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Abstract

This paper illustrates a methodology for analyzing bargaining games
on network markets, by means of numerical models that can be calibrated
with real data. Economic incentives to join or to expand a network depend
on how the network surplus is being distributed, which in turn depends
on a variety of factors: position of each agent (e.g., a country) in a specific
network, its reliability in the cooperation scheme (e.g., geo-political sta-
bility), existence of market distortions and availability of outside options
(e.g., alternative energy sources). This study is aimed at presenting a
game theory methodology that can be applied to real world cases, having
the potential to shed light on several political economy issues.

The methodology is presented and illustrated with application to a
fictitious network structure. The method is based on a two-stage pro-
cess: first, a network optimization model is used to generate payoff values
under different coalitions and network structures; a second model is sub-
sequently employed to identify cooperative game solutions. Any change
in the network structure entails both a variation in the overall welfare
level and in the distribution of surplus among agents, as it affects their
relative bargaining power. Therefore, expected costs and benefits, at the
aggregate as well as at the individual level, can be compared to assess the
economic viability of any investment in network infrastructure. A number
of model variants and extensions are also considered: changing demand,
exogenous instability factors, market distortions, externalities and outside
options.
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1 Introduction

This paper is intended to illustrate a methodology for analyzing bargaining
games on network markets, by means of numerical models that can be calibrated
with real data. We focus on specialized physical networks such as oil and gas
pipelines, water-supply or irrigation systems, rail transport systems etc. The
usage of such systems often requires the cooperation of many partners, each of
whom controls only a small part of the network.

In such networks the control of dedicated resources such as switches, con-
nections, exit and entry points defines a power structure. This power structure,
in turn, is likely to affect the incentives to link up with the network, to develop
it by adding new links or by increasing the capacity of existing ones. We start
from the assumption that the power of a player in such a network will depend
on the value of his resources for other players. For the physical networks men-
tioned above, it is often possible to assess with a reasonable degree of confidence
how they should be used optimally, if some resources were not available. This
enables us to define a cooperative game.

For a group of players, also called a coalition, we first determine which parts
of the network would be accessible. Then we use a network optimization model
to calculate the total payoff, achieved by the optimal usage of the sub-network
under their control. This payoff is the value of the coalition. Obviously, the
Grand coalition of all players has the whole network at its disposal and can
generate the largest payoff. By repeating this optimization procedure for all
possible coalitions, we obtain the so called value function of a cooperative game,
which captures all the economic and technical features of the network. To obtain
a measure of the players’ power in the network market, we solve the game with
the Shapley Value. While not the only possible theoretical solution, the Shapley
value is the most widely used one (Moretti and Patrone, 2008) and already well
accepted as a power index for voting games (Shapley and Shubik, 1954).1

The work is inspired by recent applications of cooperative game theory
to gas-pipeline systems. Hubert and Ikonnikova (2011) analyze gas transit
to northwestern Europe. Hubert and Cobanli (2012) consider the impact of
new pipelines on the power structure in the Eurasian gas market and Hubert
and Orlova (2012) investigate the liberalization of pipeline access within the
European Union. These papers consider particular networks calibrated with
real world data. This paper examines, instead, an abstract, fictitious network,
but enlarges the scope of the analysis to consider a number of variants, which
could be highly relevant in many applied settings: market imperfections, out-
side options, varying demand, external benefits or costs. The discussion of the
different model variants highlights the flexibility of the proposed methodology.

1The Shapley Value calculates the share of a player as the weighted average of the value
of his contribution to coalitions; the weights being determined to fulfill a number of axioms
considered to be plausible and reasonable (Shapley (1953)). When applied to networks, the
Shapley value is sometimes termed Myerson value (Myerson (1980); Jackson (2005)). In the
appendix we also report the results for another solution concept, the nucleolus, which has
been proposed by Schmeidler (1969).
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Furthermore, it points out a typical feature of these models: incentives for the
expansion of the network typically differ between large coalitions and smaller
sub-coalitions, even when agreement between only a limited number of players
is necessary to expand the network.

This paper makes a contribution by bridging network economics theory with
applied, numerical models for economic policy analysis. Whereas value functions
are normally taken as given in theoretical network models, we explicitly derive
the surplus obtainable by the different coalitions as a consequence of market
equilibrium in the network. By doing so, we can also consider a number of mar-
ket imperfections, or other factors which may ultimately affect the equilibrium.
The explicit consideration of such factors may be essential for the development
of realistic network models, which could then be used, for example, to assess
costs and benefits of realizing large network infrastructure.

The rest of the paper is organized as follows. The next section describes
the basic methodology, which is illustrated in section 3 by means of a simple
numerical example. Section 4 introduces a number of variants in the model, and
discusses the effects of some alternative hypotheses on the example network.
Section 5 concludes and provides suggestions for future research. An appendix
presents the numerical results obtained by using the nucleolus instead of the
Shapley value as an allocation concept.

2 Methodology

We consider a network, made of arcs and nodes. An arc connects two nodes i
and j, but not all pairs of nodes are generally connected. In addition to nodes
we consider supply and demand points, both of which are connected to a node
in the network by an access link (directed). Each demand point is associated
with a demand curve, expressing the required demand quantity volume as a
(negatively sloped) function of the market delivery price or cost.

All arcs and all access links are associated with an increasing and convex
function cost function Cij of the flow fij . For access supply links, this could
be interpreted as production cost. For demand links, this would express a
final market distribution cost. For intermediate arcs, the function refers to
transportation costs.

A discrete and finite number of agents operate in the network. Agents can
cooperate in coalitions �, where an agent can joint at most one coalition. Each
coalition � has access rights to a number of arcs, links and nodes of the networks.
A(�) is the set of all nodes connected by arcs controlled by the coalition �.

For each coalition and its associated network, we consider a network market
equilibrium (NME). A network market equilibrium is found when flows in the
arcs and links are determined such that:

1. Demand access links flows equal demand levels, defined by demand func-
tions computed at marginal delivery costs (demand is served);

2. Total costs (production, transportation, distribution) are minimized;
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3. Total incoming flows in each (transit) node equal total outgoing flows (flow
balance constraint).

A NME is the solution of the following mathematical optimization problem:

max

fij,(i,j)2A(�)

W� =

X

d2D

fid´
0

Pd(f)df �
X

(i,j)2A(�)

Cij(fij) (1)

s.t.:
X

s2S

fsj +
X

i2N

fij �
X

i2N

fji �
X

d2D

fjd = 0 8j 2 N (2)

where:

D is the set of demand points;

S is the set of supply points;

N is the set of transit nodes;

A(�) is the set of admissible pairs of nodes/points connected by arcs/links, for
which the coalition � possesses access rights;

fij is the flow from node/point i to node/point j;

Pd(f) is the inverse demand curve at point d;

Cij is the cost function of the arc/link connecting i to j.

Solving a NME problem identifies the total net welfare W obtainable from a
certain network. This total welfare is virtually distributed among all parties in-
volved in the network. For example, think of nodes, or points of supply/demand,
as countries. Each country contributes to the functioning and possibly to the
construction of the network infrastructure, receiving benefits is terms of con-
sumer surplus, tax revenue or profits.

Clearly, there is no obvious way to determine how the overall pie of total
welfare would be split. Therefore, to discuss the implications of surplus alloca-
tion, we make use of cooperative game theory. A cooperative game equilibrium
is a normative concept applied to the distribution of benefits or costs in a group.
Among the various equilibrium concepts proposed in the literature, we use here
the Shapley value2, because of its simplicity of computation and easiness of
interpretation: the Shapley value assign to each agent a payoff which is pro-
portional to her “contribution” in all possible forming coalitions, that is the
difference between the overall surplus obtained by a cooperative coalition with
and without the agent. The Shapley values of a game can be readily interpreted

2Results for an alternative equilibrium concept, the nucleolus, are presented in the ap-
pendix.
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as an allocation of benefits (or costs) which reflects the relative bargaining power
of each party.

In order to compute a Shapley value distribution for a network with the char-
acteristics described above, one needs to compute the welfare associated with
all possible coalitions and individual agents. Each agent is here associated with
a node, therefore computing the maximum welfare for a coalition amounts to
solving a NME where all arcs connect pairs of nodes belonging to the coalition3.
In other words, we consider sub-networks obtained from the big network by re-
moving those links where at least one of the two extremes brings to an agent not
in the coalition. The smaller the coalition, the smaller the network, the lower
the welfare that can be obtained. Furthermore, many coalitions may actually
get zero welfare. This is true for all individuals (one member coalitions), for
coalitions including only demand or only supply agents, or where demand and
supply agents are disconnected.

In a set of N agents, there are 2

N possible coalitions, including the grand
coalition (all agents inside) and the empty one. To compute the Shapley value, or
any other distribution concept of cooperative game theory (e.g., the nucleolus),
the first step is solving for the NME and obtaining the welfare level associated
with any sub-coalition, possibly excluding those ones which have obviously a zero
welfare. This can be done with optimization software like GAMS or AIMMS, or
mathematical packages like Mathematica or, if the network is not too complex,
using a solver embedded into spreadsheets like Microsoft Excel or LibreOffice
Calc. Once surpluses for all possible combinations of agents in the set have been
obtained, the Shapley value can be computed using an algorithm, for example
the one proposed by Carter (1993), based on Mathematica.

Different network structures imply, of course, different distributions of wel-
fare. Hubert and Ikonnikova (2011), Hubert and Cobanli (2012) adopt the
methodology described above to assess the distribution of surplus in gas distri-
bution networks for Eastern Europe and the Middle East. The existing pipeline
infrastructure is taken as a benchmark, to be contrasted with alternative net-
work structures in which new links are added or the capacity of some existing
links is expanded. These alternative scenarios are based on investment projects
under discussion or realization.

Assessing how welfare changes and how it is differently distributed when
a network is modified allows evaluating the individual incentives to undertake
the proposed investment. Any network enlargement necessarily increases the
overall welfare, which can be measured in monetary terms, but this could not
be sufficient to cover the costs. Furthermore, some investment may not need
the involvement of all parties. Think, for example, the addition of a new link,
whose realization requires the involvement of only the agents located at its two
sides. As a change in the network topology influences the bargaining power and
the distribution of welfare, it may well be the case that a certain investment
may not be globally justified, yet be locally viable.

3This is a simplifying assumption. More generally, a coalition would be associated to the
sub-network she controls.
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Figure 1: A reference network structure

3 An Illustrative Example

To illustrate the meaning of surplus allocation in a network, let us consider
a fictitious network structure as depicted in Figure 1. There are five agents
(i.e., countries), each one associated with one node: A, B, C, D, E. All costs
associated with arcs and links are constant, possibly up to a capacity limit. A
and E are suppliers. E has a higher production cost (15 instead of 10) and it is,
furthermore, affected by an upper supply capacity limit of 50 (this is indicated
by a number in parentheses, otherwise there are no capacity constraints). All
intermediate links have a unit transport cost of 5, except for the link connecting
B to D, which has a cost of 8 but a maximum capacity of only 10. B, C and
D are demand points, each one associated with a simple linear demand curve
of the type Q = Y-p, where Y is the maximum price in the market and also a
measure of the market size. There are no distribution costs.

Flows in the network of Figure 1 can be allocated by solving the mathemat-
ical program (1-2). Consider, for example, the demand market D (Q = 95� p).
For D, the least cost supplier is E (15+5=20). However E cannot provide more
than 50 units, which is less what would be required at a price of 20 (95-20=75).
The second least cost alternative is A through the A-B-D path (10+5+8=23),
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Figure 2: Supply and demand curves in market D

which is also capacity constrained. Finally, it is possible to supply D trough the
path A-B-C-D at a cost 10+5+5+5=25. At a price 25, 70 units are demanded
and delivered at D: 50 from E, 10 from B, 10 from C. The total surplus gener-
ated in market D is 2720, corresponding to the area below the inverse demand
curve but above the stepwise supply curve in Figure 2. This surplus adds to the
one generated in B (3200) and C (1250) to the total welfare W (7170).

How is this total welfare going to be virtually distributed among the five
agents? This depends on the relative bargaining power. Consider, for example,
supplier E. The bargaining power of E has to do with what the other agents can
get without E. For example, a coalition {A,B,C,D} could run a network without
the D-E link. Market D, in this case, would live without its most convenient
supply source, which would reduce welfare in D by 250 [(25-20)*50], lowering
total welfare from 7170 to 6920.

Welfare for other sub-coalitions can be computed in a similar way, allowing
to compute a Shapley distribution for the cooperative game on the network.
Shapley values for this base case are reported in Table 1, in the column “Base”.

Values under the heading “Ext.” refer, instead, to an alternative case, where
the original structure of the network as in Figure 1 has been modified, by remov-
ing the capacity limit in the link B-D. This enhancement increases the overall
welfare, from 7170 to 7193, as it lowers the market price (from 25 to 23) in the
D market. Furthermore, it changes the surplus distribution, actually harming

7



Table 1: Shapley value surplus distributions
agents \ cases Base Ext. Diff.

A 2115 2183 +68
B 2222 2305 +83
C 530 425 -105
D 1488 1572 +84
E 815 708 -107

Total 7170 7193 +23

the agents C and E.
C is made worse off because it would be by-passed whenever D is served from

B (or B from D). Consequently, any threat from C of not joining a coalition
would be weakened, thereby reducing its bargaining power. Analogously, the
threat from E of not serving D would reduce welfare in that market by an
amount [(23-20)*50=150] smaller than it was before (250), because D can now
revert to a fairly efficient alternative supply source.

It is interesting to notice how the variation in surplus affects the incentives
to undertake the investment. At the aggregate level, the investment in capacity
expansion would be desirable if its cost would be lower than 22, that is, the
total welfare gain. However, it may be the case that the expansion of capacity
in B-D only requires cooperation between agents B and D, possibly with the
contribution of A. In this case, if the investment costs more than 22 but less
than 167 (83+84), it would be undertaken, despite the fact that it would not
be socially desirable. In other words, there would be a negative externality
generated by the expansion of capacity in the link B-D.

4 Extensions

4.1 Changing Demand
Consider a case where demand in the smallest market C increases from Q =

70� p to Q = 80� p. This obviously raises the overall welfare obtainable in the
network, from 7170 to 7719. It also changes, however, the bargaining power of
all parties, at it is shown in Table 2, comparing the base case with the one with
expanded demand in C.

Much of the welfare gain accrues to C. However, it also goes to the nodes
which are involved in the supply of C, in proportion to their contribution. As
C is typically supplied through the route A-B-C, A and B are also getting
significant gains.

4.2 Exogenous Instability
Suppose that one agent in the set, say agent C, is affected by some exogenous
factors undermining her “reliability” as a partner in any coalition. For example,
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Table 2: Shapley value surplus distributions
agents \ cases Base Exp. Diff.

A 2115 2292 177
B 2222 2375 153
C 530 725 195
D 1488 1500 12
E 815 827 12

Total 7170 7719 549

Table 3: Shapley distributions with instability in C
agents \ cases Base Ext. Diff.

A 2065 2141 +76
B 2172 2266 +94
C 477 382 -95
D 1477 1571 +94
E 849 707 -142

Total 7040 7067 +27

C could refer to a geo-politically unstable country. We assume that there is some
probability that the C partner is not available and cooperating. A simple way
to capture this exogenous instability is to compute the expected payoffs for all
potential coalitions, considering that the coalition could shrink to a smaller one,
excluding C. For example, with a 10% probability, the expected payoff of the
grand coalition {A,B,C,D,E} would be 0.9*P(ABCDE)+0.1*P(ABDE), where
P() is the payoff computed from the NME as in the previous section.

Using this methodology to modify the payoffs for all sub-coalitions including
C, new Shapley value distributions can be computed. Table 3 presents the new
values, corresponding to the ones in Table 1, under exogenous instability for C.

We see that total expected welfare is lower and, not surprisingly, C is the
member which is losing proportionally more (477 instead of 530). Agent E gains
from the instability in C (849 instead of 815), because she has more bargaining
power now. Indeed, if the path serving market D through C would be disrupted,
D could get no more than 60, because of capacity constraints. The price would
then go up to 35, making the potential threat by E of not serving D very serious.

If capacity in the link B-D is enlarged, total welfare would increase by 27,
which is a bigger increment than before. The value for E falls to 707, because to
serve the D market it is not necessary to pass through C if capacity is unbounded
in B-D. More importantly, gains for B and D together now sum up to 94*2=188,
which is significantly more than the value without instability in C (167), whereas
the global gain only increases from 22 to 27. We can therefore deduce that: (a)
instability in the node C increases the likelihood that capacity in the arc B-D is
enlarged, (b) it is more likely that negative externalities are generated and the
network is inefficiently expanded.
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4.3 Outside Options
Very often, markets have access to alternative energy sources outside the net-
work. For example, instead of relying (only) on gas or oil, distributed trough
pipelines, a country can get energy from renewable sources (e.g. solar). These
“outside options” typically have two key characteristics: (1) they are more costly
than conventional, network-based goods under normal market conditions; (2)
their exploitation does not require cooperation with other agents. In this case,
even if an agent may not find it convenient to utilize the outside option when
a cooperative network is in place, the mere availability of the outside option
affects her bargaining power and the distribution of surplus.

To illustrate the point, consider a market like D in the numerical example
discussed above. In the base case, D obtains a good through the network at the
price 25. Suppose that D could have produced, autonomously, the same good
at a constant cost of 30. Clearly, domestic production would not be economi-
cally viable under these conditions. However, to compute the Shapley value we
did consider the welfare obtainable by all possible sub-coalitions. The coalition
including only D would have got zero surplus in the initial case, but the possi-
bility of autonomous domestic production brings the potential welfare to 2112.5
(price 30, consumed quantity 65). The sub-coalition {A,B,D,E} delivered 60 to
market D, bringing the price at 35, which is higher than 30. When the outside
option is available, the equilibrium price would instead be 30, and D would be
served by both imports through the network and domestic production. This
case is depicted in Figure 3.

The price p̄ is the constant marginal cost of domestic production, which
constitutes an upper bound on the equilibrium price. The network delivers
quantity qN which, without domestic supply, would have brought about a price
of pN . Now the price is kept at p, the quantity consumed is q, where qN is
delivered by the network and q � qN is internally produced. The availability of
the outside option implies an higher consumer surplus. The gain corresponds
to the dark grey shaded area in Figure 3.

To compute the network market equilibrium when outside options, expressed
as “backstop technologies” at cost p̄, are available, the optimization program (1)
has to be modified in the following way:

max

fij,(i,j)2A(�)

W� =

P
d2D

2

4
fid´
0

Pd(f)df +

Pd(f)
�1´

fid

(Pd(f)� P d)df

3

5�

�
P

(i,j)2A(�)

Cij(fij)

(3)

where P d is the exogenous price of domestic production in market d (pos-
sibly very high if no outside option is available), and P d(f)�1 is the quantity
consumed at this price P d .

Results for the case of a backstop technology at cost 30 in market D are
shown in Table 4, under the column “Option”.
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Figure 3: Market equilibrium and welfare with outside option

Table 4: Shapley distributions with outside option in node D
agents \ cases Base Option Diff.

A 2115 1656 -459
B 2222 2136 -86
C 530 520 -10
D 1488 2532 +1044
E 815 325 -490

Total 7170 7170 0
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We see that total network value is unaffected by the presence of an outside
option in D, as it is not economically efficient to use the alternative technology
if the network would be run cooperatively by all agents. However, the option
significantly improves the bargaining power of agent D, as she makes a much
bigger contribution to welfare in all possible coalitions (including the singleton
D). In fact, with the possibility of autonomous domestic production, agent D
gets the higher share of total surplus, at the expenses of all other agents.

4.4 Market Distortions
The analysis conducted so far assumes that all the potential surplus generated
within the network is appropriated by the parties involved in the different coali-
tions. This hypothesis is consistent with the existence of perfectly competitive
markets for network goods or, alternatively, with the presence of a monopolis-
tic supplier, which can perfectly price discriminate among her customers. This
second explanation may be defended on the ground that many international
networks for oil and gas are based on block pricing schemes, that is, contracts
specifying quantity volumes and total prices beforehand.

However, the model described above can be easily modified to accommodate
for the existence of distortions in specific markets, like oligopolies or taxes. A
common characteristic of market distortions is that the quantity volume ex-
changed is lower than in the optimum or, equivalently, that market prices are
higher than what they would be. Exogenous reductions in consumption volumes
can be easily introduced by setting appropriate values for the capacity param-
eters kjd in distribution links (or, equivalently, by changing the cost functions
Cjd in the more general formulation). This amounts to assume the existence of
import quotas, possibly justified in terms of energy policy4.

Alternatively, market distortions can imply taxes or profit mark-ups on top
of competitive prices. These may also be easily introduced in the model by
making the capacity parameters kjd endogenous, dependent on market prices
or delivered quantities.

4.5 Exogenous Surplus Factors
Cooperation benefits (or costs) may go beyond the network where cooperation
takes place, involving multiple policy dimensions. For example, suppose that
nodes in the illustrative example of Figure 1 are countries, and that countries B
and D were engaged in a past conflict. A political “peace dividend”, associated
with cooperation between two former enemies, may then play a role in the
distribution of surplus and in the justification of investments in the network
infrastructure.

This case could be considered in the example above by raising the payoff
of all coalitions including both B and D (e.g, by adding 10 to the surpluses

4For example, a government in a country may want to have a portfolio of energy sources,
thereby restricting access to the least cost ones.
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Table 5: Shapley distributions with exogenous surplus factors
agents \ cases Base Ex.S. Diff.

A 2115 2115 +0.
B 2222 2227 +5
C 530 530 0
D 1488 1493 +5
E 815 815 +0.

Total 7170 7180 +10

obtained in the NME). The Shapley values computed after such modification
are displayed in Table 5, where they are compared with the base case.

As could be expected, much of the exogenous extra gain (+10) accrues,
symmetrically, to B and D. However, part of it also goes to A and E. Why
this should be so? In order to grab the additional surplus, B and D must be
part of the game, but the network must also be functioning, delivering the goods
produced in A and E. If there are no suppliers in a coalition, the coalition would
get zero surplus in any case, even if both B and D are into it.

5 Conclusion

In this paper, we introduced a methodology for analyzing cooperation schemes
in network markets. The aggregate surplus, to be distributed among agents,
was explicitly derived as a market equilibrium, where a set of supply points
are connected to a set of demand points through a network structure. Several
variants of the base model were discussed, showing how flexible the approach
may be and how several complications, possibly arising in real-world cases, may
be accounted for.

Perhaps one of the most interesting aspects of the problem of surplus alloca-
tion is the difference in incentives between the grand coalition and some sub-set
of players. For example, we considered in our numerical example the possibility
of expanding capacity in the link B-D. We found that, given an allocation rule
like the Shapley value, the increase in surplus jointly obtainable by players B
and D may easily exceed the gain for the aggregate of all players. If such a
change of network characteristics requires costly investments, with a cost possi-
bly lying in the interval between the two extra surplus values, and if the decision
about undertaking the investment only requires agreement of agents B and D,
then an inefficient expansion of the network (more capacity or new links) would
be the outcome. The reason is that with the modified structure the two players
benefit from a stronger bargaining position: individual incentives depend on the
bargaining / surplus allocation scheme.

Intuitively, one would expect that the threat of changing the network struc-
ture for the benefit of a sub-coalition should increase the current bargaining
power of the same coalition. To put it differently, if a network change would
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not be profitable in the aggregate, then the allocation scheme should assign now
more surplus to those agents who are “tempted” to act on their own, in order
to re-align individual and aggregate incentives. Standard equilibrium concepts
like the nucleolous or the Shapley value are indeed based on what the coalitions
can do “autonomously”, but the degree of autonomy does not include the pos-
sibility of changing the network structure or, more generally, the determinants
of surplus in the game.

This issue is not a purely theoretical construct, but is has important practi-
cal implications. Hubert and Ikonnikova (2011) and Hubert and Cobanli (2012)
discuss at length the building of the North Stream gas pipeline, directly connect-
ing offshore Russia and Germany. This is an expensive project, whose viability
is only due to the fact that some countries (Baltic States, Poland, Belarus,
Ukraine) are bypassed, thereby augmenting the bargaining power of Germany
and Russia.

The analysis of surplus allocation when the network structure is flexible and
modifiable goes beyond the scope of this paper, and it is left for future research.
We just mention here that some interesting solutions have been proposed by
Jackson (2005)5, from a theoretical perspective, and by Hubert and Ikonnikova
(2011)6, in terms of applied numerical modeling.

5The paper discusses alternative allocation rules for flexible networks. The basic idea is
that of considering, alongside the value of each coalition, the maximum value a coalition can
achieve, when it is free to alter the network structure. Jackson calls this value monotonic

cover. He then proposes a modified Shapley value, named “player-based flexible network
allocation rule”, where monotonic covers simply replace coalition values. The main problem
with this formulation is that the sum over all players of allocations gives the value obtainable
under the most efficient network, not the value of a given, existing network.

6Two cases are considered in this paper: the “status quo”, where the network structure
cannot be changed, and the “all options” one, where the capacity of all potential new links
can be set by those coalitions which can control them. A third case is the so called “general
game”, which considers the delay associated with implementing new infrastructure projects.
Assuming that the current structure of the network will be in place for a given number of
periods, necessary to make new projects operational, the value function of the general game
can be expressed as a linear combination of values for the status quo and the all options cases.
These value functions are used in the paper to compute Shapley values, core and nucleolous
allocations.
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Appendix

Using Nucleolus to allocate the cooperative surplus
The Shapley value is not the only equilibrium concept elaborated in cooperative
game theory, and other allocation rules could be adopted in the analysis of
cooperative networks. The nucleolus, for example, is another concept, appealing
due to its relation to the “core” of a cooperative game (Schmeidler, 1969). The
core is the set of all possible allocations in which the sum of values assigned
to the members of any coalition is at least equal (or greater) than the surplus
obtainable by the coalition, acting autonomously. The core may be empty but,
when it is not, it often includes many allocations, which limits its applicability.
The nucleolus is that allocation which lies in the “centre” of an non-empty core,
identified by progressively increasing the payoff of potential sub-coalitions.

Although the nucleolus has a logic and appealing interpretation, its compu-
tation for large networks may turn out to be quite complicated and the inter-
pretation not easy. For this reason, we preferred to illustrate the basic ideas in
this paper using the Shapley value, which is simpler to compute and possesses
a number of desirable properties (e.g., monotonicity and linearity). However, it
is not too difficult to compute the corresponding nucleolus values for the sim-
ple network discussed in the paper. Here we present our findings, using the
nucleolus instead of the Shapley value.

Table 6 corresponds to Table 1. With the nucleolus, demand nodes B, C and
D gets relatively more value in the baseline. The effect of expanding capacity in
the link B-D is qualitatively similar to the Shapley case, with two differences:
(1) node A is harmed, (2) benefits for B and D are not symmetric. Indeed,
symmetry is a special property of the Shapley value.

Table 7 corresponds to Table 2, where the case of expanding demand in node
C is considered. Again, effects are qualitatively similar, but now the benefits
accrue primarily to node C, whereas D and E are completely unaffected by the
change in market size.

Table 8 corresponds to Table 3. Here we consider the existence of “exogenous
instability” in node C. Of course, allocations change both in the baseline and
after the relaxation of capacity constraints. The gains or losses for A, B and
C are almost unaffected by the presence of instability, whereas gains for D and
losses for E are amplified. Again, the impact of investment in capacity in the
link B-D are not symmetric for nodes B and D.

Table 9 corresponds to Table 4. The existence of an outside option in market
D strengthen the bargaining power of D and its value share, but much less than
in the Shapley case. Actually, most of the gains now accrue to nodes B and
C (slightly harmed under Shapley), whereas node E is unaffected (significantly
harmed under Shapley).

Table 10 corresponds to Table 5. The incidence of exogenous factors is the
same when the nucleolus replaces the Shapley value as an allocation rule.
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Table 6: Nucleolus value surplus distributions
agents \ cases Base Ext. Diff.

A 1850 1813 -37
B 2060 2133 +73
C 650 625 -25
D 2485 2546 +61
E 125 708 -50

Total 7170 7192 +22

Table 7: Nucleolus value surplus distributions
agents \ cases Base Exp. Diff.

A 1850 1959 109
B 2060 2169 109
C 650 982 332
D 2485 2485 0
E 125 125 0

Total 7170 7720 550

Table 8: Nucleolus distributions with instability in C
agents \ cases Base Ext. Diff.

A 1818 1782 -36
B 2030 2102 +72
C 585 562 -23
D 2395 2546 +151
E 212 75 -137

Total 7040 7067 +27

Table 9: Nucleolus distributions with outside option in node D
agents \ cases Base Option Diff.

A 1850 1406 -444
B 2060 2174 +114
C 650 924 +274
D 2485 2541 +56
E 125 125 0

Total 7170 7170 0

Table 10: Nucleolus distributions with exogenous surplus factors
agents \ cases Base Ex.S. Diff.

A 1850 1850 +0.
B 2060 2065 +5
C 650 650 0
D 2485 2490 +5
E 125 125 +0.

Total 7170 7180 +10

17


