵ectiveness across the three di↵erent measures of hedge ratios used in
the evaluation of the 21, while, the unconstrained multichain MS-GARCH model provides the least e↵ective
hedging across the three di↵erent measures of hedge ratios considered. Furthermore, prior to the financial
crisis, the hedging e↵ectiveness obtained using the most probable hedge ratio suggests that the OLS hedge295

ratio performs better than the unconstrained multichain model. This is in contrast with our observation
when the average hedge ratio is applied. This result suggests that the unconstrained multichain model is
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(a) Hedge ratio before financial crisis
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(b) Hedge ratio during the financial crisis
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(c) Hedge ratio after the financial crisis

Figure 7: Comparison of average hedge ratio for MC-f-MSGARCH, MC-c-MSGARCH and SC-MSGARCH. first row 08/08/2006
to 03/01/2007; second row 01/10/2008 to 25/03/2009; third row and 15/02/2013 to 31/07/2013.
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flexible enough to detect events that are not evident when average hedge ratio is applied. This result is in
line with the observation of Sephton (1998) who finds that the Regime Switching strategy outperforms both
OLS and GARCH strategies in the low variance state, but performs far worse than either strategy in the300

high variance state. This is an indication that multichain Markov-switching models have the potentials to
compete favourably with other time-varying models.

It is important to emphasize that our measure of hedging e↵ectiveness has been shown to be inadequate in
evaluating minimum-variance hedge ratios other than OLS. See Lien (2005) and Lien (2009) for discussion.
Based on this, alternative measures of e↵ectiveness may provide better insights into the relative advantages305

of the multichain regime switching model.

4. Conclusion

In this paper we propose a new Bayesian multichain MS-GARCHmodel with dependent chains. We apply the
model to hedging in energy markets, thus extending the existing literature on MV hedging. The proposed
parameterization of the multichain MS-GARCH model allows for a straightforward interpretation of the310

parameters of the models as level-shift and variance-covariance hedging components. Both the Bayesian
model and the inference approach allow us to easily account for parameter uncertainty in the hedging
decision. We apply this multichain MS-GARCH to estimate a state-dependent time-varying minimum
variance hedge ratio and investigate the e↵ect of relaxing the assumption of common switching dynamic
on the e↵ectiveness of the hedging strategy. The practical implementation of our hedging model to crude315

oil spot and futures markets shows strong evidence in favour of the unconstrained multichain MS-GARCH
model when compared to other models, in terms of hedging e↵ectiveness. Nevertheless, a sequential model
comparison on the three sub-periods, i.e. before, during and after the 2008/2009 global financial crisis,
provides evidence in support of the best MS-GARCH models, before and during the financial crisis. In the
period after the crisis, the reduction in the volatility level makes the MS-GARCH less appealing than the320

standard OLS approach.

First, the hedging strategy and measures of hedging e↵ectiveness as considered in this paper ignores transac-
tion cost. Generalizing our hedging framework by incorporating transaction cost may provide better insight
into the practical usefulness of the proposed strategy. Also, the performance of our hedging strategy could
be further enriched by accounting for model uncertainty. This may be achieved by embedding Bayesian325

Model Averaging (BMA) into our hedging strategy. Lastly, in order to create a balance between variance
reduction and incremental transaction cost, alternative measures of hedging e↵ectiveness such as a utility
framework should be considered. See for example Alizadeh and Nomikos (2004) for an illustration.
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AppendixA. Proof to Proposition 1:

ht = argmin
h2H

V (RSt � hRFt|F⇥
t�1),

= argmin
h2H

�
V (RSt|F⇥

t�1) + h2V (RFt|F⇥
t�1)� 2hCov(RSt, RFt|F⇥

t�1)
�
,

(A.1)

where Ft�1 denotes the information set available up to time t. Under the normal distributional assumption,
neither V (RSt|F⇥

t�1), V (RFt|F⇥
t�1) nor Cov(RSt, RFt|F⇥

t�1) depend on the on RSt and RFt. Therefore,
our problem reduces to

ht = argmin
h2H

V (RSt|F⇥
t�1) + h2V (RFt|F⇥

t�1)� 2hCov(RSt, RFt|F⇥
t�1). (A.2)

From the first order condition, we have

ht =
Cov(RSt, RFt|F⇥

t�1)

V (RFt|F⇥
t�1)

,

=
Cov(µ(st), RFt|F⇥

t�1)

V (RFt|F⇥
t�1)

+
Cov(⌫(st, zt)RFt, RFt|F⇥

t�1)

V (RFt|F⇥
t�1)

,

(A.3)

where

Cov(⌫(st, zt)RFt, RFt|F⇥
t�1) = E[⌫(st, zt)RF 2

t |F⇥
t�1]� E[⌫(st, zt)RFt|F⇥

t�1]E[RFt|F⇥
t�1]

= E[⌫(st, zt)(a(zt) + ⌧t⇣t)
2|F⇥

t�1]

� E[⌫(st, zt)(a(zt) + ⌧t⇣t)|F⇥
t�1]E[(a(zt) + ⌧t⇣t)|F⇥

t�1],

iid ⇣t= E[⌫(st, zt)(a(zt)
2 + ⌧2t )|F⇥

t�1]� E[⌫(st, zt)a(zt)|F⇥
t�1]E[a(zt)|F⇥

t�1],

= E[⌫(st, zt)(a(zt)
2 + ⌧2t � a(zt)E[a(zt)|F⇥

t�1])|F⇥
t�1].

(A.4)
Then by law of iterated expectation, we have

Cov(⌫(st, zt)RFt, RFt|F⇥
t�1)

= E

0

@
MX

i,j=1

⌫ij(a
2
j + ⌧2t (j)� ajE[a(zt)|F⇥

t�1])p(st = i, zt = j|(s, z)1:t�1,Ft�1, ✓)|F⇥
t�1

1

A

= E

0

@
MX

i,j=1

⌫ij(a
2
j + ⌧2t (j)� ajE[a(zt)|F⇥

t�1])⇡ij,..|F⇥
t�1

1

A

=
X

(s,z)1:t�1

0

@
MX

i,j=1

⌫ij(a
2
j + ⌧2t (j)� ajE[a(zt)|F⇥

t�1])⇡ij,..

1

A p((s, z)1:t�1|Ft�1, ✓)

=
MX

i,j=1

⌫ij

0

@
X

(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

1

A ,

(A.5)

where (s, z)s:t = {(sr, zr)}r=s:t and ⇡ij,.. = p(st = i, zt = j|st�1, zt�1, ✓).330

Analogously,

V (RFt|F⇥
t�1) =

MX

i,j=1

0

@
X

(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

1

A , (A.6)
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E(a(zt)|F⇥
t�1) =

X

(s,z)1:t�1

MX

i,j=1

aj⇡ij,..p((s, z)1:t�1|Ft�1, ✓),

Cov(µ(st), RFt|F⇥
t�1) = Cov(µ(st), a(zt)|F⇥

t�1) =

=
X

(s,z)1:t�1

MX

i,j=1

�
µiaj � µiE[a(zt)|F⇥

t�1]
�
⇡ij,..p((s, z)1:t�1|Ft�1, ✓),

⌧2t (j) = j+!j⇠
2
t�1+�j⌧

2
t�1 for j = 1, . . . ,M , and t=1,. . . , T. The result follows immediately by substituting

these quantities into (A.3) and letting

wij =

⇣P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

⌘

PM
i,j=1

⇣P
(s,z)1:t�1

(a2j + ⌧2t (j)� ajE[a(zt)|F⇥
t�1])⇡ij,..p((s, z)1:t�1|Ft�1, ✓)

⌘ .

AppendixB. Proof to Proposition 5:

ht = argmin
h2H

E[(V (RSt � hRFt|F⇥
t�1))|Ft�1],

= argmin
h2H

E(
�
V (RSt|F⇥

t�1) + h2V (RFt|F⇥
t�1)� 2hCov(RSt, RFt|F⇥

t�1)
�
||Ft�1).

(B.1)

where Ft�1 denotes the information set available up to time t � 1. Under the normal distributional as-
sumption, neither V (RSt|F⇥

t�1), V (RFt|F⇥
t�1) nor Cov(RSt, RFt|F⇥

t�1) depend on the on RSt and RFt.
Therefore, our problem reduces to

ht = argmin
h2H

E[(V (RSt|F⇥
t�1) + h2V (RFt|F⇥

t�1)� 2hCov(RSt, RFt|F⇥
t�1))|Ft�1]. (B.2)

Under standard regularity conditions, and from the first order conditions it follows that

ht =
E(Cov(RSt, RFt|F⇥

t�1)|Ft�1)

E(V (RFt|F⇥
t�1)|Ft�1)

,

=
E(Cov(µ(st), RFt|F⇥

t�1)|Ft�1)

E(V (RFt|F⇥
t�1)|Ft�1)

+
E(Cov(⌫(st, zt)RFt, RFt|F⇥

t�1)|Ft�1)

E(V (RFt|F⇥
t�1)|Ft�1)

,

(B.3)

where
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and
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t�1)|Ft�1)
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⌧2t (j) = j+!j⇠
2
t�1+�j⌧

2
t�1 for j = 1, . . . ,M and t=1,. . . , T. The result follows immediately by substituting

these quantities into (B.3) and setting

wij(✓|y1:t�1)

=

⇣P
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AppendixC. Computational details

AppendixC.1. Joint forward filtering backward sampling

The sequence of joint proposal distributions for (s, z)1:t, t = t̄, . . . , T , is given by

q((s, z)1:t|✓, RS1:t, RF1:t) = q(st, zt|✓, RS1:t, RF1:t)
t�1Y

r=1

q(sr, zr|sr+1, zr+1, ✓, RS1:r, RF1:r), (C.1)

for t = t̄, . . . , T , where the prediction and filtering densities are

q(sr, zr|✓, RS1:r�1, RF1:r�1)

=
MX

i,j=1

p(sr, zr|sr�1 = i, zr�1 = j)q(sr�1 = i, zr�1 = j|✓, RS1:r�1, RF1:r�1),
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,

q(sr, zr|✓, RS1:r, RF1:r)

=
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for i = 1, . . . , t.

AppendixC.2. Constructing proposal distribution for ✓RS
u , ✓RF

a , ✓�, ✓⌧335

The full conditional distribution of ✓⇡ is a Dirichlet under a Dirichlet prior distribution assumption and
the posterior density of (✓RS

u , ✓RF
a , ✓�, ✓⌧ )
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(C.2)

is non-standard. Hence, we apply adaptive Metropolis-Hastings (MH) sampling technique for this step of
the Gibbs algorithm.

Sample (✓RS
u )(g), (✓RF

a )(g), ✓(g)� , ✓
(g)
⌧ from f(✓RS

u , ✓RF
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(g), y1:t). Given a prior density f(✓RS
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the posterior density of (✓RS
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a , ✓�, ✓⌧ ) can be expressed as follows
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where,
�2
i = �(si) + ↵(si)(RSi�1 � µ(si�1)� ⌫(si�1)RFi�1)

2 + �(si)�
2
i�1.

and
⌧2i = (si) + !(si)(RFi�1 � a(si�1))

2 + �(si)⌧
2
i�1.

In order to generate ✓RS
u , ✓RF

a , ✓�, ✓⌧ from the joint distribution we first separate the parameters of RSt

from RFt and apply further blocking on this subgroups of the Gibbs sampler i.e. We split the regime-
dependent parameters of both RSt and RFt into two subvectors, the parameter of the observation equa-340

tion ✓RS
u (✓RF

a ) and the parameters of the volatility process ✓� (✓⌧ ). For each subvector we implement a
Metropolis-Hastings (MH) step that samples from normal distribution in the case of ✓RS

u (✓RF
a ) and truncated

normal distribution in the case of ✓� (✓⌧ ). The distributions is adapted during the burnin period.
As regards the parameters of the conditional expectation of the ✓RS

u , we derive the mean and variance
of the proposal distribution by considering an approximation of the full conditional distribution of ✓RS

u ,

f(✓RS
u |s(g)1:t , �

(g�1),�(g�1),↵(g�1), RS1:t, RF1:t) /
tY

i=1

N (RSi;µ(si) + ⌫(si)RFi,�
2
i ).
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Given an approximation �⇤2
t of �2

t , it can be shown, by completing the square method, that the full condi-
tional distribution of ✓RS

u can be approximated by a normal distribution. Let

rut =

0

BBBB@

1 0 · · · 0 RFt 0 · · · 0

0 1 0
... 0 RFt 0

...
... 0

. . . 0
... 0

. . . 0
0 · · · 0 1 0 · · · 0 RFt

1

CCCCA

0

,

Vu =

0

B@
�⇤2
1 · · · 0
...

. . .
...

0 · · · �⇤2
t

1

CA ,

and define a t⇥ 2M matrix ru whose i�th row corresponds to rui⇠i and ⇠i = (Isi=1, . . . , Isi=M )0 then

f(✓RS
u |s(g)1:t , �

(g�1),�(g�1),↵(g�1), RS1:t, RF1:t)

⇡ 1

|V| 12
exp

 
� (RS0

1:t �ru✓
RS
u

0
)0V�1

u (RS0
1:t �ru✓

RS
u

0
)

2

!

/ N2M (mu,⌃u),

where,
⌃u = (r0

uVu
�1ru)

�1

mu = ⌃ur0
uVu

�1RS
0

1:t.

�⇤2
i = �(g�1)(s(g)i ) + ↵(g�1)(s(g)i )(RSi�1 � µ(g�1)(s(g)i�1)� ⌫(g�1)(s(g)i�1)RFi�1)

2 + �(g�1)(s(g)i )�2
i�1.

As regards the parameters of the volatility process the full conditional is

f(✓RS
u |s(g)1:t , �

(g�1),�(g�1),↵(g�1), RS1:t, RF1:t) /
tY

i=1

N (RSi;µ(si) + ⌫(si)RFi,�
2
i ).

We now follow the ARMA approximation of the MS-GARCH process i.e.

�2
t = �(st) + ↵(st)✏

2
t�1 + �(st)�

2
t�1

✏2t = �(st) + (↵(st) + �(st))✏
2
t�1 � �(st)(✏

2
t�1 � �2

t�1) + (✏2t � �2
t ).

Let

wt = ✏2t � �2
t =

✓
✏2t
�2
t

� 1

◆
�2
t = (�2(1)� 1)�2

t

with
Et�1[wt] = 0; and V art�1[wt] = 2�4

t .

Subject to the above and following Nakatsuma (1998) suggestion, we assume that wt ⇡ w⇤
t ⇠ N (0, 2�4

t ).
Then we have an “auxiliary”ARMA model for the squared error ✏2t .

✏2t = �(st) + (↵(st) + �(st))✏
2
t�1 � �(st)w

⇤
t�1 + w⇤

t , w⇤
t ⇠ N (0, 2�4

t )

i.e. w⇤
t = ✏2t � �(st)� ↵(st)✏

2
t�1 � �(st)(✏

2
t�1 � w⇤

t�1).
(C.4)

Following Ardia (2008) we further express w⇤
t as a linear function of (3M ⇥ 1) vector of ✓� = (�1, . . . , �M ,

↵1, . . . ,↵M , �1, . . . ,�M )0. To do this, we approximate the function w⇤
t by first order Taylor’s expansion

about ✓(r�1)
� = (�(r�1)

1 , . . . , �
(r�1)
M , ↵

(r�1)
1 , . . . ,↵

(r�1)
M , �

(r�1)
1 , . . . ,�

(r�1)
M )0.

w⇤
t ⇡ w⇤⇤

t = w⇤
t (✓

(r�1)
�⇡ )� (✓� � ✓(r�1)

� )0rt⇠t,
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where

rt = �

0

BBBBBBBB@

@w⇤
t

@�1
0 · · · 0

@w⇤
t

@↵1
0 · · · 0

@w⇤
t

@�1
0 · · · 0

0
@w⇤

t

@�2
0

... 0
@w⇤

t

@↵2
0

... 0
@w⇤

t

@�2
0

...

... 0
. . . 0

... 0
. . . 0

... 0
. . . 0

0 · · · 0
@w⇤

t

@�M
0 · · · 0

@w⇤
t

@↵M
0 · · · 0

@w⇤
t

@�M

1

CCCCCCCCA

0

and
@w⇤

t

@�k
= �⇠tk + (⇠0t�)

@w⇤
t�1

@�k
@w⇤

t

@↵k
= �⇠tk✏

2
t�1 + (⇠0t�)

@w⇤
t�1

@↵k

@w⇤
t

@�k
= �⇠tk(✏

2
t�1 � w⇤

t�1) + (⇠0t�)
@w⇤

t�1

@�k

for k = 1, . . . ,M , evaluated at ✓(r�1)
� .

Upon defining r⇤t = w⇤
t (✓

(r�1)
�⇡ ) + ✓

0(r�1)
� rt⇠t, it turns out that w⇤⇤

t = r⇤t � ✓0�rt⇠t. Furthermore, by
defining the T ⇥ 1 vectors w = (w⇤⇤

1 , . . . , w⇤⇤
T )0, r⇤ = (r⇤1 , . . . , r

⇤
T )

0, a T ⇥ 3M matrix r whose t�th row
corresponds to ⇠0tr0

t as well as a T ⇥ T matrix

V = 2

0

B@
�⇤⇤4
1 · · · 0
...

. . .
...

0 · · · �⇤⇤4
T

1

CA ,

with �⇤⇤2
t = (⇠(r)t

0
�(r�1)) + (⇠(r)t

0
↵(r�1))(yt�1 � ⇠

(r)
t�1

0
µ(r))2 + (⇠(r)t

0
�(r�1))�⇤⇤2

t�1, we end up with w = v �
✓0�r. Using this linear approximation, we can approximate the full conditional probability of the volatility
parameters as

f(✓�|⇠(r)1:T , µ
(r), y1:T ) /

/ 1

|V| 12
exp

✓
�w0V�1w

2

◆
I{�1>0...,�M>0,0<↵1<1,...,0<↵M<1,0<�1<1...,0<�M<1}

/ N3M (m�,⌃�)I{�1>0...,�M>0,0<↵1<1,...,0<↵M<1,0<�1<1...,0<�M<1},

(C.5)

where
⌃� = (r0V�1r)�1

m� = ⌃r0V�1r⇤.
(C.6)

In a similar fashion we construct the proposal distribution for the parameters of RFt.345
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AppendixC.3. Pseudo code of the hedging algorithm

Algorithm 1: Posterior approximation

For each t = t̄, . . . , T

1. Choose a starting value (s(0), z(0))1:t and ✓(0).
2. Let (s(g�1), z(g�1))1:t, ✓(g�1) and p(g�1)(st|Ft�1, ✓) respectively be the state trajectory, parameter set

and prediction probability at (g � 1)th iteration.
3. Draw (s, z)1:t using FFBS from q((s, z)1:t|✓, RS1:t, RF1:t) and identify q(st, zt|Ft�1, ✓) from the forward

filter.
4. Draw u ⇠ U[0,1] and set

(s(g), z(g))1:t =

(
(s, z)1:t if u  ↵((s, z)1:t, (s(g�1), z(g�1))1:t),

(s(g�1), z(g�1))1:t otherwise,

where,
↵((s, z)1:t, (s

(g�1), z(g�1))1:t)

=

✓
1,

p((s, z)1:t|✓, RS1:t, RF1:t)q((s(g�1), z(g�1))1:t|✓, RS1:t, RF1:t)

q((s, z)1:t|✓, RS1:t, RF1:t)p((s(g�1), z(g�1))1:t|✓, RS1:t, RF1:t)

◆
.

5. Draw ✓⇡ from a Dirichlet distribution.
6. Draw ✓�⇡ from g(✓�⇡|(s(g�1), z(g�1))1:t, RS1:t, RF1:t).
7. Draw u ⇠ U[0,1] and set

✓
(g)
�⇡ =

(
✓�⇡ if u  ↵(✓�⇡, ✓

(g�1)
�⇡ ),

✓
(g�1)
�⇡ otherwise,

where

↵(✓�⇡, ✓
(g�1)
�⇡ ) =

 
1,

f(✓�⇡|(s, z)1:t, RS1:t, RF1:t)g(✓
(g�1)
�⇡ |(s, z)1:t, RS1:t, RF1:t)

g(✓�⇡|(s, z)1:t, RS1:t, RF1:t)f(✓
(g�1)
�⇡ |(s, z)1:t, RS1:t, RF1:t)

!
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Algorithm 2: Hedging

For each t = t̄, . . . , T

1. Compute the moments and substitute into 2.2

E[a(g)(st)|F⇥
t�1]

=
MX

i=1

MX

j=1

a
(g)
j p(g)(st = i, zt = j|s(g)t�1, z

(g)
t�1, ✓

(g))

Cov(µ(g)(st), a
(g)(zt)|F⇥

t�1)

=
MX

i=1

MX

j=1

⇣
µ
(g)
i a

(g)
j � µ

(g)
i E[a(g)(zt)|Ft�1]

⌘
p(g)(st = i, zt = j|s(g)t�1, z

(g)
t�1, ✓

(g))

Cov(⌫(g)(st)RFt, RFt|F⇥
t�1)

=
MX

i=1

MX

j=1

⌫
(g)
ij ((a(g)j )2 + (⌧ (g)t )2(j)� a

(g)
j E[a(g)(zt)|Ft�1])p

(g)(st = i, zt = j|s(g)t�1, z
(g)
t�1, ✓

(g))

V (RFt|F⇥
t�1)

=
MX

i=1

MX

j=1

((a(g)j )2 + (⌧ (g)t )2(j)� a
(g)
j E[a(g)(zt)|Ft�1])p

(g)(st = i, zt = j|s(g)t�1, z
(g)
t�1, ✓

(g))
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