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1 Introduction

Throughout the history, the financial sector has been given an increasing role with respect to the
business cycle: from neutral intermediary in the theory of Modigliani-Miller to the early-warning in-
dicator revealing the expectations of the economic agents about the business cycle in the framework
of the efficient market hypothesis, then further to financial accelerator exacerbating the shocks in the
real economy in models with financial frictions, and finally, to the independent source of shocks, on
a par with technology and preference shocks in the New Keynesian DSGE models. Given the fast
development and the increasing importance of the financial sector, the understanding of the interac-
tion between the financial sector and the business cycle has become crucial for coordination of fiscal,
monetary and macroprudential policies. For this purpose, the quantitative estimates of the role of the
financial sector are essential.

The study of the financial sector and financial crises in particular gave rise to the notion of the
financial cycle. For the moment, there is no single definition of the financial cycle. Instead, in most
applied papers researchers refer to the fluctuations of credit, equity and house prices. In spite of the
fact that these represent different parts of the financial sector, they possess similar cyclical features,
which are therefore considered as the features of the financial cycle. Hubrich et al. (2013), Borio (2014),
Stremmel (2015) find that the financial cycles are longer than the real business cycles and last about
12-15 years in US, France and Italy. Drehmann et al. (2012), Ciccarelli et al. (2016), Canova and Cic-
carelli (2009), Canova and Ciccarelli (2012) find that the amplitude and duration of the financial cycle
evolve. Borio (2006) states that the financial cycle depends on financial regime (liberalized market,
controlled market), monetary policy (high and variable inflation causes financial instability) and the
state of the business cycle (recession or expansion). In the same time, most of the studies agree that
the business cycle, in turn, depends on the financial cycle, with the real shocks being more significant
during the episodes of financial instability (see, for example, Bernanke and Gertler (1999), Kiyotaki
and Moore (1997), Borio (2014), Hubrich et al. (2013), Claessens et al. (2012)).

One particularly interesting feature of interdependence - the causality direction between the cycles
- has been studied in many papers. In the same time, there is no consensus on whether the financial
cycle leads the real cycle (Borio (2014), Adrian et al. (2010), Bandholz and Funke (2003), Chauvet
(1999), Chauvet and Senyuz (2012)) or lags behind it (Runstler and Vlekke (2015)). This, however,
is consistent with the fact that the financial cycles evolve over time and are longer than business cycles.

Given the changing character of the cycles, it is natural to expect that the interaction between
them is also evolving. Indeed, a brief look on the dynamics of the business and financial cycle in the
US (approximated by the index of industrial production and the index of house prices2, respectively)
shows that the degree of synchronization is different in different periods of time (Figure 1). The cycles
are much more correlated in 1970s-beginning of 1980s and after the Global Financial Crisis (with
correlation about 0.60), and much less in-between (the correlation is zero). The absolute value of
the cross-correlations is even higher during these periods (see the dynamics of the absolute value of
correlation and cross-correlation estimated on a moving window with width w = 141 on Figure 2).3

2see ECB (2009) for discussion of the indicator characterizing the financial cycle
3The results are similar when the financial cycle is approximated with a time series of credit, as suggested by Drehmann
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Figure 1: US industrial production index and US index of house prices
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Note: US index of industrial production (red line, right axis, source: Federal Reserve Bank of St. Louis), US index of
house prices (blue line, left axis, source: FTSE NAREIT US Real Estate Composite Index). Both series are detrended

and seasonally-adjusted.

Taking into consideration the stylized facts mentioned above, an econometric framework that is
used to study the joint dynamics of business and financial cycles should allow for the dynamical feed-
back between them. This idea was implemented in several different approaches. Among them are the
time-varying VAR (in Hubrich et al. (2013)), Markov-Switching VAR model with time-varying tran-
sition probabilities (as, for example, in Billio et al. (2007)), versions of multivariate structural time
series models (STSMs) (see Runstler and Vlekke (2015)), and time-varying Panel Bayesian VAR (see
Ciccarelli et al. (2016)) for the analysis of the macro-financial linkages between countries.

In this paper we suggest an alternative model, the Dynamical Influence Markov-Switching Dy-
namic Factor Model (DI-MS-FM) that provides rich statistical inference due to its three components:
Dynamical Influence model by Pan et al. (2012), Markov-Switching model by Hamilton (1989) and
Dynamic Factor model by Geweke (1977). Importantly, in contrast to the models mentioned above,
the DI-MS-FM does not require an exogenous variable to drive the interaction but allows it to evolve
intrinsically. More precisely, we assume that each of the cycles can be in several states (expansion and
recession in case of the business cycle, boom and downturn in case of the financial cycle), and that
there are several regimes of interaction which differ in degree of interdependence and leading/lagging
relation. This assumption is formalized with the help of an hierarchical structure, where an exogenous
unobservable Markov chain governs the mutual impact of the two other discrete processes charac-
terizing the cycles. Besides average duration, qualitative characteristics, and filtered and smoothed
probabilities of each state for each of the cycles, we get the same inference for the existing influence
regimes. Additionally, for each of the influence regimes, we are able to identify the direction of causality
between cycles and evaluate the relative importance of the past of each cycle on their present states.
These estimates allow to perform a retrospective analysis of the cycles and their interaction as well

et al. (2012).

3



Figure 2: Cross-correlations (in absolute value) between industrial production index and US index of
house prices

Note: Cross-correlations between US index of industrial production and US index of house prices (FTSE NAREIT US
Real Estate Composite Index) estimated on a moving window with width w = 141, i.e. a estimate for a date t is

obtained using observations from t − 70 to t + 70.

as to make probabilistic inference on the current situation. Finally, they allow to provide forecasts of
future states of each cycle given the current influence regime. Moreover, the estimate of the filtered
probability of the influence regime corresponding to high interaction (as influence regime 2 in our
empirical exercise below) can serve as an early-warning indicator of systemic risk (if one considers the
notion of systemic risk in a broader sense, i.e. as a risk of a joint recession both in the financial and the
business cycle simultaneously). These estimates can be useful for policymakers to design and adjust
the policy mix.

The paper is organized as follows. In Section 2 we introduce the model, describe the underlying
interaction mechanism and define Granger causality and suggest a possible extension of the model
allowing to evaluate the effect of government policies. In Section 3 we discuss the estimation procedure,
derive h-step ahead forecasts, examine in-sample and out-of-sample performance of the model. Section
4 contains the results of the application of the model to the US data. Section 5 concludes.

2 The DI-MS-FM
2.1 The general presentation

We adopt the Dynamical Influence model from computer science by Pan et al. (2012) and trans-
form it to study the interaction between business and financial cycles. For this purpose, we merge it
with Markov-Switching Dynamic Factor Model (MS-DFM) which is frequently used in economic cycle
analysis. The resulting model, the Dynamical Influence Markov-Switching Dynamic Factor Model
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(DI-MS-FM), is presented below.

At date t, t = 1, ..., T , economic agents observe (or infer) the business cycle RFt and the financial
cycle FFt4 which have the following dynamics

RFt = µ(S1
t ) + ϕ(L)RFt + σ(S1

t )εt, (1)

FFt = β(S2
t ) + ψ(L)FFt + θ(S2

t )ξt, (2)

where S1
t and S2

t are unobservable discrete processes which are associated with a finite number of
states and which govern the dynamics of the business cycle and the financial cycle, correspondingly,
ϕ(L) = ϕ1L + ... + ϕp1L

p1 and ψ(L) = ψ1L + ... + ψp2L
p2 are lag polynomials of finite order p1 and

p2 correspondingly, {εt} and {ξt} are independent standard Gaussian white noises. The functions
µ(·),σ(·),β(·), θ(·) are known functions of the specified arguments with unknown parameters.

We assume that the interaction between the cycles happens at the level of unobservable processes
S1
t and S2

t , but not observations, which means that (1)-(2) is a restricted VAR.5

The current values of S1
t and S2

t are each dependent on the past of both processes and a variable
rt governing the interaction between S1

t and S2
t , which is the crucial feature of the model:

P (S1
t |S1

t−1, S
2
t−1, rt) = A(S1

t−1, S
2
t−1, rt), (3)

P (S2
t |S1

t−1, S
2
t−1, rt) = B(S1

t−1, S
2
t−1, rt), (4)

P (rt|rt−1) = Q, (5)

where A(·), B(·) are known functions with unknown parameters. We assume that the initial r0, S1
0 ,

S2
0 , RF0, FF0 are not random. The process rt, which we call the interaction regime process, is a

Markov chain of first order6 with a finite number of regimes and a transition probability matrix Q.

For the sake of simplicity, we suppose here that the variables rt, S1
t and S2

t can take only two
values (states) each (S1

t = 1 in case of expansion and S1
t = 2 in case of recession; S2

t = 1 in case of
financial boom and S2

t = 2 in case of financial downturn; the interpretation of the states of rt ∈ {1, 2} is
determined by the degree of mutual influence between the two chains in each regime estimated within
the model7.). Nevertheless, the analysis can be easily extended to incorporate chains of a higher (and
different) order and with more states. Similarly, it is also feasible to allow the past of RFt, FFt or
some observable covariate cause S1

t and S2
t .

Unlike classic Markov-switching models used in business cycle analysis, strictly speaking, the pro-
cesses S1

t and S2
t are not Markov chains since the current state of each of them depends on the past of

the other chain, too. Moreover, the process (S1
t , S

2
t ) is not Markov either as it depends on all its lags.

4The construction of RFt and F Ft will be described later on in section 2.2.
5The lags of F Ft do not enter the equation for RFt (equation (1)) and vice versa. When the interaction on the level

of observation is also allowed for, the identification of each channel can be an issue.
6This assumption is not restrictive.
7The model can be easily extended for the case when the number of states of S1

t and S2
t is not equal
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Nevertheless, for the ease of exposition, we address to S1
t and S2

t as “chains”.

To understand the dynamics of the model, we present the conditional distributions of RFt, FFt,
S1
t , S

2
t , rt using a generic notation xt = (xt, xt−1, ..., x0):

L(rt|RFt−1, FFt−1, S
1
t−1, S

2
t−1, rt−1) = L(rt|rt−1), (6)

L(S1
t |RFt−1, FFt−1, S

1
t−1, S

2
t−1, rt) = L(S1

t |S1
t−1, S

2
t−1, rt), (7)

L(S2
t |RFt−1, FFt−1, S

1
t , S

2
t−1, rt) = L(S2

t |S1
t−1, S

2
t−1, rt), (8)

L(RFt|RFt−1, FFt−1, S
1
t , S

2
t , rt) = N(µ(S1

t ) + ϕ(L)RFt, σ2(S1
t )), (9)

L(FFt|FFt−1, RFt, S
1
t , S

2
t , rt) = N(β(S2

t ) + ψ(L)FFt, θ2(S2
t )). (10)

The fundamental assumptions of the model are:

1. rt is autonomous, i.e. S1
t , S2

t , RFt and FFt do not cause rt in the Granger sense since
S1
t−1, S

2
t−1, RFt, FFt do not appear in its conditional distribution.

2. RFt and FFt do not Granger cause S1
t , S2

t and rt.

3. S1
t and S2

t are conditionally independent given RFt−1, FFt−1, S
1
t−1, S

2
t−1, rt.

4. The process (S1
t , S

2
t , rt) is an autonomous Markov chain.

5. RFt and FFt are conditionally independent given rt, S1
t and S2

t .

To summarize, the dynamics of the model can be represented in the following way (with ωt =
(rt, S1

t , S
2
t , RFt, FFt)):

rt|ωt−1 = rt|rt−1 (11)

S1
t |rt, ωt−1 = S1

t |rt, S1
t−1, S

2
t−1, (12)

S2
t |rt, S1

t , ωt−1 = S2
t |rt, S1

t−1, S
2
t−1, (13)

RFt|rt, S1
t , S

2
t , ωt−1 = RFt|S1

t , (14)

FFt|RFt, rt, S1
t , S

2
t , ωt−1 = FFt|S2

t . (15)

2.2 Construction of RFt and FFt

To construct the proxies for business and financial cycles RFt and FFt, we adopt the Dynamic Factor
Model approach by Stock and Watson (1989). Following the concept of the business cycle by Burns
and Mitchell (1946) as comovement of economic series, they assume that each of the indicators of the
real sector of an economy (industrial production, consumption, stock, consumer and business surveys,
etc.) can be decomposed into two parts. The first one refers to the comovement of series of the real
sector (the business cycle) while the second part corresponds to the idiosyncratic dynamics:

xt = λRFt + yt, (16)
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where xt is a N × 1 vector of stationarized and deseasonalized economic indicators, RFt is a r × 1
vector of common factors of xt, yt is a N × 1 vector of idiosyncratic components uncorrelated with
RFt at all leads and lags, λ is a N × r vector of factor loadings.

Bai (2003), Stock and Watson (2002) showed that R̂Ft can be consistently estimated with PCA
when N and T are large. The use of PCA for factor extraction in the two-step procedures is very
convenient since it is robust to some types of misspecifications, as was shown by Stock and Watson
(2002). For example, under the number of series and observations sufficiently large, PCA provides
consistent estimates of factors when the series of the database are weakly cross-sectionally correlated
or autocorelated. Also, PCA does not require normality of the series. In the business cycle analysis,
the first principal component usually explains most of the variance of xt, so RFt is actually one-
dimensional. Therefore, the first principal component of a rich database of macroeconomic variables is
commonly accepted as a proxy to the business cycle. The proxy of the financial cycle ˆFFt is obtained
similarly from the database of financial indicators.8 These two proxies are then used to estimate (1)-(5).

To keep the notations simple, in what follows RFt and FFt (but not R̂F t and F̂F t) refer to the
proxies of business and financial cycles estimated with PCA.

2.3 The interaction mechanism

In order to describe the interaction between the chains, let us consider their joint dynamics. As we
have mentioned above, the process (S1

t , S
2
t , rt) is a Markov chain. Each its component taking two

values, the joint Markov chain has 8 states and thus a 8× 8 transition matrix with 56 free parameters.
By imposing a particular interaction mechanism, we parametrize this transition probability matrix
with only 14 parameters, thus rendering the model more parsimonious. The interaction mechanism is
organized as follows.

Consider two auxiliary variables, E1
t and E2

t (E standing for "effect"). Each of these variables is a
binary variable and determines the current driving force for each of the corresponding chains, i.e.:

E1
t =

d, if S1
t is impacted by S1

t−1, direct effect

c, if S1
t is impacted by S2

t−1, cross effect
, (17)

E2
t =

d, if S2
t is impacted by S2

t−1, direct effect

c, if S2
t is impacted by S1

t−1, cross effect
. (18)

The chances of being under cross or direct effect for each of the chains depend on the interaction
regime variable rt. The exogenous process rt is an ergodic first-order Markov Chain with 2 states, i.e.

P (rt = j|rt−1 = i, rt−2 = k, ...) = P (rt = j|rt−1 = i) = qij , j, i, k ∈ {1, 2},
8One can use single series to approximate business and financial cycles (industrial production index and housing

prices index, for example). However, in practice factors are commonly used as they reflect a larger information set on
each of the sectors.
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so rt switches states according to the transition probabilities matrix

Q =
[

q11 1− q11

1− q22 q22

]
. (19)

The dynamic causality structure is the following:

1. the values of rt are generated from a two-state Markov chain with the transition probability
matrix Q;

2. for each value of rt, E1
t is drawn in {d, c} from the Bernoulli distribution B(Rrt

11), where Rrt
11 is

the probability of drawing d and 1−Rrt
11 = Rrt

21 is the probability of drawing c;

3. for each value of rt, E2
t is drawn in {d, c} from the Bernoulli distribution B(Rrt

22), where Rrt
22 is

the probability of drawing d and 1−Rrt
22 = Rrt

12 is the probability of drawing c;

4. for E1
t = d, S1

t−1 = i, S2
t−1 = j (i, j ∈ {1, 2}), S1

t is drawn in {1, 2} from the Bernoulli distribution
B(D1

i1), where D1
i1 is the probability of drawing 1 and 1−D1

i1 = D1
i2 is the probability of drawing

2;
for E1

t = c, S1
t−1 = i, S2

t−1 = j (i, j ∈ {1, 2}), S1
t is drawn in {1, 2} from the Bernoulli distribution

B(C21
j1 ), where C21

j1 is the probability of drawing 1 and 1−C21
j1 = C21

j2 is the probability of drawing
2;

5. for E2
t = d, S1

t−1 = i, S2
t−1 = j (i, j ∈ {1, 2}), S2

t is drawn in {1, 2} from the Bernoulli distribution
B(D2

j1), where D2
j1 is the probability of drawing 1 and 1−D2

j1 = D2
j2 is the probability of drawing

2;
for E2

t = c, S1
t−1 = i, S2

t−1 = j (i, j ∈ {1, 2}), S2
t is drawn in {1, 2} from the Bernoulli distribution

B(C12
i1 ), where C12

i1 is the probability of drawing 1 and 1−C12
i1 = C12

i2 is the probability of drawing
2.

Therefore, the interaction between the chains is fully described by a set of 14 parameters (q11, q22,
R1

11, R1
22, R2

11, R2
22, D1

11, D1
22, C12

11 , C12
22 , D2

11, D2
22, C21

11 , C21
22 ), which we organize in matrices Q defined

above,

R1 =
[

R1
11 1−R1

22

1−R1
11 R1

22

]
, R2 =

[
R2

11 1−R2
22

1−R2
11 R2

22

]
,

D1 =
[

D1
11 1−D1

11

1−D1
22 D1

22

]
, D2 =

[
D2

11 1−D2
11

1−D2
22 D2

22

]
,

C12 =
[

C12
11 1− C12

11

1− C12
22 C12

22

]
, C21 =

[
C1

11 1− C1
11

1− C1
22 C21

22

]
.

At period t the probability of being in a particular state of the business cycle S1
t depends on its

own past S1
t−1 and also on the previous state of the financial cycle S2

t−1. The relative importance of
each chain is determined by the matrix Rrt with rt ∈ {1, 2}, which assigns weights to S1

t−1 and S2
t−1,

8



thus determining their self effect and the effect of the other chain given the current interaction regime
rt. Therefore, the probability that the business cycle is in state S1

t , given the states S1
t−1, S2

t−1 and rt,
is a weighted average of probabilities to switch from S1

t−1 = i to S1
t = k and from S2

t−1 = j to S1
t = k,

where i, j, k ∈ {1, 2}, with weights determined by rt. Formally, the probability that a chain S1
t is in

state k given the past of both chains and the current values of rt is:

P (S1
t = k|S1

t−1 = i, S2
t−1 = j, rt) =

∑
l=d,c

P (S1
t = k,E1

t = l|S1
t−1 = i, S2

t−1 = j, rt) (20)

= P (S1
t = k|E1

t = d, S1
t−1 = i, S2

t−1 = j, rt)P (E1
t = d|rt)

+ P (S1
t = k|E1

t = c, S1
t−1 = i, S2

t−1 = j, rt)P (E1
t = c|rt)

= D1
ikR

rt
11 + C21

jk (1−Rrt
11)

= D1
ikR

rt
11 + C21

jkR
rt
21.

with i, j, k ∈ {1, 2} and where Xij denotes the element of the i-th row and j-th column of the matrix
X. Similar logic applies to the financial cycle giving

P (S2
t = k|S1

t−1 = i, S2
t−1 = j, rt) = D2

jkR
rt
22 + C12

ikR
rt
12. (21)

Here Di, i ∈ {1, 2}, is a matrix of parameters capturing the transition due to the direct effect, so
that, for example, the element D1

11 shows the probability that the first chain stays in the regime 1
“expansion”. Similarly, the matrix Cki, i, k ∈ {1, 2}, i 6= k, is a matrix of parameters that capture
cross effect transitions, so that, for instance, the element C12

11 shows the probability that an expansion
in the business cycle induces a boom in the financial cycle. Importantly, direct effect transitions and
cross effect transitions do not depend on rt. The value Rrt

ki shows the relative importance (the weight)
of the past of chain k on the present of the chain i given the current interaction regime rt ∈ {1, 2}.
Therefore, the larger are the diagonal elements of this matrix, the higher is the self-impact, and more
independent are the chains. The most important feature of this framework arises from the fact that
the weights vary over time with rt, thus rendering the interaction between the two chains dynamical.
We illustrate schematically the Dynamical Influence model in Figure 1.
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Figure 3: A graphical representation of the Dynamical Influence Model

Note: This is a modified version of Figure 2 from the paper by Pan et al. (2012)

This type of interaction is new in the economic literature. The existing methods based on the
modeling of the joint process (S1

t , S
2
t ) allow either for a fixed relation between the chains (in case of

static transition probability matrix) or exogenously driven relation (in case of transition probability
matrix depending on some covariates). On the contrary, in this model the interaction is designed to
be intrinsically dynamical, whether dependent on the covariates or not.

As we show in the next section, after introduction of a new state variable the model boils down to
the classic Hamilton (1989) Markov-switching model. Therefore, once the estimates of the coefficients
of (1) and (2), D1, D2, C12, C21, R1, R2 are obtained, the standard filtered and smoothed probabil-
ities of each state of each chain can be calculated, including the smoothed probability P (rt = j|IT ),
j ∈ {1, 2} of being in a particular interaction regime j, where Iτ = (RFτ , FFτ ) is the information avail-
able up to time τ . On top of that, it would be possible to calculate the joint filtered and smoothed
probabilities P (S1

t = i, S2
t = j|It) and P (S1

t = i, S2
t = j|IT ), i, j ∈ {1, 2}, which is useful for the

purpose of analysis of joint crises in real and financial sectors.

2.4 Granger causality

As we said above, in this framework the two cycles RFt and FFt interact on the level of chains. Im-
portantly, the estimated matrices of coefficients R1, and R2 can give us an idea about the causality
relation between the two chains S1

t and S2
t .

Consider a process S̃t = (S1
t , S

2
t , rt) which is a Markov process with 8 states. We can decompose

10



the transition probabilities as follows:

P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |S2
t , rt, S

1
t−1, S

2
t−1, rt−1) (22)

× P (S2
t |rt, S1

t−1, S
2
t−1, rt−1)P (rt|S1

t−1, S
2
t−1, rt−1).

Using the assumptions (2) and (3) and equation (6), this expression can be simplified:

P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |S1
t−1, S

2
t−1, rt)P (S2

t |S1
t−1, S

2
t−1, rt)P (rt|rt−1). (23)

Now, like Billio and Sanzo (2015), we can define Granger non-causality between S1
t and S2

t in
strong sense, since it is specified by imposing restrictions on the parameters characterizing conditional
distributions:

1. S2
t−1 does not strongly cause S1

t one-step ahead given S1
t−1 and rt if

P (S1
t |S1

t−1, S
2
t−1, rt) = P (S1

t |S1
t−1, rt) ∀t. (24)

2. S1
t−1 does not strongly cause S2

t one-step ahead given S2
t−1 and rt if

P (S2
t |S2

t−1, S
1
t−1, rt) = P (S2

t |S2
t−1, rt) ∀t. (25)

We can also define the independence of two chains as follows:

3. S1
t and S2

t are independent given rt if

P (S1
t , S

2
t , rt|S1

t−1, S
2
t−1, rt−1) = P (S1

t |rt, S1
t−1)P (S2

t |rt, S2
t−1)P (rt|rt−1). (26)

Following the approach of Billio and Sanzo (2015), for a given parametrization (20), the conditions
of the strong one-step ahead non-causality and independence can be derived as restrictions on the
parameter space.

The restriction H1 6⇒2 of the strong non-causality from S1
t to S2

t given rt implies that the parameter
related to S1

t−1 is equal to zero. So, since

P (S2
t = k|S1

t−1 = i, S2
t−1 = j, rt) = Rrt

22 ×D2
jk +Rrt

12 × C12
ik , (27)

the strong non-causality is implied by

H1 6⇒2 : Rrt
12 = 0 (28)

Under H1 6⇒2 S
1
t−1 does not cause one-step ahead S2

t given S2
t−1 and rt. Since the terms related to

S1
t−1 are excluded from (27), therefore P (S2

t |S2
t−1, S

1
t−1, rt) = P (S2

t |S2
t−1, rt).

11



On the other hand, the strong one-step ahead non-causality from S2
t to S1

t given S1
t−1 and rt, given

the parametrization

P (S1
t = k|S1

t−1 = i, S2
t−1 = j, rt) = Rrt

11 ×D1
ik +Rrt

21 × C21
jk , (29)

is implied by

H2 6⇒1 : Rrt
21 = 0 (30)

The term related to S2
t−1 is excluded from (29), so P (S1

t |S1
t−1, S

2
t−1, rt) = P (S1

t |S1
t−1, rt).

Finally, the restriction of the independence of S1
t and S2

t given rt is implied by both restrictions
(28) and (30) simultaneously:

H2⊥1 : Rrt
21 = Rrt

12 = 0 (31)

Therefore, the value and significance of the off-diagonal coefficients of the matrices R1 and R2 allow
to make inference on the causality between the two chains within each regime j. Moreover, since the
elements in R1 and R2 are not necessarily 0 and 1, we can quantify the relative importance of each of
the affecting chains.

Note that the values of the elements Cij , i, j ∈ {1, 2}, i 6= j give the idea of the global character
of Granger causality between the two cycles, defining the channels of interaction irrespective of the
current interaction regime. At the same time, the conditions on Rrt

ij refer to local changes in Granger
causality, and can modify the intensity of the channel if it exists (the relevant element of Cij is non-
zero).

For the parametrization of the interaction described above, it is also possible to test for global non-
causality, i.e. irrespective of the current interaction regime. However, in contrast to the local Granger
non-causality, the null for the global non-causality can not be formulated in terms of restrictions on the
elements of matrices Rrt , for example, H0 : R1

12 = R2
12 = 0 in case of testing for global non-causality

of business cycle with respect to the financial cycle. Indeed, in this case, the parameters of the matrix
C12 are not identified, and tests based on this null are not standard.9 Instead, one can reformulate
the null in terms of restrictions on the elements of C12 and C21, thus avoiding the non-identification
problem. Thus, S1

t does not strongly cause one-step ahead S2
t globally given S2

t−1 and rt if:

H1 6⇒g2 : C12
11 = C12

21 , (32)

i.e. the impact of the recession is the same as the one of expansion, so the state of the business cycle
is irrelevant for the future state of the financial cycle. Note that the null also implies C12

22 = C12
12 since

9A possible solution for this task would be to simulate the distribution of the test statistics under the null. Hansen
(1996) also suggests a transformation of the test statistics based on a conditional probability measure which yields an
asymptotic distribution free of the unidentifiable parameters.
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C12
11 = 1− C12

12 , so under the null the matrix C12 has the form
[
C12

11 1− C12
11

C12
11 1− C12

11

]
.

The null hypotheses for the strong global one-step ahead non-causality of S2
t with respect to S1

t

given S1
t−1 and rt and strong global one-step ahead independence can be formulated in a similar way.

2.5 Extension: policy analysis

It is natural to assume that government policies may affect the cycles themselves as well as their in-
teraction. One of possible ways to take this impact into account is through imposing dependence of
the parameters describing state transitions on the policy variable vector zt. Possible candidates for
zt series are the Federal Funds rate, the term premium as well as the series of tax shocks (see, for
example, Mertens and Ravn (2013) and Romer and Romer (2010)).

Depending on assumptions on the impact of a particular policy measure, the dependence on policy
variables can be introduced in different ways. While the rest of the framework stays unmodified, the
changes may concern the matrices Q (impact on the duration of each of the interacting regimes),
D1 (impact on the business cycle), D2 (impact on the financial cycle), C12 and C21 (impact on the
mechanisms of transmission of states between the cycles). In the first case, for example, the transition
probability matrix Q for the interaction regime variable rt becomes dynamic, i.e. Qt:

Qt =
[

q11(zt−1) 1− q11(zt−1)
1− q22(zt−1) q22(zt−1)

]
. (33)

Different functional forms of the transition probabilities mapping zt into the unit interval can be
considered (for example, the logistic function, probit function, Cauchy integral and other). The logistic
function is a common case, therefore:

qii(zt−1) =
exp(δi0 +

∑J
j=1 δijzt−j)

1 + exp(δi0 +
∑J
j=1 δijzt−j)

, (34)

where δi0, ..., δiJ , i ∈ {1, 2} are parameters to estimate. The matrices D1, D2, C12 and C21 can be
modified in a similar way.

3 Estimation and Forecasting

3.1 Maximum Likelihood Estimation

On the basis of observable data, we need to infer the distributions of the underlying latent variables and
system parameters for the DI-MS-FM. If the interaction regime were constant, a standard approach
to estimate (1)-(5) would be to construct an auxiliary state variable (S1

t , S
2
t ) with 22 states:

P (S1
t = k, S2

t = l|S1
t−1 = i, S2

t−1 = j) = (R11 ×D1
ik +R21 × C21

jk )(R22 ×D2
jl +R12 × C12

il ), (35)

where i, j, k, l ∈ {1, 2}. However, when different interaction regimes come into play, the coefficients
of matrices R1 and R2 are dependent on rt, and the transition probability matrix of (S1

t , S
2
t ) becomes

13



Markov-switching itself:

P (S1
t = k, S2

t = l|S1
t−1 = i, S2

t−1 = j, rt) = (Rrt
11 ×D1

ik +Rrt
21 × C21

jk )(Rrt
22 ×D2

jl +Rrt
12 × C12

il ), (36)

so the standard estimation procedures can not be applied. This problem is easily overcome by using
the joint state variable S̃t = (S1

t , S
2
t , rt) with 23 = 8 states instead of (S1

t , S
2
t ). In this case, the

transition probability matrix Π is constant and is computed as follows:

Π = P (S̃t|S̃t−1) = P (S1
t |S1

t−1, S
2
t−1, rt = j)× P (S2

t |S1
t−1, S

2
t−1, rt = j)× P (rt = j|rt−1 = k) (37)

= P (S1
t |S1

t−1, S
2
t−1, rt = j)× P (S2

t |S1
t−1, S

2
t−1, rt = j)×Qkj ,

j, k ∈ {1, 2}. Note that, as we have mentioned above, due to the hierarchical structure that we im-
pose on the chains (S1

t , S
2
t , rt), the matrix Π has a more parsimonious representation than a transi-

tion matrix of a Markov chain with 8 states would usually have. Indeed, matrix Π contains only
14 parameters instead of 56, which certainly facilitates the numerical optimization of the likeli-
hood. For notational use, we arrange the eight states of S̃t in the following order: (S1

t , S
2
t , rt) =

{(0, 0, 0) (1, 0, 0) (0, 1, 0) (1, 1, 0) (0, 0, 1) (1, 0, 1) (0, 1, 1) (1, 1, 1)}.

The classical Hamilton (1989) filter can then be applied. At each step, it updates the filtered
probability P (S̃t−1 = j|It−1) to the next period P (S̃t = j|It), giving the likelihood f(yt|It−1) as a
by-product. Once the starting filtered probability P (S̃0 = j|I0) is initiated (we suppose that the
probability of starting in any of eight states of S̃0 is equal, P (S̃0 = j|I0) = 1/8, ∀j = 1, ..., 8), the
filtered probability for steps t = 1, ..., T are calculated by iterating the following:

P (S̃t = j, S̃t−1 = i|It−1, γ) = P (S̃t = j|S̃t−1 = i, γ)P (S̃t−1 = i|It−1, γ), (38)

f(yt, S̃t = j, S̃t−1 = i|It−1, γ) = f(yt|S̃t = j, S̃t−1 = i, It−1, γ)P (S̃t = j, S̃t−1 = i|It−1, γ) (39)

f(yt|It−1, γ) =
8∑
j=1

8∑
i=1

f(yt, S̃t = j, S̃t−1 = i|It−1, γ). (40)

P (S̃t = j, S̃ = i|It, γ) = f(yt, S̃t = j, S̃t−1 = i|It−1, γ)
f(yt|It−1, γ) (41)

= f(yt|S̃t = j, S̃t−1 = i, It−1, γ)× P (S̃t = j, S̃t−1 = i|It−1, γ)
f(yt|It−1, γ) ,

f(yt|S̃t = j, S̃t−1 = i, It−1, γ) = (2π)−1(σ2
S1

t
θ2
S2

t
)−1/2exp{−1

2
(R̃F t)2

σ2
S1

t

− 1
2

(F̃F t)2

θ2
S2

t

}, (42)
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P (S̃t = j|It) =
2∑
i=1

P (S̃t = j, S̃t = i|It, γ), (43)

where

yt = (RFt, FFt),

γ = (D1, D2, C12, C21, R1, R2, µ1, µ2, β1, β2, σ
2
1 , σ

2
2 , θ

2
1, θ

2
2, ϕ1...ϕp1 , ψ1...ψp2),

µS1
t

= µ2(S1
t − 1)− µ1(S1

t − 2),

σ2
S1

t
= σ2

2(S1
t − 1)− σ2

1(S1
t − 2),

βS2
t

= β2(S2
t − 1)− β1(S2

t − 2),

θS2
t

= θ2(S2
t − 1)− θ1(S2

t − 2),

R̃F t = RFt − µS1
t
− ϕ(L)RFt,

F̃F t = FFt − βS2
t
− ψ(L)FFt.

As a by-product of the Hamilton filter above, we obtain the log-likelihood function for the whole
sample for any given value of γ:

L (y, γ) = ln(f(yT , yT−1, ..., y0|IT , γ) =
T∑
t=1

ln(f(yt|It−1, γ)), (44)

where f(yt|It−1, γ) can be computed using formulas (38) to (43).

Once the filtered probability P (S̃t = j|It) is obtained for all t = 1, ..., T , it is possible to compute
the smoothed probability P (S̃t = j|IT ) (we refer the reader to Hamilton (1989) for details). The
filtered and smoothed probabilities for each chain can be obtained by integrating out the other chains
in S̃t, i.e.:

P (Sit = k|It) = Σ2
k=1Σ2

j=1P (Sit = i, S3−i
t = k, rt = j|It), (45)

P (Sit = k|IT ) = Σ2
k=1Σ2

j=1P (Sit = i, S3−i
t = k, rt = j|IT ), (46)

P (rt = j|It) = Σ2
i=1Σ2

k=1P (Sit = i, S3−i
t = k, rt = j|It), (47)

P (rt = j|IT ) = Σ2
i=1Σ2

k=1P (Sit = i, S3−i
t = k, rt = j|IT ), (48)

where i ∈ {1, 2}. Since the maximum likelihood is obtained with numerical algorithms, this estimation
method can be applied only when the number of parameters is not too big. When more interacting
chains with more states are involved, or when more interaction regimes are allowed for, the optimiza-
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tion algorithms may have difficulties to converge. In this case, the Forward-Backward algorithm and
variational EM suggested by Pan et al. (2012) can be used. Pan et al. (2012) have successfully applied
this approach to model the interaction between 50 states with 6 latent states each and 3 regimes of
influence in order to evaluate flu epidemics.

The extended version of the model (see Section 2.5) can also be estimated with Maximum Likeli-
hood after corresponding modifications in the transition probability matrix of S̃t. Once any (or all)
of the matrices Q, D1, D2, C12 and C21 becomes time-dependent, the matrix Π becomes dynamic as
well, i.e. Πt = P (S̃t|S̃t−1, zt−1). Note that, since zt is observable, the general form of the Hamilton
filter (38)-(43) does not change and it can still be applied for the calculation of the likelihood function.

3.2 Forecasting

The in-sample analysis tools, such as filtered and smoothed probabilities discussed above, give a poste-
riori insight into the dating of both financial and business cycles and the types and timing of different
interaction regimes. The out-of-sample analysis is a valuable complement, providing a probabilistic
draft of future periods.

H-step ahead forecast of ergodic probability of the future state. Since the chain S̃t is the
Markov chain of order one, it is straightforward that

P (S̃t+h|S̃t) = Πh. (49)

Then, the h-step ahead forecast for each individual chain can be computed by integrating the other
two chains entering S̃t out. For example, the h-step ahead forecast for S1

t+h is:

P (S1
t+h = k|S̃t) = Σ2

i=1Σ2
j=1P (S1

t+h = k, St+h = i, rt+h = j|S̃t) = Πhv, (50)

where i, j, k ∈ {1, 2}, the vector v selects the columns of Πh to be summed. For example, for P (S1
t+h =

1|S̃t) the vector v is v = (1 0 1 0 1 0 1 0)′.

H-step ahead forecast of the future state. It is also possible to compute an h-step ahead forecast
of the state variable S̃t

P (S̃t+h|It) = Σ8
i=1P (S̃t+h|S̃t = i)P (S̃t = i|It) = P (S̃t|It)′Πh, (51)

where P (S̃t|It) is the vector of filtered probabilities of being in state S̃t = i, i = {1, ..., 8}.
As in the previous case, the h-step ahead forecast for each chain separately can be calculated by
integrating the other chains out. For example, for S1

t+h we obtain:

P (S1
t+h = k|It) = Σ2

i=1Σ2
j=1P (S1

t+h = k, S2
t+h = i, rt+h = j|It) = P (S̃t|It)′Πhv, (52)

where, as before, the vector v selects the columns to sum over. For example, for P (S1
t+h = 2|S̃t) the

vector v is v = (0 1 0 1 0 1 0 1)′.
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H-step ahead forecast of factors. Given equations (1)-(5), the h-step ahead forecasts of the factors
are obtained recursively as for regular AR(p) forecasts. For example, if

RFt+h = µ(S1
t+h) + ϕ(L)RFt+h−1 + σ(S1

t+h)εt+h, (53)

then
R̂F t+h = E(RFt+h|It) = E(µ(S1

t+h)|It) + ϕ(L)E(RFt+h|It), (54)

where the E(µ(S1
t+h)|It) is a known function of P (S1

t+h|It) defined in (52), and ϕ(L)E(RFt+h|It) can
be calculated using the forecasts obtained in the previous iterations, i.e. for h − 1, h − 2, etc. The
h-step ahead forecast of the financial factor F̂F t+h|t can be obtained in a similar way.

It is important to notice, however, that the DI-MS-FM is designed for the identification of the
latent interaction regime and performs poorly in the forecasts of factors. For this reason in the
following sections we focus solely on the in-sample and out-of-sample performance for the forecasts of
states.

3.3 In-sample and out-of-sample performance

In this section we evaluate and compare the quality of in-sample and out-of-sample forecasts. We
also verify whether the dynamical influence feature, which is obviously a complication to a regular
two-factor Markov-switching Dynamic Factor model, actually helps to obtain better forecasts, both
in-sample and out-of-sample.

In order to evaluate the performance of the model in terms of identification of the current state of
each of the chains, it is difficult to use empirical data since we have no reference dating for the financial
cycle and the interaction regimes. For this reason, we run a Monte Carlo experiment on the simulated
data. We use the data generating process described in equations (1)-(5) with the parameters set to
their estimated values that we obtained using data described in the following section (see Table 4.1).10

For simplicity we assume that there is no external intervention into the system, so zt is omitted. The
generated sample has T = 500 observations and is simulated 1000 times.

For the analysis of the accuracy of identification of states, we use the following indicators (we use
a generic notation Xt for any of the chains S1

t , S2
t or rt and X∗t for the corresponding sequence of

true states; T is the total number of observations, T1 is the out-of-sample period, indices is and oos
correspond to in-sample and out-of-sample cases, respectively):

1. QPS, the quadratic probability score. This indicator is conceptually similar to the mean squared
error and is calculated in the following way:

QPSis(X) = ΣTt=1(P (Xt = 2|IT , γ̂)− (X∗t − 1))2

T
, (55)

10The simulations show that model is very sensitive to the difference between the interaction regimes. For this reason,
to generate our data, we use the estimates with a large difference between R̂1 and R̂2. However, according to our
observations, in case the regimes are close, this does not deteriorate the accuracy of the identification of the states of
the financial and business cycles.
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QPSoos(X) =
ΣT1−1
t=0 (P (XT+t+1 = 2|IT+t, γ̂)− (X∗T+t+1 − 1))2

T1
, (56)

where P (Xt = 2|IT , γ̂) is the smoothed probability of state 2 given in equation (46), P (XT+t+1 =
2|IT+t, γ̂) is the one-step-ahead forecast of probability of state 2 given in equation (52).

2. FPS, the false positive score. This indicator gives the proportion of misidentified states and is
calculated as

FPSis(X) =
ΣTt=1(IP (XT +t+1=2|IT +t,γ̂)>α − (X∗t − 1))2

T
, (57)

FPSoos(X) =
ΣT1−1
t=0 (IP (XT +t+1=2|IT +t,γ̂)>α − (X∗T+t+1 − 1))2

T1
, (58)

where IP̂>α is the indicator function taking value one when P̂ is higher than a threshold α, conven-
tionally set at 0.5.

3. AUROC, the area under the Receiver Operating Characteristic (ROC) curve. ROC curve gives
the information on the accuracy of identification of each state as the threshold varies. In other
words, it provides pairs of ratios - a fraction of correctly identified recession (financial downturn)
periods and a fraction of missed expansion (financial boom) periods - for each arbitrary chosen
level of α.11

A better identification performance would imply a higher ratio of correct guesses and a lower
percentage of mistakes for a given α. Then, the Area Under the ROC curve calculated as an
integral over α measures discrimination, i.e. the general ability of the model to distinguish the
states of a process (independently of α). AUROC takes the value in [0; 1], AUROC = 1 meaning
that the state identification performance is perfect.

4. J , Youden’s J statistic. J shows the identification performance at each given level of α and is
calculated as a sum of fractions of correct guesses for each of the states, i.e.:12

J = TP

TP + FN
+ TN

TN + FP
− 1.

J takes values in [−1; 1], with J = 1 meaning that the states are identified correctly in all periods,
so the state identification performance is perfect. J = 0 means that the discrimination ability of
the model is the same as of a regular coin, so the model is useless.

11According to its definition, ROC curve is a graphical plot which juxtaposes the false positive rate (FPR, on
horizontal axis) and the true positive rate (TPR, on vertical axis) as the threshold of the classifier (in this case, the
cut-off smoothed probability for a state to be identified as recession state) varies. TPR and FPR are defined as

T P R = T P
T P +F N

, F P R = F P
T N+F P

,

where where T P is the number of true positives (correctly identified recessions or financial downturns), F N is the number
of false negatives (incorrectly identified expansions or financial booms), T N is the number of true negatives (correctly
identified expansions or financial booms) and F P is the number of false positives (incorrectly identified recessions or
financial downturns).

12See the previous footnote.
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For comparability, we set the threshold level α equal to 0.5 for all chains.

QPS can be considered as a mean squared error computed for the forecasts (nowcasts) of states, and
is informative only in comparison of several models. The other three measures can be used indepen-
dently, as the absolute values of FPS, AUROC and J-statistic are informative b themselves.

3.3.1 In-sample performance

We present below the indicators of the in-sample performance of the DI-MS-FM. These results are
opposed to the ones estimated with the help of a one-regime Markov-Switching VAR (see Billio and
Sanzo (2015) for more details) with factors used as observable variables, i.e. discarding rt from the
framework, so that the interaction between S1

t and S2
t is described by an unrestricted transition prob-

ability matrix with four states (see Table 3.1). In this way, we intend to measure the potential losses
of quality due to time-invariance of the interaction between the cycles.

We observe that the DI-MS-FM performs very well in the identification of the individual cycles -
the error rate measured with QPSis and FPSis is low, whereas the classification quality measured
with AUROCis and Jis is high. The interaction regime is more difficult to identify (both QPSis and
FPSis are higher, whereas AUROCis and Jis are lower), however values of QPSis and FPSis do not
exceed the ones usually obtained in the empirical papers for the business cycle.

When comparing the performance of DI-MS-FM to one-regime MS-VAR-DFM (see Table 3.1), one
may notice that, all four measures of quality pointing in the same direction, neglecting the dynamics
of the interaction deteriorates the accuracy of the identification of states of the individual cycles.
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Table 3.1: In-sample performance: smoothed probabilities of the second state

DI-MS-FM

QPSis FPSis AUROCis Jis

S1- business cycle 0.0182 0.0238 0.9754 0.9222
S2- financial cycle 0.0444 0.0567 0.9527 0.6819

r - interaction regimes 0.2034 0.2537 0.7343 0.3951

One interaction regime MS-DFM

QPSis FPSis AUROCis Jis

S1- business cycle 0.0765 0.0888 0.9340 0.8163
S2- financial cycle 0.2454 0.2618 0.8353 0.6259

r - interaction regimes - - - -

Note: The table describes the ability of the models to identify state two of each of the chains: “reces-
sion” for S1

t , “high volatility” for S2
t and “Interdependent chains” for rt.

3.3.2 Out-of-sample performance

One-step ahead forecasts of states. For the out-of-sample analysis on simulated data, the sam-
ple is split into in-sample period with T1 = 1, ..., T − 60 observations and out-of-sample period with
T2 = 60 observations, so that the number of observations in the in-sample period corresponds to the
one we used in the real sample (395 observations)). The out-of-sample forecasts P (S̃T1+t+1|IT1+t), for
t = 1, ..., T −T1−1 are then constructed using the equations (51). As in case of in-sample analysis, we
fit both DI-MS-FM and MS-VAR-DFM (’One interaction regime MS-DFM’) to the generated data.

The results of the simulation are given in Table 3.2.

As expected, the out-of-sample behavior is inferior compared to in-sample performance. However,
the quality is still satisfactory, the values of QPSoos and FPSoos for the business cycle corresponding
to the ones usually obtained in the empirical exercises (see, for example, Matas-Mir et al. (2008)).
Similarly to the in-sample performance, the introduction of switches in the interaction regime improves
the quality of the out-of-sample identification of the individual cycles.
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Table 3.2: Out-of-sample performance: one-step ahead forecast of the future state

DI-MS-FM

QPSoos FPSoos AUROCoos Joos

S1- business cycle 0.0615 0.0712 0.8952 0.6574
S2- financial cycle 0.1309 0.1279 0.6683 0.2435

r - interaction regimes 0.2857 0.3639 0.6195 0.1628

One interaction regime MS-DFM

QPSoos FPSoos AUROCoos Joos

S1- business cycle 0.1128 0.1583 0.8721 0.6576
S2- financial cycle 0.3412 0.4076 0.8004 0.4367

r - interaction regimes - - - -

4 Interaction between financial and business cycles in the US

In this empirical exercise we apply the DI-MS-FM to the US data in order to identify the existing
interaction regimes between the financial cycle and the business cycle and to determine when each
of them was activated. We leave the analysis of the impact of particular government policies on this
interaction for further research.

We set ϕp1 = ψp2 = 0, ∀p1, p2.13 We also impose several technical constraints in order to increase
the convergence to the correct local maximum. More specifically, we set diag(Q) > 0.5e (where e is a
vector of ones) to avoid the situations when the influence regimes are not persistent. The initial values
of β0, β1 and σ2

0 , σ2
1 are set to the mean and the variance for the business cycle observations above and

below 0 (the initial values of µ0, µ1 and θ2
0, θ2

1 are set similarly for the financial factor). The initial
values of the matrices R1 and R2 are set to their potential values, for example, diag(R1) = [0.9, 0.9]′,
diag(R2) = [0.9, 0]′.14

13The number of lags has been chosen according to the information criteria. Inclusion of lags of the dependent variables
in equations (1) and (2) does not change the estimates significantly.

14Setting the initial values of these parameters to random leads to instability in the results. To solve this problem, we
try different plausible values: 1) diag(R1) = [0, 0]′, diag(R2) = [0.9, 0.9]′, 2) diag(R1) = [0, 0.9]′, diag(R2) = [0.9, 0.9]′,
3) diag(R1) = [0.9, 0]′, diag(R2) = [0.9, 0.9]′, 4) diag(R1) = [0.9, 0.9]′, diag(R2) = [0.9, 0.9]′, 5) diag(R1) = [0, 0]′,
diag(R2) = [0, 0]′, 6) diag(R1) = [0.5, 0]′, diag(R2) = [0.5, 0.5]′, 7) diag(R1) = [0, 0.5]′, diag(R2) = [0.5, 0.5]′. The
output obtained with different these sets of initial values are equivalent qualitatively and very similar quantitatively.
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4.1 Data description

We perform our analysis for the business and the financial cycle of the United States. To construct the
business cycle indicator we use the Stock-Watson database of indicators from CITIBASE and available
in the databank of the Federal Reserve Bank of Saint Louis.15 The first principal component explains
just 18% of the total variance, however it is highly correlated with the GDP growth, contrary to the
other components. In practice, the first component is usually enough to describe the business cycle, the
other inclusion of the other components giving only marginal improvement (see Doz and Petronevich
(2015), for example). The full list of variables and the corresponding factor loadings can be found in
Table A.2 and Figure A.1 in the Appendix.

We approximate the financial cycle with the first principal component extracted from the database
containing 31 indicators of different segments of the financial sector most used in the empirical papers
on financial cycles. In particular, we extended the list of indicators used by Guidolin et al. (2013) with
the information on deposits, monetary aggregates, loans, reserve balances and other. The complete
list is given in Table A.1 in the Appendix, while the factor loadings can be found in Figure A.2.16

All data are seasonally adjusted, stationarized (by taking first differences of logarithms) and stan-
dardized. The time-span covers the period 1976m06-2014m12. The dynamics of the factors and the
correlation between them is presented in Appendix B.

4.2 Characteristics of cycles and identified interaction regimes

The estimation results are given in Table 4.1. According to the estimates, switches in the regime of the
business cycle happen mostly in mean, whereas the variance stays relatively stable. On the contrary,
the financial factor switches primarily in variance. We also find that expansions in both cycles, as well
as recessions of the business cycle, are very persistent (D̂1

11, D̂2
11, D̂1

22, are close to one). Recessions
in the financial cycle are less persistent (D̂2

22 is below 0.9). These estimates match the findings in the
previous literature.

Now consider the parameters characterizing the influence. The business cycle is capable of trans-
mitting both expansion and recession to the financial cycle (the coefficients Ĉ12

11 and Ĉ12
22 are above 0.9).

The transmitting ability is reciprocal, although the financial cycle less likely to transmit expansion to
the business cycle (Ĉ21

11 is only 0.74). A similar asymmetry of influence between the business cycle and
the financial cycle (measured as industrial production growth rate and excess returns, correspondingly)
was also detected by Billio and Sanzo (2015).

15see Stock and Watson (2005)
16Other datasets were also tested, see section 4.4.
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Table 4.1: Estimation results

Business cycle Financial cycle
γ̂ σ̂γ̂ γ̂ σ̂γ̂

µ̂1 0.5718 (0.0374) β̂1 0.1584 (0.0343)
µ̂2 -0.8512 (0.0712) β̂2 -0.8587 (0.2806)
σ̂2

1 0.3103 (0.0276) θ̂2
1 0.2742 (0.0311)

σ̂2
2 0.8107 (0.0851) θ̂2

2 4.0480 (0.9117)
D̂1

11 0.9897 (0.0156) D̂2
11 0.9888 (0.0192)

D̂1
22 0.9809 (0.0121) D̂2

22 0.8799 (0.2985)
Ĉ12

11 0.9059 (0.1311) Ĉ21
11 0.7481 (0.0121)

Ĉ12
22 0.9899 (0.7864) Ĉ21

22 0.9889 (0.0029)

Influence regimes
“Independent chains” “Interdependent chains”

R̂1
11 0.9815 R̂2

11 0.8562
R̂1

22 0.9426 R̂2
22 0.1853

q̂11 0.9900 q̂22 0.9677

Note: The estimated specification is RFt = µs1
t

+ εt, εt ∼ N(0, σ2
S1

t

), FFt = βs2
t

+ ξt, ξt ∼ N(0, θ2
S2

t

).

The detected abilities of state transmission are clearly necessary for understanding of the relation
between the chains. In our framework these should be considered together with the parameters re-
sponsible for the influence regimes. The model identified two distinct and very persistent influence
regimes (q̂11 and q̂22 are above 0.96). The values R̂1

11, R̂
1
22, R̂2

11, R̂2
22 suggest that the first and the sec-

ond regimes can be interpreted as “Independent cycles” and “Interdependent cycles”, correspondingly.
According to information criteria, the two regimes are not redundant: in case of a single influence
regime the values of the information criteria are AIC = 2047.6, BIC = 2135.3, HQ = 2080.2, which
is above AIC = 2285.8, BIC = 2368.5, HQ = 2318.3 for the DI-MS-FM.

We perform a Likelihood-ratio test in order to find out the direction of causality in each of the
regimes. More precisely, we test if the high values of R̂1

11, R̂
1
22 can be interpreted as the absence of

causality in the first regime, and if the high value of R̂2
11 and the low value of R̂2

22 actually implies
that in the second regime the business cycle leads the financial cycle. We test a joint hypothesis H0

versus the alternative H1, where

H0 :



R̂1
11 = 1

R̂1
22 = 1

R̂2
11 = 1

R̂2
22 = 0

, H1 :



R̂1
11 6= 1

R̂1
22 6= 1

R̂2
11 6= 1

R̂2
22 6= 0

. (59)
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The value of the test statistics is LR = 81.91 and largely overcomes the critical value at 5% of
confidence probability (χ2

0.95,4 = 9.49), so H0 is not rejected.

4.3 Identifying the periods of recession, financial downturn and high inter-
dependence between the cycles

The estimated smoothed probabilities of recession P (S1
t = 2|IT ), financial downturn P (S2

t = 2|IT ) and
second influence regime P (rt = 2|IT ) are presented in Figures 4-6. Shaded areas correspond to NBER
business cycle recessions and are given to verify the validity of the obtained estimates. On Figure
4 one can see that the model captures all business cycle recessions well. The smoothed probability
of recession spikes exactly with the beginning of the NBER recession, without either false signals or
missed recessions. Whereas the double-dip crisis of 1980 and 1981-1982 is identified very accurately,
the duration of the other three recessions observed in the time-span - the early 1990s recession, the
dot-com bubble and the Great Recession - appears to be overestimated by the model. This imprecision
might be due to the fact that the US business cycle is reported to have at least three states (recession,
expansion and slow growth), one of which we have omitted in this simple specification of the model.17

The adequacy of the estimated smoothed probabilities of financial downturns is difficult to evaluate
since there is no benchmark dating of financial cycles. To provide at least some reference, we use the
dates of the beginning of banking crises as identified by Laeven and Valencia (2013)) and Reinhart
(2009) to pinpoint the gravest events in the US banking sector (September 1988 and July 2007) which
certainly correspond to financial crises, even though it is possible that they do not cover all financial
crises but only those in the banking sector. Comparing the graphs of the smoothed probability with
these reference dates on Figure 5, we can see that the model captures the banking crisis of 2008 with
much precision, but foreruns the crisis of 1988 by about 10 months. In general, smoothed probability
of financial downturn detects all the major events in the last 40 years: the savings and loans crisis and
bank crisis during the double-dip recession of 1980 and 1981-1982, Black Monday of 1987, early 1990s
recession, the Russian crisis of 1998, bursting of dot-com bubble in 2001, the global financial crisis of
2008.

The ongoing influence regime at each point of time is clearly visible from Figure 6. The “Inter-
dependent cycles” regime was active during the double-dip recession and the Great Recession. Both
cases (and not during the other two observed recessions during the period under consideration) were
marked with increased panic on the stock exchange, which can probably be an explanation of the
higher interaction between the financial and the business cycles during these periods. This idea is
consistent with the theory of sunspot equilibria: the exogeneous random Markov-Switching process rt
can be viewed as an extrinsic variable, influencing the economy through expectations but not affecting
the fundamentals. In other words, if the agents’ beliefs are such that the current shock (either finan-
cial or economic) is likely to be devastating, they act accordingly on the stock exchange, launching
a self-reinforcing mechanism of transition of the shock from the financial sector to the real and back
- the economy enters the “Interdependent cycles regime”. Otherwise, if the agents are sure that the

17Indeed, the GDP growth rate was recovering much slower during the last three recessions comparing to the preceding
ones.
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shock is temporary (as the Black Monday of 1987, for example), the interaction is just not activated
(“Independent cycles” influence regime is on), and the shock does not propagate.

The estimates of the periods of high interaction seem reasonable. However, one may argue that the
direction of causality between the two cycles (identified as business cycle leading the financial cycle)
might not be the same in 1980-1982 and 2008. This misidentification of causality in the second case
might arise from the fact that in this empirical exercise we allow for just two influence regimes. Given
the relatively long period of low correlation between the two cycles in the middle of the sample, the
model identified the regime of independent cycles and attributed any sort of other relation to the other
regime. Therefore, once more influence regimes are allowed for, the model might be able to distinguish
different types of interdependence. A certain evidence for this hypothesis is shown in the robustness
check exercise below, where the causality direction in the second regime is shown to be different in
different subsamples.

Figure 4: Smoothed probability of recession in the business cycle

Note: Grey shaded areas correspond to NBER recessions, dotted vertical lines mark the beginning of systemic banking crises
as identified by Laeven and Valencia (2013)) and Reinhart (2009).
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Figure 5: Smoothed probability of financial downturn

Note: Grey shaded areas correspond to NBER recessions, while dotted vertical lines mark the beginning of systemic banking
crises as identified by Laeven and Valencia (2013)) and Reinhart (2009).

Figure 6: Smoothed probability of the “Interdependent cycles” regime

Note: Grey shaded areas correspond to NBER recessions, dotted vertical lines mark the beginning of systemic banking crises
as identified by Laeven and Valencia (2013)) and Reinhart (2009).
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4.4 Robustness check

The dynamics of interaction suggested by the estimates of DI-MS-DFM, generally coherent with ob-
servations on the comovement of financial and business cycles in the US in the beginning and in the
end of the sample, contributes to the discussion on the degree of interaction between 1982 and 2008.
Currently, there is no consensus on it in the literature. For example, Gilchrist et al. (2009) find that
"credit market shocks have contributed significantly to U.S. economic fluctuations during the 1990-
2008 period". Gertler and Lown (1999) and Mody and Taylor (2004) suggest that yield spreads based
on indexes of high yield corporate bonds perform well in forecasting of output during 1980s-1990s.
Meeks (2012) find that "adverse credit shocks have contributed to declining output in every post-1982
recession". On the other hand, Stock and Watson (2003), find mixed evidence for the high-yield spread
as a leading indicator of the business cycle. Rachdi and Ben Mbark (2013) find that the link between
the cycles is bi-directional. Our own findings are in line with those of Rousseau and Watchel (2011),
Valickova et al. (2015) who show that the link between financial sector and output growth has weak-
ened worldwide and especially in the developed countries.

Given the ambiguity of findings on the interaction between the cycles, we check the robustness of
our results by performing two auxiliary exercises: use of other indicators for the financial and business
cycles and estimation of the model on subsamples. In this section we briefly present the main results
of these exercises. More details can be found in Appendix C.1 and Appendix C.2.

We verify the validity of use of business and financial cycle indicators RFt and FFt by replacing
them by two other proxies commonly used in the literature. According to Leamer (2015), the number
of housing starts (New Privately Owned Housing Units Started) is a "critical part of the U.S. business
cycle" and is therefore a good proxy for the business cycle18 used by Conrad and Loch (2015), Ferrara
and Vigna (2010), Luciani (2015) and others. In the same time, Claessens et al. (2012), Runstler and
Vlekke (2015) and Drehmann et al. (2012) suggest that house prices, on a par with credit and equity
markets, characterize the financial cycle.

To evaluate the impact of each of the indicators, for our robustness check we consider three alter-
native datasets: (RC1) RFt and house price index;19 (RC2) number of house starts20 and FFt; (RC3)
number of house starts and house price index. The three cases are compared to the results obtained
with the baseline scenario (BL).

Table C.1 and Figure C.1 show that the estimates obtained with four datasets are very similar.
Importantly, the recessions and financial downturns identified with alternative proxies match the ones
previously obtained very closely, with two exceptions. The number of house starts completely misses

18Certainly, other series could have been used to approximate the business cycle, either univariate (such as index of
industrial production, for example) or composite indexes (such as Conference Board business cycle indicators), as well
as the enhanced versions of the factors (with time-varying weights, for instance). We prefer to perform the robustness
check on a single (but not composite) indicator in order to eliminate a possible additional impact of the method used
for the construction of the aggregate indicator. The choice has been made in favor of housing starts since the industrial
production index appeared to be not informative enough to capture all the business cycle recessions.

19We use NAREIT Composite Index as a measure of house price.
20Although the Conference Board considers this indicator as leading with respect to the cycle, the correlation with

the RFt and index of industrial production is the highest when the series are considered simultaneously, i.e. with zero
lag. This observation has been also considered by Kydland et al. (2016).
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out the dot-com bubble crisis; so does the house price index, as it ignores the stress evoked on the
equity market. These observations allow us to conclude that RFt and FFt approximate the business
and financial cycles at least as good as single series indicators, and, moreover, provide a more compre-
hensive view on each of the sectors.

Even more importantly, in all cases the two identified regimes of interaction correspond to inde-
pendence and interdependence, as in the baseline case. While RC1 and RC3 confirm the independence
between 1982 and 2008 crises, thus bringing another evidence on the weakening of the finance-growth
nexus after 1980s. Also, the use of house price for financial cycle tends to exacerbate the degree of
dependence of the financial cycle on the business cycle. The result of case RC2 is more ambiguous:
the dependence is weaker and present between 1982 and 2008 as well, indicating that the results on
this period should be considered with caution.

Table C.2 and Figure C.3 demonstrate the results obtained on the right and left subsamples, i.e.
omitting the first and the last 100 observations (the double dip recession and the Great recession).
The results indicate the interaction regimes is robustly identified as "Independent cycles" and "Interde-
pendent cycles". However, the type of interdependence in terms of causality appears to be dependent
on the subsample: while in the beginning the financial cycle seems to lead the business cycle, which
is in line with the literature, later the causality inverses the direction. This finding suggests that the
hypothesis of just two regimes of interaction is somewhat restrictive. Figure C.3 demonstrates that
the level of systemic risk during the period of Great recession is comparable only to the double-dip
recession, as the other two critical periods - the early 1990s recessions and the dot-com bubble - are
classified as periods of "Independent cycle" regimes when sample spans the Great recession.

4.5 Transition probabilities and smoothed probabilities of future states

Table (4.2) contains the estimated one-step ahead transition probabilites for the business cycle and
the financial cycle (P (Sit |Sit−1, S

k
t−1, rt−1), i, k ∈ {1, 2}, i 6= k) calculated using equation (49). These

estimates are important since they provide a description of the individual characteristics of each of
the cycles. So save space, we report only the probability to switch to expansion (financial boom) P (Sit =
1|Sit−1, S

k
t−1, rt−1), the probability of recession (financial downturn) being (P (Sit = 2|Sit−1, S

k
t−1, rt−1) =

1 − P (Sit = 1|Sit−1, S
k
t−1, rt−1). Table (4.2) contains the forecasts for all possible combinations of the

past values of the chains S1
t−1, S

2
t−1, rt−1 known at t− 1.
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Table 4.2: Estimated one-step ahead probability of expansion and financial boom (P (Sit =
1|Sit−1, S

k
t−1, rt−1))

Probability of expansion in the business cycle
P (S1

t = 1|S1
t−1, S2

t−1, rt−1)
“Independent chains” “Interdependent chains”

S1
t−1 = 1, S2

t−1 = 1 0.99 0.95
S1

t−1 = 1, S2
t−1 = 2 0.97 0.85

S1
t−1 = 2, S2

t−1 = 1 0.02 0.11
S1

t−1 = 2, S2
t−1 = 2 0.01 0.01

Probability of financial boom
P (S2

t = 1|S1
t−1, S2

t−1, rt−1)
“Independent chains” “Interdependent chains”

S2
t−1 = 1, S1

t−1 = 1 0.98 0.92
S2

t−1 = 1, S1
t−1 = 2 0.93 0.21

S2
t−1 = 2, S1

t−1 = 1 0.75 0.87
S2

t−1 = 2, S1
t−1 = 2 0.69 0.16

For the business cycle, the probability to switch to expansion depends on the previous state of
the business cycle to a large extent. Both expansion and recession states are very persistent (the
probability to stay in expansion for any past conditions is above 0.85; similarly, the probability to stay
in recession is above 0.89). However, when the "interdependent cycles regime" is active, the impact
of the financial cycle is not negligible: financial downturn decreases the probability that the business
cycle switches from recession to expansion (from 0.11 to 0.01) confirming the findings of Claessens
et al. (2012) who found that downturns in financial sector tend to make recessions longer. In the same
manner, financial downturn reduces chances to stay in expansion in the business cycle (the probability
decreases from 0.95 to 0.85).

The probability of financial boom depends both on its past and on the past influence regime. In
the "Independent cycles" regime the boom state is very persistent contrary to the downturn state (with
the probability to stay in the state above 0.93 and 0.25 (under any past conditions) correspondingly).
In the "Interdependent cycles" regime, the past state of the business cycle plays a decisive role. When
the business cycle is in expansion, the probability to stay in financial boom is high and is close to
the corresponding one in the "Independent cycles" regime. However, a recession in the business cycle
decreases this probability dramatically: from 0.92 to 0.21 (for the probability of staying in financial
boom), and from 0.87 down to 0.16 (for the probability to switch from financial downturn to boom).

The findings above indicate that the downturns in the financial cycles are temporary by their nature,
as the financial market in the developed economies is flexible enough to absorb the shocks relatively
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quickly. For this reason, on Figure 5 the episodes of financial instability are presented just as spikes in
the smoothed probability during the "Independent cycles" regime. To the contrary, when the financial
cycle enters into interaction with the business cycle, the downturn state becomes much more persistent.

What are the projections of the model for the future? Figure 7 gathers the 36 months ahead
forecasts of the smoothed probability of recession (blue line), financial downturn (red line) and "Inter-
dependent cycle" regime (yellow area). The model thus predicts that by 2018 the period of low growth
rates in the real sector will be over, financial sector will be stable and the "Independent cycles" regime
will dominate.

What sort of implication can this have for policy-makers? Even though at this moment theoretical
models do not have an unequivocal answer to the question on linkages between financial and busi-
ness cycles, the impact of certain instruments of monetary, macro- and microprudential policy, and
so do not provide an optimal policy rule, the knowledge of the current state of both cycles as well
as the level of their interaction can be helpful for policy adjustments. For example, when the cycles
are independent, the spillover effects documented by Zdzienicka et al. (2015), such as the impact of
monetary policy on the stability of the financial sector, can be quite limited, which may allow to run
more aggressive policies to stimulate either of the cycles. Similarly, the trade-off between financial
stability and economic prosperity in the environment of the low interest rates discussed by Coimbra
and Rey (2017) and Heider and Schepens (2017) can be less pronounced. On the contrary, when the
cycles are interdependent, the regulator should be prepared to implement large interventions since the
the recessions appear to be longer and more severe (Claessens et al. (2012)), and the financial sector
needs increased support to stabilize.

Given the aggravated character of recessions during the periods of high interaction between the cy-
cles, the set of monetary, fiscal and macroprudential measures should be directed towards the reduction
of the procyclicality of the financial sector. Cerutti et al. (2015) find that macroprudential policy is an
effective instument for this purpose and works better during the bust phase of the financial cycle and
are more efficient in emergent economies rather than advanced ones. Blanchard et al. (2010) suggest
that the monetary policy should take into account the assets price movements, too, however, by now is
it not clear how to operationalize this. Another solution for mitigating credit cycles and dramatically
reducing the level of government and public debt, proposed by Fischer (1936) and recently rediscovered
by Kumhof and Benes (2014), is the radical idea of separation of monetary and credit functions of the
banking system, also known as Chicago plan.

Whatever the relevant policy is, given the usual lag between the moment when a problem in an
economy is recognized and the moment when the undertaken policy starts giving the first effects,
timing is very important. In this concern, the probabilities of the influence regimes and states of
individual cycles are of a great use since they provide an operative measure of the current state of the
economy and future tendencies, and can be updated as soon as new information arrives. Moreover,
once the causality direction is identified for each of the influence regimes, the leading cycle can serve
as an early-warning indicator.
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Figure 7: 36 months ahead forecast of smoothed probability
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Note: Blue line and red line correspond to the smoothed probability of recession in the business cycle and the downturn state
in the financial cycle, respectively. Yellow area marks the smoothed probability of being in the "Interdependent cycle" regime.
Grey shaded areas correspond to NBER recessions.

5 Conclusion

Previous findings in the literature on business and financial cycles have shown that the cycles evolve,
and so does the interaction between them. In this paper we suggest a flexible econometric framework,
the Dynamical Influence Markov Switching Dynamic Factor model (DI-MS-FM), which allows to cap-
ture the changes in this interaction. Contrary to the existing models of the joint dynamics of business
and financial cycles, we allow the interaction to be intrinsically dynamical, which implies that there is
no need to search for an exogenous variable which could serve as as a proxy for the process governing
the interaction. Based on the mix of the Dynamical influence model from computer science and the
classical Markov-Switching model, the DI-MS-FM produces a wide range of statistical tools which can
be very useful to design a relevant policy mix for mitigating the effects of downturns in both cycles as
well as for reduction of the procyclicality of the financial cycle. More precisely, besides the individual
characteristics of the cycles, the model allows to characterize the existing influence regimes in terms of
leading-lagging relation between them as well as the degree of their interdependence, and to provide
a probabilistic indicator of being in a particular regime of interaction at each point of time. Forecasts
of the future states and future influence regimes can also be calculated.

We applied the model to the macroeconomic and financial series of the US for the period 1976m06
to 2014m12. The obtained estimates complement the findings in the previous literature. The model
clearly identifies two distinct influence regimes, “Independent cycles” and “Interdependent cycles”,
the second being active during the double-dip recession in July 1979-November 1981 and the Great
Recession in January 2007-January 2012. The periods of higher interaction are well detected, although
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the results may be even more telling if one allows for three influence regimes.

As any other model, the DI-MS-FM has several limitations. First, it requires the time span to be
long enough in order to make sure that all the regimes of all chains are observed at least once. This
implies that the more flexibility one introduces into the model (by increasing the number of chains,
individual states, influence regimes), the more data is needed, which can obviously be a problem es-
pecially for the analysis of developing countries. Secondly, the simulations show that the influence
regimes are well identified only when they are different enough, however, this does not deteriorate the
quality of the estimates the individual behavior of each cycle. Nevertheless, this issue can be solved
by a more accurate selection of initial values for the optimization process.

The model can be extended in several ways. The one mentioned in this paper concerns the intro-
duction of policy-dependence into the parameters responsible for state transitions in order to evaluate
the effect of government policy on the duration of recessions, financial downturns and regime of high
interaction between business and financial cycles. The other straightforward direction is the general-
ization of the model for a larger number of influence regimes and states of each of the cycles. Secondly,
it seems appealing to engage more chains into the dynamical interaction, for example, by letting the
credit and equity part of the financial market each follow their individual chain. Another interesting
application of this kind concerns the interaction of business and financial cycles of several countries
(for example, the core countries of the Euro area) which would allow to asses the contribution of each
country to the cross-country systemic risk, identify the clusters of interdependence, and construct
an indicator of systemic risk in the region. Third, we can let the cycles to interact not only on the
level of underlying latent finite-state processes, but also on the level of observations by allowing for
cross-correlation in the error terms of the DGPs of the cycles and/or by introducing a VAR structure
in equations (1) and (2), which might improve the forecasting ability of the model. In this case the
identification issues concerning the distinction between the observation-level and chain-level interac-
tion should be resolved, as well as the causality definition is to be reconsidered.

The Dynamic Influence Markov-Switching Dynamic Factor Model, to our knowledge, is the first
instrument for objective and reproducible empirical identification of the regimes of interaction between
the real and the financial sectors. Even in its basic form, it appears to produce meaningful inference
on individual features of cycles as well as the dynamics of their interaction. All this information can
be useful for policy-makers as it enables to adjust the fiscal, monetary and macroprudential policy
according to the current influence regime.
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A Composition of factors RFt and FFt

Table A.1: List of financial variables used for describing the financial cycle in the US

Series Source
Series from Guidolin et al. (2013) database

Monthly SP500 portfolio returns FREDII
3mtb, monthly rate FREDII
10-Year Treasury Constant Maturity Rate FREDII
2-Year Treasury Constant Maturity Rate FREDII
Moody’s Seasoned Baa Corporate Bond Yield (to change, see Shiller) FREDII
Composite NAREIT NAREIT
Equity REITs NAREIT
Mortgage REITs NAREIT
Excess return on a value-weighted market FREDII
S&P 500 dividend yield — (12 month dividend per share)/price. FREDII
Moody’s Seasoned Baa Corp. Bond Yield to Yield on 10-Year Treasury Const. Maturity FREDII
10-Year Treasury Constant Maturity Minus 3-Month Treasury Constant Maturity FREDII
10-Year Treasury Constant Maturity Minus 2-Year Treasury Constant Maturity Rate FREDII

Continued on next page
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Table A.1 – continued from previous page

Series Source
Unexpected inflation rate FREDII
Industrial production index FREDII
Real personal consumption expenditures FREDII

Other series
3-month Tbill rate of return minus CPI FREDII
SP500 PE ratio FREDII
Federal funds effective rate FREDII
Monetary Base; Total FREDII
Total Reserve Balances Maintained with Federal Reserve Banks FREDII
M1 Money Stock FREDII
M2 Money Stock FREDII
Federal Debt: Total Public Debt as Percent of Gross Domestic Product FREDII
Median Sales Price for New Houses Sold in the United States FREDII
Total Assets, All Commercial Banks FREDII
Commercial and Industrial Loans, All Commercial Banks FREDII
Loans and Leases in Bank Credit, All Commercial Banks FREDII
Total Savings Deposits at all Depository Institutions FREDII
Loans to deposits ratio FREDII
Consumer Credit Outstanding (Levels) FREDII
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Table A.2: Components of RFt and their factor loadings

Abbreviation Indicator Loading
RPI Real Personal Income 0.0413
W875RX1 Real personal income ex transfer receipts 0.0569
DPCERA3M086SBEA Real personal consumption expenditures 0.0366
CMRMTSPLx Real Manu. and Trade Industries Sales 0.0725
RETAILx Retail and Food Services Sales 0.0578
INDPRO IP Index 0.0127
IPFPNSS IP: Final Products and Nonindustrial Supplies 0.0122
IPFINAL IP: Final Products (Market Group) 0.0109
IPCONGD IP: Consumer Goods 0.0754
IPDCONGD IP: Durable Consumer Goods 0.0673
IPNCONGD IP: Nondurable Consumer Goods 0.0502
IPBUSEQ IP: Business Equipment 0.0117
IPMAT IP: Materials 0.0111
IPDMAT IP: Durable Materials 0.0119
IPNMAT IP: Nondurable Materials 0.0853
IPMANSICS IP: Manufacturing (SIC) 0.0132
IPB51222S IP: Residential Utilities 0.0167
IPFUELS IP: Fuels 0.0128
NAPMPI ISM Manufacturing: Production Index 0.0138
CUMFNS Capacity Utilization: Manufacturing 0.0142
HWI Help-Wanted Index for United States 0.0633
HWIURATIO Ratio of Help Wanted/No. Unemployed 0.0112
CLF16OV Civilian Labor Force 0.0517
CE16OV Civilian Employment 0.0110
UNRATE Civilian Unemployment Rate 0.0858
UEMPMEAN Average Duration of Unemployment (Weeks) 0.0562
UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 0.0827
UEMP5TO14 Civilians Unemployed for 5-14 Weeks 0.0415
UEMP15OV Civilians Unemployed - 15 Weeks & Over 0.0899
UEMP15T26 Civilians Unemployed for 15-26 Weeks 0.0547
UEMP27OV Civilians Unemployed for 27 Weeks and Over 0.0716
CLAIMSx Initial Claims 0.0143
PAYEMS All Employees: Total nonfarm 0.0170
USGOOD All Employees: Goods-Producing Industries 0.0792
CES1021000001 All Employees: Mining and Logging: Mining 0.0218
USCONS All Employees: Construction 0.0107
MANEMP All Employees: Manufacturing 0.0153
DMANEMP All Employees: Durable goods 0.0147
NDMANEMP All Employees: Nondurable goods 0.0123
SRVPRD All Employees: Service-Providing Industries 0.0151
USTPU All Employees: Trade, Transportation & Utilities 0.0156
USWTRADE All Employees: Wholesale Trade 0.0160
USTRADE All Employees: Retail Trade 0.0132
USFIRE All Employees: Financial Activities 0.0122
USGOVT All Employees: Government 0.0432
CES0600000007 Avg Weekly Hours : Goods-Producing 0.0491
AWOTMAN Avg Weekly Overtime Hours : Manufacturing 0.0339
AWHMAN Avg Weekly Hours : Manufacturing 0.0499
NAPMEI ISM Manufacturing: Employment Index 0.0144
HOUST Housing Starts: Total New Privately Owned 0.0140
HOUSTNE Housing Starts, Northeast 0.0122
HOUSTMW Housing Starts, Midwest 0.0135
HOUSTS Housing Starts, South 0.0121
HOUSTW Housing Starts, West 0.0122
NAPM ISM : PMI Composite Index 0.0124
NAPMNOI ISM : New Orders Index 0.0125
NAPMSDI ISM : Supplier Deliveries Index 0.0129
NAPMII ISM : Inventories Index 0.0870
AMDMNOx New Orders for Durable Goods 0.0118
AMDMUOx Unfilled Orders for Durable Goods 0.0158
BUSINVx Total Business Inventories 0.0135
ISRATIOx Total Business: Inventories to Sales Ratio 0.0119
M1SL M1 Money Stock 0.0128

Continued on next page
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Table A.2 – continued from previous page

Abbreviation Indicator Loading
M2SL M2 Money Stock 0.0535
M2REAL Real M2 Money Stock 0.0118
AMBSL St. Louis Adjusted Monetary Base 0.0105
TOTRESNS Total Reserves of Depository Institutions 0.0536
NONBORRES Reserves Of Depository Institutions 0.0461
BUSLOANS Commercial and Industrial Loans 0.0113
REALLN Real Estate Loans at All Commercial Banks 0.0661
NONREVSL Total Nonrevolving Credit 0.0964
CONSPI Nonrevolving consumer credit to Personal Income 0.0982
S&P 500 S&P’s Common Stock Price Index: Composite 0.0792
S&P: indust S&P’s Common Stock Price Index: Industrials 0.0748
S&P div yield S&P’s Composite Common Stock: Dividend Yield 0.0103
S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 0.0108
FEDFUNDS Effective Federal Funds Rate 0.0204
CP3Mx 3-Month AA Financial Commercial Paper Rate 0.0551
TB3MS 3-Month Treasury Bill: 0.0103
TB6MS 6-Month Treasury Bill: 0.0102
GS1 1-Year Treasury Rate 0.0628
GS5 5-Year Treasury Rate 0.0838
GS10 10-Year Treasury Rate 0.0899
AAA Moody’s Seasoned Aaa Corporate Bond Yield 0.0590
BAA Moody’s Seasoned Baa Corporate Bond Yield 0.0576
COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 0.0625
TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 0.0492
TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 0.0228
T1YFFM 1-Year Treasury C Minus FEDFUNDS 0.0210
T5YFFM 5-Year Treasury C Minus FEDFUNDS 0.0138
T10YFFM 10-Year Treasury C Minus FEDFUNDS 0.0452
AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 0.0430
BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 0.0583
TWEXMMTH Trade Weighted U.S. Dollar Index: Major Currencies 0.0806
EXSZUSx Switzerland / U.S. Foreign Exchange Rate 0.0101
EXJPUSx Japan / U.S. Foreign Exchange Rate 0.0657
EXUSUKx U.S. / U.K. Foreign Exchange Rate 0.0456
EXCAUSx Canada / U.S. Foreign Exchange Rate 0.0672
PPIFGS PPI: Finished Goods 0.0194
PPIFCG PPI: Finished Consumer Goods 0.0724
PPIITM PPI: Intermediate Materials 0.0713
PPICRM PPI: Crude Materials 0.0959
OILPRICEx Crude Oil, spliced WTI and Cushing 0.0573
PPICMM PPI: Metals and metal products: 0.0441
NAPMPRI ISM Manufacturing: Prices Index 0.0789
CPIAUCSL CPI : All Items 0.0126
CPIAPPSL CPI : Apparel 0.0879
CPITRNSL CPI : Transportation 0.0437
CPIMEDSL CPI : Medical Care 0.0646
CUSR0000SAC CPI : Commodities 0.0120
CUUR0000SAD CPI : Durables 0.0828
CUSR0000SAS CPI : Services 0.0399
CPIULFSL CPI : All Items Less Food 0.0537
CUUR0000SA0L2 CPI : All items less shelter 0.0772
CUSR0000SA0L5 CPI : All items less medical care 0.0773
PCEPI Personal Cons. Expend.: Chain Index 0.0894
DDURRG3M086SBEA Personal Cons. Exp: Durable goods 0.0873
DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 0.0516
DSERRG3M086SBEA Personal Cons. Exp: Services 0.0818
CES0600000008 Avg Hourly Earnings : Goods-Producing 0.0573
CES2000000008 Avg Hourly Earnings : Construction 0.0541
CES3000000008 Avg Hourly Earnings : Manufacturing 0.0153
UMCSENTx Consumer Sentiment Index 0.0569
MZMSL MZM Money Stock 0.0554
DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 0.0214
DTCTHFNM Total Consumer Loans and Leases Outstanding 0.0439
INVEST Securities in Bank Credit at All Commercial Banks 0.0223

Continued on next page
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Table A.2 – continued from previous page

Abbreviation Indicator Loading

Data source: Federal Reserve Bank of St. Louis, https://research.stlouisfed.org/econ/mccracken/fred-databases/

39



Figure A.1: Top 50 factor loadings of RFt

Figure A.2: Factor loadings of FFt
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B Dynamics of RFt and FFt

Figure B.3 shows the dynamics of the extracted factors RFt and FFt. Not surprisingly, it differs from
the cycles proxies presented in Figure 1 since they correspond to the growth cycle rather than business
cycle (defined as deviation from the trend).

As the state of financial downturn is usually characterized not only by low levels of the corresponding
financial cycle indicator but also by its high volatility,21 the usual correlation estimated on a moving
window is not very informative as it would ignore the volatility aspect of the financial cycle. For
this reason, to make a preliminary assessment of the interaction between the cycles approximated by
RFt and FFt, we estimate the correlation between the signals of recession and financial downturn
extracted from the factors22 (see Figure B.4). As in Figure 2, the correlation is lower in the middle of
the sample, although the period of high interaction starts a much earlier, indicating a possibility of a
slightly different pattern of interaction for the growth cycle with respect to the business cycle.

Figure B.3: Dynamics of RFt and FFt
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Note: blue and red line correspond to RFt and FFt respectively

21When the cycle is characterized by the growth rate series.
22we use smoothed probability of recession (financial downturn) estimated on RFt (F Ft) with a standard Markov-

Switching model à la Hamilton (1989).
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Figure B.4: Cross-correlations between RFt and FFt

Note: Cross-correlations between the smoothed probability of recession (estimated on RFt with a Markov-Switching
model by Hamilton (1989)) and the smoothed probability of financial downturn (estimated on F Ft) computed on a
moving window with width w = 141, i.e. a estimate for a date t is obtained using observations from t − 70 to t + 70.
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C Robustness check
C.1 Alternative dataset

Table C.1: DI-MS-FM estimates on alternative datasets

BL RC1 RC2 RC3
Business cycle

µ̂1 0.57*** 0.57*** 0.58*** 0.59***
µ̂2 -0.85*** -0.85*** -1.19*** -1.19***
σ̂2

1 0.31*** 0.31*** 0.30*** 0.29***
σ̂2

2 0.81*** 0.81*** 0.31*** 0.31***

D̂1
11 0.99*** 0.99*** 0.99*** 0.99***

D̂1
22 0.98*** 0.98*** 0.99** 0.99***

Ĉ12
11 0.91*** 0.72*** 0.93*** 0.73**

Ĉ12
22 0.99* 0.85*** 0.99*** 0.87***

Financial cycle

β̂1 0.16*** 0.06*** 0.15*** 0.06***
β̂2 -0.86*** -0.39*** -0.97*** -0.37***
θ̂2

1 0.27*** 0.46*** 0.29*** 0.46***

θ̂2
2 4.05*** 4.39*** 4.47*** 4.26***

D̂2
11 0.99*** 0.98*** 0.99*** 0.99***

D̂2
22 0.88*** 0.36*** 0.59** 0.39***

Ĉ21
11 0.75*** 0.55*** 0.98*** 0.99***

Ĉ21
22 0.99*** 0.99*** 0.99*** 0.99***

Influence regimes

R̂1
[
0.98 0.06
0.02 0.94

] [
0.99 0.01
0.01 0.99

] [
0.99 0.01
0.01 0.99

] [
0.99 0.04
0.01 0.96

]
R̂2

[
0.86 0.81
0.14 0.19

] [
0.92 0.44
0.08 0.56

] [
0.91 1.00
0.09 0.00

] [
0.86 1.00
0.14 0.00

]
q̂11 0.99 0.99 0.99 0.99
q̂22 0.97 0.95 0.99 0.95

Note: The parameters significant at 15%, 10% and 5% are marked with *, ** and ***, correspondingly. BL stands for baseline
dataset, the description of cases RC1, RC2 and RC3 is given in Section 4.4.
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In all figures below, grey shaded areas correspond to NBER recessions, dotted vertical lines mark
the beginning of systemic banking crises as identified by Laeven and Valencia (2008 and 2010) and
Reinhart and Rogoff (2008).

Figure C.1: Smoothed probability of recession and financial downturn

(a) Business cycle: RFt vs HS (b) Financial cycle: F Ft vs NAREIT

Note: Blue line corresponds to the estimate of the smoothed probability of recession (financial downturn) in the baseline case
(using RFt and FFt). The red line corresponds to the estimates obtained with alternative data (Number of housing starts HSt

for the business cycle, House price NAREITt (NAREIT Composite index) for the financial cycle)
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Figure C.2: Smoothed probability of high interaction regime

(a) Baseline case vs RC1 (RF + NAREIT) (b) Baseline case vs RC2 (HS + FF)

(c) Baseline case vs RC3 (HS + NAREIT)
Note: Blue line corresponds to the estimate of the smoothed probability of "Interdependent cycle" regime in the baseline case
(using RFt and FFt). The red line corresponds to the estimates obtained with alternative data (Number of housing starts HSt

for the business cycle, House price NAREITt (NAREIT Composite index) for the financial cycle)
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C.2 Estimation on subsets

Table C.2: DI-MS-FM estimates on alternative datasets

Jul 1976-Dec 2014 Jul 1976-Aug 2006 Nov 1984-Dec 2014
Business cycle

µ̂1 0.57*** 0.00*** 0.00***
µ̂2 -0.85*** -1.77*** -1.14***
σ̂2

1 0.31*** 2.23** 5.74**
σ̂2

2 0.81*** 0.30** 0.35**

D̂1
11 0.99*** 0.99*** 0.96***

D̂1
22 0.98*** 0.87*** 0.99***

Ĉ12
11 0.91*** 0.62** 0.89***

Ĉ12
22 0.99* 0.13*** 0.01***

Financial cycle

β̂1 0.16*** 0.37*** 0.11***
β̂2 -0.86*** -0.52*** -1.20***
θ̂2

1 0.27*** 0.32*** 0.31***

θ̂2
2 4.05*** 1.47*** 5.15***

D̂2
11 0.99*** 0.96*** 0.52***

D̂2
22 0.88*** 0.99*** 0.99***

Ĉ21
11 0.75*** 0.00*** 0.00***

Ĉ21
22 0.99*** 0.99*** 0.00***

Influence regimes

R̂1
[
0.98 0.06
0.02 0.94

] [
0.99 0.01
0.01 0.99

] [
0.95 0.16
0.05 0.84

]
R̂2

[
0.86 0.81
0.14 0.19

] [
0.00 0.20
1.00 0.80

] [
0.79 1.00
0.21 0.00

]
q̂11 0.99 0.98 0.99
q̂22 0.97 0.98 0.97

Note: The parameters significant at 15%, 10% and 5% are marked with *, ** and ***, correspondingly.
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Figure C.3: Smoothed probability of "Interdependent cycles" regime

Note: Blue line corresponds to the smoothed probability "Interdependent cycle" regime in the baseline case (estimated on the
whole period). Red and green lines correspond to the estimates obtained on the right and left subsamples (Nov 1984 - Dec 2014
and Jul 1976 - Aug 2006), respectively.
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