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Abstract

The purpose of this paper is the construction of an early warning in-
dicator for systemic risk using entropy measures. The analysis is based
on the cross-sectional distribution of marginal systemic risk measures
such as Marginal Expected Shortfall, Delta CoVaR and network con-
nectedness. These measures are conceived at a single institution for the
financial industry in the Euro area. We estimate entropy on these mea-
sures by considering different definitions (Shannon, Tsallis and Renyi).
Finally, we test if these entropy indicators show forecasting abilities in
predicting banking crises. In this regard, we use the variable presented
in Babeckỳ et al. (2012) and Alessi and Detken (2011) from European
Central Bank. Entropy indicators show promising forecast abilities to
predict financial and banking crisis. The proposed early warning sig-
nals reveal to be effective in forecasting financial distress conditions.

1 Introduction

Given the relevance of latest financial crisis, much attention has been re-
served to modeling systemic events, which represent a potential threats to
financial stability in an interconnected economic and financial system. As
stated in (Billio et al., 2012), these linkages are parts of a complex and
strongly interrelated system where the interconnectedness among financial

∗Authors’ research is supported by funding from the European Union, Seventh Frame-
work Programme FP7/2007-2013 under grant agreement SYRTO-SSH-2012-320270, by
the Institut Europlace of Finance, “Systemic Risk grant”, the Global Risk Institute in Fi-
nancial Services, the Louis Bachelier Institute, “Systemic Risk Research Initiative”, and by
the Italian Ministry of Education, University and Research (MIUR) PRIN 2010-11 grant
MISURA. This research used the SCSCF multiprocessor cluster system at University Ca’
Foscari of Venice.
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institutions in period of financial distress may result in a rapid propaga-
tion of illiquidity, insolvency, and losses through the system. Given the
endogenous nature of systemic risk, its measurement represents a complex
task which involves different financial and macroeconomic aspects. In fact,
the implications of systemic risk is relevant both in the macro and micro
perspectives. At macro level, the aim of policy makers such as European
Central Bank (ECB), European Systemic Risk Board (ESRB) and Federal
Reserve (FED) is to guarantee the stability of the banking system (Rochet
and Tirole, 1996; Freixas et al., 2000) while at micro level, systemic risk
reduces the gains of diversification in an investors perspective (Das and Up-
pal, 2004). In this regard, different measures have been proposed in the
literature to exploit the variety of aspects expressed by relevant economic
and financial variables. Part of this literature think at the economic sys-
tem as many interconnected subjects (consumers, firms, banks, . . . ), where
systemic risk lies on the basis of such connections. In this line, studies inves-
tigate network linkages among financial institutions, where the purpose of
the analysis has been the study of the transmission and propagation mech-
anism in term of connectedness. Billio et al. (2012) developed a pairwise
Granger causality to detect significant linkages among financial institutions
to describe which ones are systemically important and how those relate to
the rest of the financial sectors.
Other measures are cross-sectional based, meaning that the analysis is on the
co-dependence of financial institutions to measure their marginal contribu-
tion to systemic risk. Among these, the ∆-CoVaR, defined as the difference
between the VaR of the financial system conditional on the institution being
under distress and the VaR of the financial system conditional on state of
that institution. Another relevant measure is the marginal expected short-
fall (MES) proposed by Acharya et al. (2010), defined as the average return
of the return of a financial institution during the 5% worst day for the overall
market return. These measures consider the financial system as a “portfo-
lio” of institutions, where the dynamic of the market price may impact the
others, and where financial regulators are interested in the overall portfo-
lio, rather than how its components behave individually and interact among
themselves. Bisias et al. (2012) presents an excellent survey on systemic
risk measures in literature. It is worth noting, that network representation
allows to infer the contribution (connection) of each institution (node) to
the overall system, and thus also network measures can be related to the
cross-sectional type.
The motivation of our study relies on the capability to detect and predict
likeness of systemic events defined as financial distress condition. In this
regard, we propose a new approach to capture the structural changes of the
system through systemic risk measures. The idea is that systemic risk is as-
sociated to the joint variability into a whole financial system, where linkages
among institutions, e.g. banks, insurances, financial dealers, are the condi-
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tions for observing loss cascade effects. That is, if an institution experiences
a distress condition then other institutions, linked to the former, may ex-
perience distress. Our aggregation relies on the use of entropy applied to a
feature distribution estimated on the market such as the cross-sectional sys-
temic risk measures at a given point in time. In fact, movements of entropy
built on these measures may reveal first signs of changes on systemic risk.
Therefore, the dynamic of this entropy could be used as a quasi real time
early warning indicator for financial distress condition. Example of a quasi
real time early warning indicator related to our study can be found in Alessi
and Detken (2011) where they used this type of indicators to predict asset
price booms that may have a great impact in real economy.
Entropy is used in a variety of fields to characterize the complexity of a
system. In this regard, entropy measures of the information flow through
a computer network and the entropy of the network behavioural features
have been used in computer science (e.g., see Nychis et al. (2008)) to de-
tect anomalies in computer networks. Lee and Xiang (2001) suggest to use
several information-theoretic measures entropy, conditional entropy, relative
conditional entropy, information gain, and information cost for anomaly de-
tection.
Entropy has been involved also in finance. Zhou et al. (2013) provides an
up-to-date review of the concepts and principles of entropy with applica-
tions to finance. Studies in our direction are in Gao and Hu (2013) and
Alvarez-Ramirez et al. (2012). Gao and Hu (2013) study the income struc-
tures of different sectors of an economy separately and provide an early
warning indicator based on entropy. They show that the losses, measured in
term of quarterly negative incomes, in exposure networks can be modelled
by a two-parameter Omori-law-like distribution for earthquake aftershocks.
Our analysis is based at daily frequency and it considers risk measures as a
proxy of the daily losses on stock prices. Alvarez-Ramirez et al. (2012) apply
approximate entropy measures to study the time evolution of the market ef-
ficiency from an informational view point. They find evidence of changes in
the efficiency structure for the US market. Their approach is at univariate
level considering financial returns on a multi-scale analysis.
We consider instead multiple series and focus on the cross-section dimension
at each point in time. To our knowledge we are the first to apply entropy
to cross sectional risk measures.
Davis and Karim (2008) propose a comparison using a multinomial-logit
and signal extraction as early warning for banking crises. The authors high-
light the importance of the use of early warning system for policy makers
to prevent crises. Their analysis is based mainly on macroeconomic, fis-
cal and financial variables at yearly frequency. In this regard, they suggest
logit models are the most appropriate choice for these indicators for a global
equally warning system. Following this approach, we propose entropy based
on cross sectional measures as an early warning system for banking crisis
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using the variable proposed in Alessi and Detken (2014) for European coun-
tries. We focus on the Euro area who has experienced recently a sovereign
debt crisis where the prominent role has been played by a frail financial and
banking system (Lane, 2012). The remainder of this paper is organized as
follows. Section 2 presents the entropy measures used in this paper and the
estimation method. Section 3 presents the entropy estimates for the Euro-
pean stock market. Section 4 provides evidence of the nowcasting ability of
the entropy for the financial crisis. Finally, Section 5 concludes.

2 System Entropy

Entropy measures are widely used in finance. Jiang et al. (2014) provide an
entropy measure for asymmetrical dependency in asset returns. Their find-
ings show that asymmetry is much more pervasive than previously thought,
and that stocks which have greater asymmetric movements with the mar-
ket earn higher average returns. Chabi-Yo and Colacito (2013) propose a
new entropy-based correlation measure (co-entropy) to evaluate the per-
formance of international asset pricing models. Co-entropy captures the
codependence of two random variables beyond normality. They document
that the coentropy of international stochastic discount factors (SDFs) can
be decomposed into a series of entropy-based correlations of permanent and
transitory components of the SDFs. A large cross-section of countries is em-
ployed to obtain model-free estimates of all the components of co-entropy at
various horizons. They compare several models and find that they cannot
account for the composition of codependence at all horizons. Bera and Park
(2008) propose to use cross-entropy measure as the objective function with
side conditions coming from the mean and variance–covariance matrix of the
resampled asset returns. This automatically captures the degree of impreci-
sion of input estimates. It can be viewed as shrinkage estimation of portfolio
weights (probabilities) which are shrunk towards the predetermined portfo-
lio. The novel feature of our application in finance is to apply entropy on
systemic risk. Intuitively, in the proximity of a systemic event, the financial
institutions that are those that cause the event, since they are the systemic
relevant or frail, may be the first to react and thus to provoke a structural
change in the cross-sectional distribution. In this regard, entropy can detect
these changes in the (cross-sectional) distribution of these measures.

2.1 Entropy measures

In many applications the object of interest is a function of the probabil-
ity distribution which summarizes the information content of the distri-
bution. One of the most used probability functional is the entropy. Let
πt = (π1t, . . . , πmt), t = 1, . . . , T , be a sequence of vector of probabilities
associated to the cross-section distribution of a given feature of the financial
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assets measured over time t on the market. In this paper we apply entropy
to πt. There exists many alternative definitions of entropy.

The Shannon entropy (Shannon, 1948), also known as Gibbs-Boltzman-
Shannon, is defined as

HS(πt) = −
m
∑

j=1

πjt log πjt (1)

where m < ∞.
Two measures of entropy which have been widely used in the literature

are the Tsallis (see Tsallis (1988)) entropy and the Renyi (Rényi, 1960).
They allow for power tail behaviour and that are defined as

HT (πt) =
1

α− 1

(

1−
m
∑

i=1

πα
it

)

(2)

HR(πt) =
1

1− α
log

(

m
∑

i=1

πα
it

)

(3)

and m < ∞. Alternative entropy measures have been proposed in the
literature, such as the κ-entropy (Wada and Suyari, 2013) and the fuzzy
entropy (e.g., see De Luca and Termini (1972)), that will be not considered
in this paper.

As discussed in Maszczyk and Duch (2008), the entropy in Shannon
(1948) is a special case of the other two formulations. In particular, accord-
ing to the value of α, the measures in Equations 3 and 2 assign more or less
weight to the tails of the distribution. Especially the the Tsallis entropy
has been used in the analysis of systems involving long-range interactions,
in a wide range of fields such as physics, chemistry, astronomy, engineering
and economics (see, e.g. Tsallis (2001),Tsallis et al. (2002), Beck (2000),
Reynolds (2003), Niven (2006)).

In order to show the relationship between tail probability and entropy,
we consider πt = (π1t, π2t) with π2t = 1−π1t and report in Fig. 1. Compared
to the entropy index in Shannon (1948), and depending on the value of the
parameter α, the entropy in Rényi (1960) penalizes the mid-way between the
uniform and the impulse distributions, while the entropy in Tsallis (1988)
assigns less importance to randomness, that is it penalizes uniformity in
the distribution. Therefore, for the entropy in Rényi (1960), the higher the
parameter α and the less the entropy for distributions far from the uniform,
i.e., the tails of the distribution are penalized. In contrast, for the entropy in
Tsallis (1988), the higher the parameter α (see dashed-dotted line in panel
(c), and the less the entropy for distributions close to the uniform. Note
that the farther a distribution is from the uniform, the thinner its tails are
(see the log-kurtosis in panel (a)). Thus for large α the Tsallis entropy is less
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Figure 1: Logarithmic kurtosis (solid line) and variance (dashed line) (panel
(a)). Shannon (panel (b)), Tsallis (panel (c)) and Renyi (panel (d)) entropies
for πt = (π1t, π2t) and α = 0.5 (dashed line), α = 1 (solid line), α = 2
(dotted line), and α = 3 (dashed-dotted line).
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sensitive to changes in the probabilities associated to common events (Bentes
and Menezes, 2012; Tsallis et al., 2003) and more sensitive to changes in the
tail probabilities, when there is a large change in the kurtosis (see panel (a)).
We conclude that as regards to the Tsallis entropy α may be regarded as a
biasing parameter which privileges common events when α > 1 (dotted and
dashed-dotted line in panel (c)) and rare events when α < 1 (dashed line in
panel (c)). Comparing the results in panel (c) and (d) one can see that the
parameter α has opposite effects in the two definitions of entropy.

2.2 Early warning signal

Early warning system in financial system has been widely discuss and ana-
lyzed in literature (Davis and Karim, 2008; Bussière and Fratzscher, 2006;
Edison, 2003; Martin, 1977). Most of these studies and more recently as
in Davis and Karim (2008); Alessi and Detken (2011) have used macroe-
conomic variables. Demirgüc-Kunt and Detragiache (1999) define an early
warning system, a system that will issue a signal in case the likelihood
of a crisis crosses a specified threshold. Duca and Peltonen (2013) detect
systemic risks in a unified framework resulting from domestic and global
macro-financial vulnerabilities. Their results show the relevance in consid-
ering jointly indicators in a multivariate setting. Our analysis implements
entropy on systemic risk measures as an early warning indicator to signal
banking crisis.

2.3 Entropy estimation

We follow a Bayesian approach to inference for the distribution πt and the
entropy (e.g., see Minka (2003) and Mazzuchi et al. (2008)). Bayesian esti-
mation of entropy is closely related to the expected information in Bayesian
analysis (Bernardo, 1979; Zellner, 1991) and to the average entropy in the
communication theory (Campbell, 1995), and has been proved to be con-
sistent and to exhibit comparatively low bias on finite data sets, thus out-
performing alternative procedures. Let xt = (x1t, . . . , xntt)

′ be a vector of
observations for a variable of interest over nt different assets traded on the
market at time t, with t = 1, . . . , T , and let Bi, i = 1, . . . ,m a sequence
of intervals such that Bi ∪ Bj = ∅, i 6= j. Define the sequence of discrete
distributions

p(x|πt) =
m
∑

j=1

πjtIBj
(x) (4)

t = 1, . . . , T , with m < ∞,
∑m

j=1 πj = 1, and IA(x) is the indicator function,
which take value 1 if x ∈ A and 0 otherwise. The likelihood of the data at
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time t is a product of multinomial distribution and can be written as

p(xt|πt) =

nt
∏

i=1

m
∏

j=1

π
IBj

(xit)

jt =
m
∏

j=1

π
njt

jt (5)

where xt = (x1t, . . . , xntt), and nit =
∑nt

j=1 IBi
(xjt) is the count for bin Bi.

We assume a conjugate Dirichlet prior distribution (see Robert (2001),
pp. 116-117) for the probability vector, πt ∼ Dir(φν1, . . . , φνm), with den-
sity function

f(πt) = Γ(φ)

m
∏

i=1

1

Γ(φνj)
π
νj
it I∆[0,1]m(π) (6)

with ν1 + . . . + νm = 1, νi > 0, φ > 0 and ∆[0,1]m denoting the m-
dimensional standard simplex. The posterior distribution is a Dirichlet
πt|xt ∼ Dir(φν1+n1t, . . . , φνm+nmt), and the Bayesian estimator π̂t of πt

is a probability vector with elements π̂jt = (φνj+njt)/(φ+nt), j = 1, . . . ,m.
Finally we define the following Bayesian estimator of entropy

Ĥk =

∫

Hk(πt)p(πt|xt)dπt (7)

with k = S,R, T , The integral can be easily approximated by using Monte
Carlo samples generated from the posterior, that is

Ĥk ≈
1

N

N
∑

i=1

Hk(π
(i)
t ) (8)

where π
(i)
t ∼ Dir(φν1 + n1t, . . . , φνm + nmt) i.i.d. i = 1, . . . , N .

3 Features of financial market participants

As stated in Billio et al. (2012), we define systemic risk as “a collection of
interconnected financial institutions that have mutually beneficial business
relationships”. In particular, illiquidity, insolvency, and losses quickly prop-
agate during periods of distress through the financial system.
Our variables of interest xit used in the entropy calculation are the Marginal
Expected Shortfall (MES), the ∆-CoVaR and the network connectedness.
As regards the MES we follow Acharya et al. (2010) and starting from a
series of asset returns rit, t = 1, . . . , T , where i denotes the asset, MESit is
defined as the expected value of rit when a reference asset (or a reference
market) is in its “worst state” and is experiencing losses. This state is iden-
tified when the return of the reference asset rmt is below a given quantile
qk. That is, for k = 0.05,

MESit = E{rit|rmt < q5%}. (9)
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The authors, in their original formulation, put a minus in front of the
expectation in order to meet consistency with the definition of “shortfall,”
as the expected returns in case of a tail event are intuitively thought to be
negative. Moreover, Acharya et al. (2010) consider MES as a measure of
systemic risk, which assesses the expected losses in case the market faces
a tail event. The intuition behind MES is that, if institution i is linked to
a systemic event, the conditional returns should highlight it. The authors
propose and analyze MES properties at a firm-level risk management point
of view. In particular, they analyse its predictive power. However, as shown
in Löffler and Raupach (2013), MES is successful in capturing systemic
relations if calculated on assets’ returns, but it does not perform sufficiently
well for other financial instruments, like bonds and derivatives. As it turns
out, MES filters data in order to pick loss cascades during market downturns,
thus allowing for a specific analysis of tail events.

The ∆-CoVar proposed by Adrian and Brunnermeier (2011) represents
the value at risk (VaR) of the financial system conditional on institutions
being under distress. Let us define the VaR and CoVar as follows

P(rit ≤ V aRit,q) = q,

P(rjt ≤ CoV aRjit,q|rit = V aRit,q) = q
(10)

then the authors define a contribution of a given institution to systemic risk
as the difference between the CoVaR conditional on the institution being
under distress and the CoVaR in the median of the institution (∆-CoVaR),
that is

∆CoV aRmit,q = CoV aRmit,q − CoV aRmit,0.5, (11)

where rit is the asset return value of the institution i and rmt represents
the system. CoV aRmit,0.5 represents the V aR of the system at time t when
returns of asset i are at 50th percentile. Like European Systemic Risk Board
(ESRB)1, we use stock returns rather than asset returns as in (Adrian and
Brunnermeier, 2011).

Following Billio et al. (2012) first we extrapolate a network from the asset
returns and then focus on some feature of this network. Billio et al. (2012)
focused on the total degree of the network and proposed a connectedness
measure. In this paper we focus on the in-out degree of each node, IOit,
and its distribution on the network. A network is defined as a set of nodes
Vt = {1, 2, . . . , nt} and directed arcs (edges) between nodes. The network
can be represented through an nt-dimensional adjacency matrix At, with
the element aijt = 1 if there is an edge from i directed to j with i, j ∈ Vt

and 0 otherwise. The matrix At is estimated by using a pairwise Granger
causality approach to detect the direction and propagation of the relation-
ships between the institutions. In order to test the causality direction the

1The Risk Dashboard pubblications are available at
http://www.esrb.europa.eu/pub/rd/html/index.en.html.
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following model is estimated

rit =

m
∑

l=1

b11lrit−l +

m
∑

l=1

b12lrjt−l + ǫit

rjt =

m
∑

l=1

b21lrit−l +

m
∑

l=1

b22lrjt−l + ǫjt

(12)

i 6= j, ∀i, j = 1, . . . , nt, wherem is the max lag (selected according a BIC cri-
teria) and ǫit and ǫjt are uncorrelated white noise processes. The definition
of causality implies,

• if b12l 6= 0 and b21l = 0, rjt causes rit and ajit = 1.

• if b12l = 0 and b21l 6= 0, rit causes rjt and aijt = 1.

• if b12l 6= 0 and b21l 6= 0, there is a feedback relationship among rit and
rjt and aijt = ajit = 1.

The in-out degree measure is then defined as

IOit =

nt
∑

j=1

aijt +

nt
∑

j=1

ajit (13)

t = 1, . . . , T . As a reference measure we also consider the dynamic causality
index (DCI), proposed by (Billio et al., 2012), which is defined as

DCIt =

(

nt

2

)−1 nt
∑

i=1

nt
∑

j=1

aijt (14)

t = 1, . . . , T , when (DCIt − DCIt−1) > 0, there is an increase of system
interconnectedness.

4 Effectiveness of the early warning indicators

The aim of this section is to provide empirical evidence of the effectiveness
of the entropy indicators in nowcasting financial instability.

4.1 The European financial sector

We consider the daily closing price series for the European firms of the
financial sector from from 1st January 1985 to 12th May 2014. See Appendix
A for a detailed description of the dataset. As stated above, we focus on
the Eurozone, who has experienced recently a sovereign debt crisis. Among
others, ? study the nature of systemic sovereign credit risk using CDS for
US and Europe. They find that US sovereigns contain less systemic risk

10



with respect to Euro counterpart. However, in both area systemic sovereign
risk is strongly related to financial market variables. ? defined systemic
risk as the propensity of a financial institution to be under-capitalized when
the financial system is under-capitalized. The authors analyse the largest
European financial firms, findings show that for certain countries, the cost
for the taxpayer to rescue the riskiest domestic banks is so high that some
banks might be considered too big to be saved.
In our study, looking at the European area, we considered a total of 437
financial institutions of the Industrial Classification Benchmark (ICB) class.
We consider the MSCI Europe index a proxy for the European market,
which provides a comprehensive overview of 15 countries in Europe, where
the considered institutions are based.
To estimate systemic risk measures, we use a rolling window approach (e.g.,
see Zivot and J. (2003), Billio et al. (2012), Diebold and Yilmaz (2014)) with
a window size of 252 daily observations, which corresponds approximately
to a year of daily observations.2

Figure 2 shows the estimation results in terms of inter-quantile range at
the 95% (gray are) and the mean (solid line) of the cross-sectional distribu-
tion of MES, ∆CoVaR and In-Out network degree over time.

The entropy estimates for the different indicators are reported in Figure
(3).

4.2 Crisis indicators

Different indicators have been presented in the literature to detect economic
and financial crises. Among others, there are Reinhart and Rogoff (2008),
Reinhart and Rogoff (2010a), Reinhart and Rogoff (2010b), Valencia and
Laeven (2008) and Valencia and Laeven (2012). One relevant aspect con-
cerns the definition of “crisis” with respect to the aim of the analysis. As in
Reinhart and Rogoff (2008), the idea of crisis concerns several perspectives
such as sovereign debt crisis, banking crisis or currency crisis. Davis and
Karim (2008) show the importance of the banking crisis in the design of an
equally warning system. Therefore, we focus on European banking crisis
as presented in Babeckỳ et al. (2012) and Alessi and Detken (2014). This
indicator represents also one of the target variables monitored by European
Systemic Risk Board (ESRB).

We use this indicator in the implementation of the early warning system.
The variable is defined as,

Ct =

{

1 if more than one country is in crisis at time t
0 otherwise.

(15)

2The sequential estimation have been implemented in Matlab and takes approximately
15 hours on a cluster multiprocessor system which consists of 4 nodes; each comprises four
Xeon E5-4610 v2 2.3GHz CPUs, with 8 cores, 256GB ECC PC3-12800R RAM, Ethernet
10Gbit, 20TB hard disk system with Linux.
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Figure 2: Distribution of MES (first panel), ∆-CoVaR (second panel) and
In–Out network degrees (third panel) for the European financial sector over
time.
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Figure 3: Shannon (solid line), Tsallis (dashed line) and Renyi (dotted line)
Entropy measures of MES (first panel), ∆-CoVaR (second panel) and In–
Out network degrees (third panel) for the European financial sector over
time.
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Given that the banking crisis indicator in Alessi and Detken (2014) has its
last record in December 2012, we will focus on the period from January
1986 to December 2012. The crisis indicator is given on a per-country basis.
Since the crisis indicator are at quarterly frequency and the returns are at
daily frequency, we assume that the crisis indicator will equal 1 for all days
in a given quarter, if the indicator equals 1 for that quarter. As Robustness
Check, in Appendix C, we formulate two alternative banking crisis variables
by changing the number of countries to be required to define a banking crisis
in all the European area.

4.3 Forecasting results

In order to study the effectiveness of the entropy-based indicators in de-
tecting conditions of financial distress we build a forecasting model for the
crisis indicator variables given in Alessi and Detken (2014). We set a logis-
tic model with entropy indicators for MES, ∆CoV aR and In-Out network
degree as covariates.

We denote Et the entropy index at time t and with Ct is the crisis
indicator at time t, from the Alessi and Detken (2014) database, then the
specified logistic model is

P (Ct = 1|Et) = G(β0 + β1Et). (16)

The estimation results from the logit specification are presented in Table
1. All entropies are significant at 1% confidence-level. The best explanatory
variable is the entropy based on ∆CoV aR.
We report in the paper the estimation for Shannon entropy. In Appendix B
are also reported the estimation for Tsallis and Renyi entropy which confirm
the results.

For evaluating the goodness of the models, many approaches can be
considered. See, for example, Greene (2008) for a list of most common
goodness-of-fit measures. Given the problem, we employ the percent of cor-

rectly predicted indicators. With reference to the dependent variable, the
crisis indicator, we can define a threshold as the percent of times where it is
equal to one.

Namely,

threshold =

∑T
t=1 Ct

T
, (17)

where Ct is the crisis indicator defined in Equation 15. For the time between
January 1986 and December 2012, such threshold is equal to 47.25%.

If Ĉt is the predicted probability of crisis returned by the logit model,
we can define a binary variable C̃t such that:

C̃t =

{

1 if Ĉt ≥ 0.4725
0 otherwise.

(18)
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Table 1: Logit specification where the dependent variable is the banking cri-
sis from Alessi and Detken (2014) and the explanatory variables are Shannon
entropy indicator based on cross-sectional systemic risk measures of euro-
pean financial institutions. The considered measures are MES, ∆CoVaR
and In-Out network degrees. Significance level: 1% (***).

Crisis Indicator

(Intercept) -5.3340*** -6.3911*** -6.4137***

(0.1996) (0.1641) (0.1851)

HS(MES) 10.9669***

(0.4151)

HS(∆CoV aR) 15.5536***

(0.4001)

HS(InOut) 20.0670***

(0.5817)

R-squared 0.1140 0.2905 0.1952
Adjusted-R-squared 0.1139 0.2905 0.1951

LogLikelihood -4455.92 -3790.80 -4107.88
LLR 0.0854 0.2219 0.1568
AIC 8915.84 7585.61 8219.77
BIC 8929.56 7599.33 8233.49

Sample jan-86 jan-86 jan-86
dec-12 dec-12 dec-12

Obs 7044 7044 7044
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Figure 4: Overview of actual and estimated response variable over time of MES (solid line), ∆-CoVaR (dashed line) and
In–Out network degrees (dotted panel).
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This way, we have T pairs of values (Ct, C̃t) which, at any t, can form four
possible combinations: either they are both equal to 1 or 0, or they are dif-
ferent. The percent of correctly predicted indicators is the number of times
where Ct = C̃t relative to T . Table 2 reports the value for the estimated
logit models. The entropy based on ∆CoV ar confirms the superior ability
in predicting banking crisis. It is worth nothing from Figure ?? that entropy
indicators detect 1987 market crash and the consequent turmoil which is not
marked as a banking crisis.

Table 2: Percent of correctly predicted banking crisis on the logit models
using MES, ∆CoVaR and In-Out network degree entropy.

MES ∆CoV ar In-Out degree

% corrected predicted 65.32% 77.51% 69.79%

Moreover, as Robustness check, we reported in Appendix C logit esti-
mations with systemic risk indicator as DCI from (Billio et al., 2012) and
alternative specifications for cross-sectional systemic risk measures such as
mean and volatility. Entropy measures show their superior ability.

5 Conclusion

As shown in the latest two crises, systemic events represent a potential
threats to financial and economic stability. Policy makers such as European
Central Bank and Federal Reserve (FED) are interested in monitoring this
risk using different target variables and econometrics techniques.
In this research line, this paper focused the attention on the construction
of an early warning indicator for systemic risk using entropy measures. We
based the analysis on the cross-sectional distribution of marginal systemic
risk measures (measures conceived at institution-level) such as Marginal
Expected Shortfall (MES), ∆CoVaR and network connectedness. Entropy
measures are estimated considering alternative entropy definitions such as
Shannon (1948),Tsallis et al. (2002) and Rényi (1960). In the empirical
application, we estimated a logit model using as dependent variable the
banking crisis presented in Babeckỳ et al. (2012) and Alessi and Detken
(2011). Findings highlight the goodness of entropy indicators in forecasting
and predicting banking crises. In future research, this approach could easily
be extend to other areas and industries. Moreover, in an early warning
system perspective, further investigation should be performed using other
risk measures and target variables.
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A Data description

The dataset constitutes of the European firms which are classified under the
ICB code class 8000. This is the class for financial firms. A description of
this class of assets is in Table 1.

Supersector Sector

8330 Banks 8350 Banks

8500 Insurance 8530 Nonlife Insurance
8570 Life Insurance

8600 Real Estate 8630 Real Estate Investment & Services
8670 Real Estate Investment Trust

8700 Financial Services 8770 Financial Services
8980 Equity Investment Instruments

Table 1: Description of the ICB 8000 financials asset class.

The dataset includes closing prices (source, DataStream R©) from 1st

January 1985 to 12th May 2014 at a daily frequency. Table 2 shows the list
of the 20 financial markets (countries) considered with the corrisponding
number of assets.

Austria 43 Belgium 73 Denmark 179
Finland 30 France 285 Germany 344
Greece 82 Hungary 16 Ireland 30
Italy 139 Latvia 1 Lithuania 5
Luxembourg 40 The Netherlands 87 Norway 78
Portugal 29 Spain 84 Sweden 113
Switzerland 149 United Kingdom 1310

Table 2: List of financial markets and no. of assets collected.

The overall EU market, that is aggregating all the data in a unique
array, is summarized in Figures 1 and 2. Red line reprsents the cross-section
average, and the green lines the 0.95% and 5% quantiles

We reported also in Figure 4 and Figure 5 the network representation
for 2005 and 2012. It can be clearly seen that the number of connections
increase during banking crisis.
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Figure 1: Distribution of returns in Europe over time.
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Figure 2: Shannon (solid line), Tsallis (dashed line) and Renyi (dotted line)
entropy of returns in Europe over time.
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Figure 3: Sample size of returns in Europe over time.
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Figure 4: Network diagram of linear Granger-causality relationships that
are statistically significant at the 5% level among the daily returns in April
2005.
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Figure 5: Network diagram of linear Granger-causality relationships that
are statistically significant at the 5% level among the daily returns in June
2012.
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B Entropy calibration

More attention can be paid to the entropy indexes in Rényi (1960) and
Tsallis (1988). As they embed the parameter α, they allow the researcher
to fine-tune the models.

Economically, it means identifying how much the tails of the distributions
of MES are relevant to the crises prediction. Intuitively, the more spread the
distribution, and the “fatter” its tails. As already discussed, the parameter
α in the entropy definitions helps understanding how relevant are the tails.
One may further develop the argument stating that such parameter assigns
more or less weight to the degree of uncertainty of the scenarios.

Statistically, that means minimizing a loss function. Such function is
identified, in the paper, with the AIC criterion, namely

AIC = 2k − 2 ln(L), (1)

where L is the likelihood returned by the logit in Equation 16.
For the entropies in Rényi (1960) and Tsallis (1988), L is a function of

α, as it derives from the logistic regression run on those indexes. We can
therefore want to optimize the AIC according to that parameter. That
translates to solving

min
α

AIC(α). (2)

Figure 1-3 show the behavior of the AIC criteria as a function of α for
both Renyi and Tsallis entropy indexes. The implication of such behavior is
twofold: asymptotically, the Tsallis entropy has to be preferred to the Renyi
one. The second implication has to do with the optimal value of α which
is greater than one. This suggests that changes in the tail probabilities of
the variable of interest play a crucial role in measuring systemic risk and in
detecting changes in the risk level.
To avoid an ad-hoc selection, the tuning of the parameter α is performed in
the first part of the sample.

Table (1) and (2) report the results for the estimation with Tsallis and
Renyi entropy, respectively.
Shannon entropy provides better estimates in terms of AIC and BIC criteria
with respect to the Tsallis and Renyi.
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Figure 1: AIC as function of α for Tsallis (solid) and Renyi (dashed) en-
tropies in the logit model (MES).
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Figure 2: AIC as function of α for Tsallis (solid) and Renyi (dashed) en-
tropies in the logit model (∆CoVaR).
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Figure 3: AIC as function of α for Tsallis (solid) and Renyi (dashed) en-
tropies in the logit model (In-Out network degree).
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Table 1: Logit specification where the dependent variable is the banking cri-
sis from Alessi and Detken (2014) and the explanatory variables are Tsallis
entropy indicator based on cross-sectional systemic risk measures of euro-
pean financial institutions. The considered measures are MES, ∆CoVaR
and In-Out network degrees. Tsallis entropy with the optimal α according
to the AIC. Significance level: 1% (***).

Crisis Indicator

(Intercept) -85.4113*** -26.2500*** -19.2738***

(5.0148) (0.9337) (0.6490)

HS(MES) 86.7045***

(5.0961)

HS(∆CoV aR) 29.0981***

(1.0367)

HS(InOut) 25.0981***

(0.8479)
R-squared 0.0457 0.1585 0.1352

Adjusted-R-squared 0.0456 0.1583 0.1351
LogLikelihood -4706.41 -4362.64 -4325.85

LLR 0.0340 0.1045 0.1121
AIC 9416.83 8729.28 8655.71
BIC 9416.83 8743.00 8669.43

Sample jan-86 jan-86 jan-86
dec-12 dec-12 dec-12

Obs 7044 7044 7044
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Table 2: Logit specification where the dependent variable is the banking cri-
sis from Alessi and Detken (2014) and the explanatory variables are Renyi
entropy indicator based on cross-sectional systemic risk measures of euro-
pean financial institutions. The considered measures are MES, ∆CoVaR
and In-Out network degrees. Renyi entropy with the optimal α according
to the AIC. Significance level: 1% (***).

Crisis Indicator

(Intercept) -4.4896*** -5.3212*** -6.3234***

(0.1647) (0.1391) (0.1822)

HS(MES) 11.2202***

(0.4159)

HS(∆CoV aR) 14.5302***

(0.3791)

HS(InOut) 20.0556***

(0.5803)
R-squared 0.1196 0.2887 0.1965

Adjusted-R-squared 0.1195 0.2886 0.1963
LogLikelihood -4438.51 -3828.46 -4103.57

LLR 0.0889 0.2142 0.1577
AIC 8881.03 7660.92 8211.14
BIC 8894.75 7674.64 8224.86

Sample jan-86 jan-86 jan-86
dec-12 dec-12 dec-12

Obs 7044 7044 7044
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C Robustness Checks

As Robustness check in our analysis, we consider the Dynamic Causality In-
dex as in Billio et al. (2012), cross-sectional mean and standard deviation for
systemic risk measures. In terms of AIC and BIC criteria, Shannon entropy
provides better estimates with respect to the mean of the cross-sectional
risk measures. Similar for ∆-CoVaR and In-Out connection degrees entropy
returns better estimates with respect to the standard deviation except for
the case of MES.

Finally, the last robustness check is performed on the dependent variable
by changing the number of countries to be on crisis to have an european
crisis. In this regards, we require more than two countries to be on crisis on
the first check while more than three countries on the second check.
All entropy measures based on MES, ∆-CoVaR and in-out network degree
are strongly significant in both the logit estimations. Table (2) and report
the estimation for the banking crisis variable obtained when at least three
and four European countries are on crisis, respectively.

Table (4) reports the percent of correctly predictid banking crisis for the
two different constructed dependent variables. The values drop substantially
as it could have been expected.
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Table 1: Logit specification where the dependent variable is the banking crisis from Alessi and Detken (2014) and the
explanatory variables are mean and standard deviation based on cross-sectional systemic risk measures of european financial
institutions. The considered measures are MES, ∆CoVaR and In-Out network degrees. Significance level: 1% (***).

Crisis Indicator

(Intercept) -3.3815*** -0.8583*** -1.4844*** -1.2704*** -1.8362*** -2.5419*** -1.0187***

(0.1108) (0.0444) (0.0483) (0.0505) (0.0689) (0.0701) (0.0486)

DCI 18.5333***

(0.6148)

µ(MES) -49.9143***

(2.5072)

µ(∆CoV aR) -227.2496***

(7.0982)

µ(InOut) 0.0227***

(0.0009)

σ(MES) 167.26876***

(6.3684)

σ(∆CoV aR) 745.1144***

(21.3651)

σ(InOut) 0.0398***

(0.0018)
R-squared 0.1466 0.0605 0.1843 0.1004 0.1124 0.2579 0.0676

Adjusted-R-squared 0.1465 0.0603 0.1842 0.1003 0.1123 0.2578 0.0674
LogLikelihood -4307.77 -4650.66 -4150.46 -4479.90 -4439.83 -3798.74 -4619.54

LLR 0.1158 0.0454 0.1481 0.0805 0.0887 0.2203 0.0518
AIC 8619.54 9305.32 8304.93 8963.79 8883.67 7601.47 9243.08
BIC 8633.26 9319.04 8318.65 8977.51 8897.39 7615.19 9256.79

Sample jan-86 jan-86 jan-86 jan-86 jan-86 jan-86 jan-86
dec-12 dec-12 dec-12 dec-12 dec-12 dec-12 dec-12

Obs 7044 7044 7044 7044 7044 7044 7044
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Table 2: Logit specification where the dependent variable is the banking
crisis defined as more than two countries on crisis obtained from Alessi and
Detken (2014) and the explanatory variables are Shannon entropies based
on cross-sectional systemic risk measures of European financial institutions.
The considered measures are MES, ∆CoVaR and In-Out network degrees.
Significance level: 1% (***).

Crisis Indicator

(Intercept) -5.8689*** -5.7522*** -3.9969***

0.2125 0.1617 0.1699

HS(MES)$ 10.4722***

0.4298

HS(∆CoV aR) 11.8787***

0.3714

HS(InOut) 10.0374***

0.5199
R-squared 0.0838 0.1773 0.0429

Adjusted-R-squared 0.0837 0.1771 0.0427
LogLikelihood -3972.91 -3679.20 -4113.54

LLR 0.0788 0.1469 0.0462
AIC 7949.83 7362.40 8231.08
BIC 7963.53 7376.10 8244.78

Sample jan-86 jan-86 jan-86
dec-12 dec-12 dec-12

Obs 7044 7044 7044
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Table 3: Logit specification where the dependent variable is the banking
crisis defined as more than three countries on crisis obtained from Alessi
and Detken (2014). The explanatory variables are Shannon entropies based
on cross-sectional systemic risk measures of European financial institutions.
The considered measures are MES, ∆CoVaR and In-Out network degrees.
Significance level: 1% (***).

Crisis Indicator

(Intercept) -10.4567*** -7.8415*** -3.7623***

(0.3045) (0.2216) (0.1983)

HS(MES) 17.9179***

(0.5871)

HS(∆CoV aR) 14.5885***

(0.4779)

HS(InOut) 6.9981***

(0.6021)
R-squared 0.1684 0.1962 0.0081

Adjusted-R-squared 0.1683 0.1960 0.0080
LogLikelihood -2661.13 -2650.60 -3198.72

LLR 0.1857 0.1889 0.0212
AIC 5326.27 5305.20 6401.45
BIC 5339.97 5318.90 6415.15

Sample jan-86 jan-86 jan-86
dec-12 dec-12 dec-12

Obs 7044 7044 7044

Table 4: Percent of correctly predicted banking crisis on the logit models
using MES, ∆CoVaR and In-Out network degree entropy. Banking crisis
1 (Banking crisis 2) is defined as more than two (three) countries on crisis
which have been obtained from Alessi and Detken (2014).

% corrected predicted MES ∆CoVaR In-Out degree

banking crisis 1 19.30% 24.00% 19.42%
banking crisis 2 17.33% 15.91% 17.80%
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