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Abstract—With the spread of COVID-19 over the world, the
need arose for fast and precise automatic triage mechanisms
to decelerate the spread of the disease by reducing human
efforts e.g. for image-based diagnosis. Although the literature
has shown promising efforts in this direction, reported results
do not consider the variability of CT scans acquired under
varying circumstances, thus rendering resulting models unfit for
use on data acquired using e.g. different scanner technologies.
While COVID-19 diagnosis can now be done efficiently using
PCR tests, this use case exemplifies the need for a methodology
to overcome data variability issues in order to make medical
image analysis models more widely applicable. In this paper,
we explicitly address the variability issue using the example of
COVID-19 diagnosis and propose a novel generative approach
that aims at erasing the differences induced by e.g. the imaging
technology while simultaneously introducing minimal changes
to the CT scans through leveraging the idea of deep auto-
encoders. The proposed prepossessing architecture (PrepNet) (i)
is jointly trained on multiple CT scan datasets and (ii) is capable
of extracting improved discriminative features for improved
diagnosis. Experimental results on three public datasets (SARS-
COVID-2, UCSD COVID-CT, MosMed) show that our model
improves cross-dataset generalization by up to 11.84 percentage
points despite a minor drop in within dataset performance.

Index Terms—Adaptive preprocessing, domain adaptation, auto-
encoder

I. INTRODUCTION

A major challenge in rolling out machine learned models
to a broad user base is the variability of data encountered in
the real world. Models can only be expected to work well on
data of similar distribution as has been used for training, but
ubiquitously, differences e.g. in image acquisition setup hinder
the applicability of a once developed model in novel settings.
A recent example for the negative effects of such failure to
adapt between differing domains has been given at the start of
the COVID-19 pandemic:

As of 2nd February 2021, this disease has caused over
100 million infections worldwide and over 2 million deaths
according to the World Health Organisation (WHO) [1]. To
alleviate this, rapid diagnosis of COVID-19 cases has proven

to be effective for decelerating the spread of the disease [2].
According to [2], [3], reverse transcriptase quantitative poly-
merase chain reaction (RT-qPCR) tests are accepted as the gold
standard rule for the identification of positive cases. However,
this type of test was not available in sufficient numbers at
the beginning of the pandemic, is time-consuming and relies
on both human effort and expert knowledge. Thus, there
arose a need for automatic diagnostic methods that can assist
experts and reduce human efforts by targeting the automatic
identification of COVID-19 positive cases. The literature has
shown promising efforts in the automatic identification of
COVID-19 cases from lung computed tomography (CT) scans
using computer vision methods [4], [5], [6], [7]. Furthermore,
Lessmann et al. addressed cross-vendor analysis (between
different CT scanners such as Varian, Siemens, GE Health-
care, Philips and Canon) for 3D CT scans successfully [8].
However, it is demonstrated that a considerable drop in cross-
dataset performance appears for the diagnosis of 2D CT scans
acquired via different devices. Thus, the previously mentioned
within dataset variability has the potential to discourage the
community to merge and annotate data from multiple sources.
As a result, combining datasets is a challenge posed not
only for COVID detection but also for other applications
in diagnosis and segmentation. In this paper, we address
domain adaptation of medical image analysis methods by
proposing a deep convolutional neural network (CNN) for
preprocessing 2D CT scans: it is trained to fool a classifier
that discriminates between various CT datasets, thus aiming
to remove the within dataset variability. We evaluate the
performance of the suggested method on the exemplary use
case of predicting COVID-19 positive cases, due to the global
variability in respective datasets and the availability of plenty
opportunities to compare. The methodology is inspired by
generative adversarial learning [9], [10]. Our contribution is
twofold: (i) we propose a novel trainable preprocessing CNN
architecture with a dual training objective that is capable of
equalizing the variability of different CT-scanner technologies
in the image domain as a pre-processor (PrepNet); (ii) we



validate this model by showing the transferability of its diag-
nostic capabilities between different CT data sources based on
common public benchmarks. We conduct experiments on the
SARS-CoV-2 CT-scan dataset [11] and the UCSD COVID-CT
dataset [12] as well as MosMed dataset [13]. Our results show
that our PrepNet model improves the cross-dataset COVID-19
diagnosis performance (i.e., training on one dataset, testing on
another) by 11.84 percentage points (pp) through creating a
unified representation of multi-dataset CT scans.

II. RELATED WORK

With the emergence of COVID-19, many studies and
datasets have been proposed in the literature that show an
increase in data diversity over time and the extent of related
computer vision methods to deal with it [14], [15]. Horry
et al. [2] utilize a transfer learning scheme to build various
COVID-19 classifiers based on several off the shelf CNN mod-
els such as VGG16/19 [16], Resnet50 [17], InceptionV3 [18],
Xception [19], and InceptionResnet [20]. They compared the
generalization capability of various images sources such as X-
ray, CT and ultrasound images and developed a pre-processing
scheme for X-ray images to reduce noise at non-lung areas in
order to decrease the effect of quality imbalance among the
employed images. A VGG19 [16] coupled with ultrasound
images is found to yield the best validation accuracy of 99%,
while 84% have been achieved using CT scans [21].

He et al. [21] propose a sample-efficient learning con-
cept called “Self-Trans” via synergetically combining transfer
learning and contrastive self-supervised learning. They seek
intrinsic visual patterns in CT scans without relying on labels
created with human effort. Besides, they open-sourced their
CT dataset involving 349 COVID-19 positive patients and
397 COVID-19 negatives [12]. They achieve an accuracy of
86% through unbiased feature representations together with a
reduction of overfitting.

Mobiny et al. [22] propose the DECAPS approach with
following contributions: (i) inverted dynamic routing [23] to
avoid seeking visual features from non-related regions, (ii)
training with a two-stage patch crop and drop strategy to
encourage the network to focus on the useful areas, (iii)
employing conditional generative adversarial networks for data
augmentation. Experiments result 84.3% precision and 91.5%
recall along with 87.6% accuracy. They additionally report
results for the conventional deep classifiers DenseNet121
[24] and Resnet50 [17], yielding 82.5% and 80.8% accuracy,
respectively. In contrast to this study, Pham [25] points out
the negative impact of data augmentation in the context
of CT-based COVID-19 image classification. In his study,
the author fine-tunes various well-known pre-trained CNN
models ranging from AlexNet [26] to NasNet-Large [27].
Experiments conducted on the already introduced CT dataset
[12] credit a DenseNet-201 with the best accuracy of 96.2%.
However, data augmentation using random vertical/horizontal
flips (p=0.5), vertical/horizontal translation (±30 pixels) and
scaling (±10%) yields a 6% accuracy drop on average.

Chaganti et al. [28] suggest a deep-reinforcement-learning-
based scheme focusing on seeking doubtful lung areas on
CT scans to localize abnormal portions. A recent study by
[15], a novel architecture called “COVID-Net- CT-2” which
utilizes machine-driven design exploration based on iterative
constrained optimization is proposed [29]. The authors point
out that one of the subtle problems of earlier studies is the
limited number of patients and poor diversity of CT scans in
terms of multi-nationality. Therefore, they introduce the two
large-scale COVID-19 CT datasets called “COVIDx CT-2A”
and “COVIDx CT-2B” gathered from 4, 501 patients from at
least 15 countries, totally comprising 194.922 and 201.103
images respectively. Experiments show that the architecture
achieves a sensitivity of 99.0% and an accuracy of 98.1%,
which competes with radiologist-level decision making capa-
bility. The study deals with variability in the patients’ ethnicity,
while CT scans generated by various vendors’ devices exhibit
visual differences, artifacts, and variable intensities that are
never addressed so far. Thus, independent from the reported
success of some deep learning architecture, it is likely to
witness a drop in prediction accuracy during inference when
a test image is taken with a different device as has been used
for training. Motivated by this issue, we propose to employ
a pre-processing network (PrepNet) to standardize CT images
with respect to the visual differences among datasets prior to
training of any final diagnosis model, relying on generative
architectures since they showed very promising results for
similar tasks [22]. An advantage of this approach is that the
PrepNet can be combined with any downstream diagnosis
model, thus leveraging future progress there without additional
costs while improving cross-dataset performance.

Two research papers closely related to the goal of do-
main adaptation in this study are presented by Lessmann et
al. addressing cross-vendor diagnosis [8] and Amyar et al.
using auto-encoders in multi-task learning [30]. Neverthe-
less, Lessmann et al. did not confront a considerable cross-
vendor performance drop because of using a richer source
of information (3D scans) as explained in [31]. Amyar et
al. leveraged multi-task learning and trained an auto-encoder
besides a segmentation and classification model for COVID-
19 diagnosis. However, they did not aim at removing the
cross-dataset variability of the scans. This study focuses on
homogenizing the 2D CT scans by reducing cross-dataset
information.

III. METHODOLOGY

In this section, we give details of our PrepNet model
in terms of network architecture, core modules, and loss
functions. The architecture of our proposed model is presented
in Figure 1. For a group of N input CT scans {Xn}Nn=1,
coming from different CT vendors’ devices, our model ex-
tracts multi-scale discriminative feature maps through an auto-
encoder and reconstructs the original CT scans {X̂n}Nn=1. The
reconstructed CT scans are next fed into a dataset/technology
classification branch. The dataset classifier branch acts as a
pseudo-label classifier and is responsible for discriminating
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Fig. 1. The architecture of our proposed PrepNet model consists of three main modules: (i) an auto-encoder that acts as a CT cross-dataset homogenizer; (ii)
a multi CT-technology classifier; and (iii) a COVID-19 binary classifier. The auto-encoder and the multi CT technology classifier are trained adversarially.
The binary COVID-19 classifier is independently trained using the auto-encoder’s output.

among different CT datasets. Once this model is trained end-
to-end in an adversarial way, the reconstructed CT scans are
fed into a COVID-19 classifier which is trained directly on the
reconstructed CT-scans. The COVID-19 classification branch
is responsible for the classification of healthy vs. non-healthy
patients. The complete network model with its main modules
are described next in more detail.

A. Model Architecture

Auto-Encoder Module: We feed a CT scan image Xn into our
auto-encoder (Ea and Da) and obtain a reconstructed version
X̂n given by X̂n = Da(Ea(Xn)). The encoder Ea is based on
the standard classification network VGG-Net [16], whilst the
decoder Da is a convolutional network with the same number
of layers as the encoder. We add skip-connections from Ea to
Da to recover the spatial information lost during the down-
sampling operations.
Dataset Classifier Module: The CT dataset classifier Et

receives as input the reconstructed CT scan X̂n from the
auto-encoder and feeds it into an encoder branch Et(X̂n) that
classifies the CT dataset/technology. In our experiments, Et

relies on the VGG-Net architecture as well.
COVID-19 Classifier Module: The COVID-19 classifier Ec

is also uses several backbone architecture. Given a recon-
structed CT scan X̂n, it outputs COVID vs. non-COVID
predictions, i.e. Ec(X̂n).

B. Loss Functions and Evaluation Metric

The complete loss function of PrepNet is based on the vari-
ous terms presented in Figure 1. It comprises a reconstruction
loss Lrec and two classification losses Lpseu and Lcovid:

Ltotal = Lrec + Lpseu + Lcovid (1)

Given the labeled dataset D = {(Xn, yn, pn)}Nn comprising
the CT scans Xn together with their binary COVID label
yn and the CT-dataset pseudo label pn, the auto-encoder
reconstruction loss is given by Lrec =

∑
n ‖Xn − X̂n‖22;

the COVID-19 binary classification loss is denoted Lcovid =
−
∑

n yn log ŷn+(1−yn) log(1− ŷn); the CT dataset pseudo
label is computed by Lpseu = −

∑
n pn log p̂n.

To measure the COVID-19 detection performance and to
minimize the effect of class imbalance in datasets, we use the
balanced accuracy metric (BA) [32]

BA =
TP

P
+

TN

N
(2)

where P and N are the number of positive and negative
samples respectively and TP and TN denote the number
of true positive and true negative predictions, respectively. In
addition, we also use specificity, sensitivity, and area under
the curve to evaluate the COVID-19 performance results.

IV. EXPERIMENTS

A. Datasets

We use three public datasets to validate our approach exper-
imentally. The SARS-CoV-2 CT-scan dataset [11] comprises a
total of 4, 173 CT images of real patients from the Public
Hospital of the Government Employees of Sao Paulo (HSPM)
and the Metropolitan Hospital of Lapa, both in Sao Paulo
- Brazil (2, 168 positive/infected and 768 healthy patients).
Moreover, 1, 247 CT scans belong to patients who have other
pulmonary diseases. The CT image annotations (positive vs.
negative) have been done by three different clinicians. Note
that during our visual inspection we found two erroneous
images (i.e. unrelated to the problem domain) and excluded
them from the dataset. In addition, we also excluded the 1, 247
pulmonary diseased patients.

The UCSD COVID-CT dataset [12] has been collected
in the Tongji Hospital in Wuhan, China during the out-
break of COVID-19 between the months of January/2020 and
April/2020. This dataset contains 349 CT images from infected
patients and 397 from non-infected patients. All images have
been annotated by a senior radiologist of the same hospital.
As reported by [22], heights of the images in this dataset



range between 153 and 1, 853 pixels with an average of
491 pixels, whereas the widths vary between 124 and 1, 458
pixels (average of 383 pixels). For partitioning, we follow
the splitting guideline provided by the authors of the dataset.
Table I summarizes the train, validation and test splits for each
dataset.

The MosMed dataset [13] was collected by the Moscow
Health Care Department from different municipal hospitals
in Russia between March/2020 and April/2020. The dataset
contains axial CT images from 1110 patients with different
levels of COVID-19 severity, ranging from mild to critical
cases and also healthy patients. Some image samples of each
dataset are provided in Figure 2.

COVID SARS-COV-2 UCSD COVID-CT MosMed COVID-19

Negative

Positive

Fig. 2. COVID-19 positive and negative samples for each used dataset. Note
the variabilities in terms of texture, size, and shape across datasets.

B. Implementation Details

We run all our experiments using the publicly available
Pytorch 1.5.0 library and an NVIDIA VP100 GPU (32 GB of
VRAM). During network training, each image is first resized
based on the input size of the classifiers’ backbones; we use
histogram equalization as a fixed preprocessing step, then
apply the mean and standard deviation of ImageNet pretrained
models. We train PrepNet using the AdamW optimizer [33].
We perform a 24 hour hyperparameter search with six parallel
runs using the Bayesian search strategy with Hyperband for
early-stopping on one GPUs [34]. The hyperparameter search
improves the chance of avoiding local minima and presenting
optimal results of every configuration. The best model is
selected based on the optimal validation performances. During
training, we first train the auto-encoder for 20 epochs and
warm up the dataset classification branch for 2 epochs before
we start with the adversarial training. Once the adversarial
training is finished, we train the COVID classification branch
independently from the other two branches using the output
of the auto-encoder/PrepNet.

C. Experimental Results

The inter- and cross-dataset performance of the proposed
preprocessing schemes are presented in Table II. In order to
observe possible overfitting, we report the hold out test set
performance on each dataset. The cross-dataset performance
is evaluated by measuring the balanced accuracy (minimizing

the effect of class imbalance) of the models trained on one
dataset and tested on the other. We report results using the
balanced accuracy of the models trained on the SARS-COV-2
and UCSD COVID-CT datasets. Further metrics also include
sensitivity (Sens), specificity (Spec) and area under the curve
(AUC). In the rows, we present the datasets used during
training. Furthermore, we group the results by model. The first
group of results are related to the COVID classifier (VGG-19
pre-trained model), that is trained and evaluated on the original
CT scans. The second group of results is related to the auto-
encoder alone trained on both datasets in a self-supervised
manner to minimize the reconstruction loss. The third group
of results relate to full PrepNet preprocessing before training
the classifiers.

The results in Table II show that the average cross-dataset
performance (over all dataset splits) of models trained on
original data increases by 6.77pp after using the pure auto-
encoder model, and by 11.84pp through PrepNet. However,
the average test accuracy for within-dataset evaluation declines
by 0.32pp and 1.83pp after applying the baseline auto-encoder
or PrepNet, respectively. A discussion regarding this effect is
presented in the next section.

In our experiments, we use the VGG19 [16] as the baseline
model because it is more straight-forward to train and has
shown good generalization properties on 2D medical images
based on previous practical experiments1. Besides that, the
VGG architecture has been also successfully applied for
COVID-19 identification [2], [21].

As part of our ablation study, we also evaluated how
different backbones affect the COVID-19 diagnosis accuracy
of PrepNet. More precisely, we replicate the experiments
for each dataset (SARS-COV-2 and UCSD COVID-CT) and
evaluate different CNN architectures as part of our COVID-
classifier Module (See Section III-A for more information).
The CNN architectures include ResNet18 [17], Inception [35],
and EfficientNet-B0 [36]. We report results in Table III.
Experimental results show that in almost all backbones, the
average cross-dataset performance increases with the cost of
a small decrease in the within-dataset accuracy.

Finally, in order to evaluate the generalisation capabil-
ities of PrepNet and our baselines, we evaluate how our
trained models perform on an unseen dataset, i.e. the MosMed
dataset [13]. The results in Table IV show the improvements
of our AutoEncoder and PrepNet models in terms of BA and
sensitivity, however, with a decrease in specificity and AUC
when compared with the COVID-19 classifier. Despite the
decrease in specificity, we argue that especially for medical
diagnosis and screening, a low specificity is less harmful
than a reduction in sensitivity, as false positive cases can be
discarded by additional examinations. On the contrary, a higher
sensitivity is important as false negatives should be low.

D. Discussion
The baseline and proposed pre-processing approaches in-

troduce performance drops when applied before within-dataset

1https://stanfordmlgroup.github.io/competitions/mura/



Dataset portions
Dataset Type Size Country Train Validation Test

SARS-COV-2 [11] 2D CT Various Brazil 2, 046 (70%) 439 (15%) 439 (15%)
UCSD COVID-CT [12] 2D CT Various China 423 (57%) 116 (16%) 201 (27%)
MosMed Dataset [13] 3D CT Various Rusia 1100 images for unseen test dataset

TABLE I
PUBLIC DATASETS USED IN OUR STUDY TOGETHER WITH THEIR CORRESPONDING DATA SPLITS. THE SARS-COV-2 [11] AND THE UCSD

COVID-CT [12] DATASETS ARE USED FOR TRAINING AND EVALUATING OUR MODELS, WHILE THE MOSMED DATASET [13] IS USED FOR EVALUATION
PURPOSES ONLY.

Test dataset → SARS-COV-2 UCSD COVID-CT Within Test Cross-Dataset Pre-trained
Dataset portion BA Sens Spec AUC Test Sens Spec AUC Average Average encoder

COVID classifier

SARS-COV-2 0.8924 0.9292 0.7876 0.8584 0.4433 0.7835 0.1262 0.4548 0.8587 0.4159 YesUCSD COVID-CT 0.3295 0.3476 0.2743 0.3110 0.8250 0.7113 0.9320 0.8216 (baseline) (baseline)

AutoEncoder

SARS-COV-2 0.8956 0.9907 0.6460 0.8183 0.4983 0.9175 0.0970 0.5073 0.8555 0.4836 YesUCSD COVID-CT 0.49405 0.6030 0.3008 0.4519 0.8154 0.7216 0.8846 0.8031 (−0.32%) (+6.77%)

PrepNet

SARS-COV-2 0.9007 0.9353 0.7982 0.8668 0.5157 0.9175 0.1067 0.5121 0.8404 0.5343 YesUCSD COVID-CT 0.5545 0.6446 0.1858 0.4852 0.7800 0.8556 0.7087 0.7822 (−1.83%) (+11.84%)

TABLE II
TEST PERFORMANCE OF DIFFERENT BASELINES COMPARED TO OUR PrepNet MODEL. RESULTS DEMONSTRATE THAT OUR MODEL IS CAPABLE OF

INCREASING THE CROSS-DATASET AVERAGE.

classification. These approaches usually reduce the test accura-
cies when trained and evaluated on the same dataset using the
corresponding dataset splits. Therefore, we further investigate
the intermediate results of the baseline auto-encoder and
PrepNet on a case-by-case basis. Severe cases of generated
artifacts through reconstruction via the baseline auto-encoder
and the PrepNet are presented in Figure 3. We conjecture
that the drop in within-dataset test performance is caused by
occasional artifacts such as these. These quality drops can
be clearly seen in the reconstruction loss. However, it is not
straightforward to correct them. We could eventually overcome
this by also investigating different data-augmentation strate-
gies and by improving the network architecture of our auto-
encoder. Additionally, we depict sample images in which the
models failed to make a correct decision after auto-encoder
or PrepNet Figure 4. Limited amount of training data and
noisy labels of public datasets are other factors contributing to
low classification accuracies. One possible way to tackle this
limitation is to rely on weakly supervised learning methods
to improve the COVID-19 classification accuracy with the
methodology summarized in [37].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a novel approach to unify
several CT scan datasets with respect to varying image
datasets and acquisition circumstances such as CT scanner
technology through training an adaptive pre-processing net-
work that removes such specificities from the images them-

selves. Additionally, we presented initial results demonstrating
the applicability of the method on three publicly available
benchmark datasets. This way, it is possible to shift the
focus of model training from merely optimizing hold-out test
set performance on the same data distribution (which likely
does not transfer to any other environment) towards cross-
dataset detection accuracy. The proposed PrepNet improves
the cross-dataset balanced accuracy by a margin of 11.84
percentage points (SARS-CoV-2 CT-scan dataset [11]) at the
expanse of a decline in the within dataset test performance of
ca. 1.83pp (UCSD COVID-CT database [12]). These results
suggest that the trainable preprocessing network erases some
of the necessary information for diagnosis, due to artifacts.
This information could be partially retained by propagating
the gradients of the COVID-19 classifier network through the
preprocessing model, and generated artifacts could be detected
automatically by monitoring the reconstruction loss of the
auto-encoder module. This, together with further investigations
on the applicability and generality of the proposed approach
to combine multiple datasets, is an intriguing theme for future
research.
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Test dataset → SARS-COV-2 UCSD COVID-CT Within Test Cross-Dataset Pre-trained
Dataset portion BA Sens Spec AUC Test Sens Spec AUC Average Average encoder

VGG19

SARS-COV-2 0.9007 0.9353 0.7982 0.8668 0.5157 0.9175 0.1067 0.5121 0.8404 0.5343 YesUCSD COVID-CT 0.5545 0.6446 0.1858 0.4852 0.7800 0.8556 0.7087 0.7822 (−1.83%) (+11.84%)

ResNet18

SARS-COV-2 0.7462 0.7046 0.8584 0.7815 0.4728 0.8144 0.1538 0.4841 0.7345 0.4940 YesUCSD COVID-CT 0.5152 0.6246 0.1947 0.4096 0.7228 0.8351 0.6154 0.7252 (−12.42%) (+7.81%)

Inception

SARS-COV-2 0.8553 0.9046 0.7080 0.8063 0.4703 0.9485 0.02885 0.4886 0.8286 0.3995 YesUCSD COVID-CT 0.3288 0.36308 0.2212 0.2922 0.8020 0.8351 0.7692 0.8021 (−3.01%) (−1.64%)

EfficientNet-B0

SARS-COV-2 0.8735 0.8923 0.8142 0.8532 0.5223 0.5979 0.4519 0.5249 0.8253 0.4835 YesUCSD COVID-CT 0.4447 0.5015 0.2743 0.3879 0.7772 0.8041 0.7500 0.7771 (−3.34%) (+6.76%)

TABLE III
EXPERIMENTAL RESULTS OF PrepNet WITH DIFFERENT BACKBONES: VGG19 [16], RESNET18 [17], INCEPTION [35], AND EFFICIENTNET-B0 [36].

NOTE THAT PrepNet INCREASES THE CROSS-DATASET AVERAGE.

Dataset Original Baseline auto-encoder PrepNet

SARS-COV-2

UCSD COVID-CT

Fig. 3. Severe cases of artifacts generated by the baseline and the proposed PrepNet. The images demonstrate different levels of distortions like e.g. extreme
contrasts.

Test dataset → MosMed Pre-trained
Preprocessing BA Sens Spec AUC encoder

COVID-classifier 0.6066 0.5246 0.8771 0.7009 Yes(baseline) (baseline) (baseline) (baseline)

AutoEncoder 0.6693 0.7142 0.5175 0.6159 Yes(+6.27%) (+18.96%) (−35.96%) (−8.50%)

PrepNet 0.7073 0.7558 0.5438 0.6498 Yes(+10.07%) (+23.12%) (−33.33%) (−5.11%)

TABLE IV
EXPERIMENTAL COVID-19 CLASSIFICATION RESULTS OF THE TRAINED
COVID-19 CLASSIFIER, AUTO-ENCODER, AND PrepNet MODELS ON THE

MOSMED [13] UNSEEN DATASET.

unhealthy patients”.
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