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Objectives of Lead Optimisation @

— Design Array experiments to answer SAR guestions to enhance
potency

— Improve physicochemical properties to enhance ADME
— Discover new monomer groups of interest.
— Improve Selectivity

— Establish IP




Multi parameter optimisation

60+ “machine learnt” predictive models published to end users

Open Live Report Darren demo Edit Existing Multi-Parameter Scoring Profile
n Live Report | » . g
w Data & Columns a
W | Compeund Structure Inhakd
o Constituent Property  dogP (value)
Compounds [~

Lo . Value Distribution Lower Better A d
Y Project Favorites A Zlcbroesinneties
o
- &
@) §~:I"V: “o
0 8P ltons;
LY 3A'-CHMMW 7 ['/\l i 0548 LY mw (Daltons) ~
@ 30 Models E(r v l« an
LR 37 G Caloudatoes L
g [l FoSe e
M =a~;J‘alcw i 2 o R
1 ' Absorpton i P
oo @ L Blommenk: Property s
O b (count) 3 5
3 Ditriuion o f < ) ( ©
& 51 Enaties Panel Assay itay e VAN PR -
2 Metabotsm (L
o (2 Physco-chemica Frogesty ool i |
O "’ ’ High=er Bstter
@ osksy QS —— =
’ @ ool o, N% i * (et bkt 40 <
3 . Mintze 30 Sa, # (Gobef) rext-omiess NP
P H ~0 0 0 3
Comments &' g Bk T 1y {Gmbaf) Q) 190 5o plophin) Lovier Better
& (7 prysicochensical Descriptins W |l XN P o ek ckavs v
2 | ser Defined 3 OH O
v o | it
: 3 M Buerinental Aoy v Middle Good
Middle Bzd

AR ‘ Categorical (Text)




QSAR WorkBench: Automating the Expert

Train Test H

ROC Curve for Model_1 (Accuracy 0.959: Excellent)
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Exploring Chemical Space : Arrays based approaches @

— Traditional Med Chem
— Linear arrays (1 xn, 1 x m)
— Cherry pick and make best combination
— Assumes Free-Wilson compliance
— Combinatorial chemistry — make all combinations (m x n)
— No assumptions on Free-Wilson
— Resource intensive (synthesis and testing)
— SPARSE arrays
— Make a defined subset of the full combinatorial array
— Selection using ‘Design of Experiments’ (DOE)




Traditionally SAR determination

array design
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Optimisation at a single position
allows

— Easy synthesis planning

— Detailed understanding of
SAR

Assumes FW type additivity.

This approach is widely used and
reasonably successful but...




DOE in Medicinal Chemistry?

— Carrying out experiments in continuous
property space is easy in domains
where the levels are easily chosen
such as in a chemical synthesis

— Creating compounds with particular
combinations of physico-chemical
properties by modifying monomers
around a template is not so easy

— So how do we use DOE to design
compounds?
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DOE in Medicinal Chemistry? @

— We propose that Design of Experiments (DOE) based approaches can be applied to
array scenarios where the full (e.g. M x N) array cannot be synthesized for practical
reasons.

— By treating each monomer in the array as a categorical factor of the design, a balanced
fractional (“Sparse”) array design can be generated.

— This novel approach can be successfully used to understand and exploit the SAR of a
late stage optimization programme




Sparse array to evaluate defined N x M
combinatorial space with a fractional subset

— Design
— 12 Indazoles (R1)

— Identified using
classical SAR
approaches

— 48 sulphonyl
chlorides monomers
(R2)

— selected from library
using a variety of criteria

— Lead-likeness
score

R2

Sulphonamides

Scatter Plot
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*12 monomers per R1

*3 monomers per R2




Questions

— Is the fraction selected sufficient to explore the chemistry space?
— Can we adequately assess monomer potential?

— Can we predict the ‘missing’ compounds?

— Is it a practical way to direct chemistry synthesis?

— Is it an efficient process?

— Does it work?




Measured Potency for the Sparse array

&

— 142 of 144 compounds from
patchwork array were
synthesised and tested

— Coloured for potency, sized by
ligand efficiency

— Clear that some Indazoles are
more promising than others

Sulphonamide R2

Indazole R1




Predicted most potent compounds that haven’t already been

synthesized @

— All compounds subsequently synthesized had measured potencies within +/- 0.2
pIC50 of the predicted value

— Validated the Additivity assumption

— Identified promising alternatives which were sent for further PK analysis — potential
back up to the current pre-candidate

C1l C2 C3
Predicted GTPgS = 7.6  Predicted GTPgS = 7.5 Predicted GTPgS = 7.5
BEI =16.0 BEI =13.5 BEI =14.8
Measured = 7.6 Measured = 7.6 Measured = 7.3
C4 C5
Predicted GTPgS =7.5 Predicted GTPgS =7.6
BEI =14.2 BEI =15.6

Measured = 7.4 Measured = 7.5




Implications for Iterative Drug Design

Assessment of Additive/Nonadditive Effects in Structure—Activity Relationships: @
J . Med . Chem . 5 1, 23, 7552'7562 Yogendra Patel, Valerie J. Gillet, Trevor Howe, Joaquin Pastor, Julen Oyarzabal and Peter Willett

X nodels with pred-r2 > x (FN)

— Free-Wilson (FW) analysis is based on the
assumption that the contributions to activity
made by substituents at different substitution
positions are additive.

— We analyze eight near complete
combinatorial libraries assayed on several
different biological response(s) (GPCR, ion
channel, kinase and P450 targets)

% of nodels...

— only half-exhibit clear additive behavior, which
leads us to question the concept of additivity
that is widely taken for granted in drug

discovery Non-Additive Partially Additive Additive
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Active-learning strategies in

computer-assisted drug discovery

Daniel Reker and Gisbert Schneider @cmmm

Swiss Federal Institute of Technology (ETH), Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zirich, Switzerland

High-throughput compound screening is time and resource consuming, and considerable effort is
invested into screening compound libraries, profiling, and selecting the most promising candidates for
further testing. Active-learning methods assist the selection process by focusing on areas of chemical
space that have the greatest chance of success while considering structural novelty. The core feature of
these algorithms is their ability to adapt the structure-activity landscapes through feedback|Instead of
full-deck screening, only focused subsets of compounds are tested, and the experimental readout is used

Absti to refine molecule selection for subsequent screening cycles. Once implemented, these techniques have
High the potential to reduce costs and save precious materials. Here, we provide a comprehensive overview of
target the various computational active-learning approaches and outline their potential for drug discovery.
prior {

against omn-target emecis. |ne overall arug aeveiopment process couia be madae more emeclve, as well as 1ess . .
expensive and time consuming, if potential effects of all compounds on all possible targets could be considered, yet '||ng ra pldly
the cost of such full experimentation would be prohibitive. In this paper, we describe a potential solution: probabilistic d |.
models that can be used to predict results for unmeasured combinations, and active learning algerithms for efficiently and reveats
selecting which experiments to perform in order to build those models and determining when to stop. Using simulated libito I’ST

and experimental data, we show that our approaches can produce powerful predictive models without exhaustive
experimentation and can learn them much faster than by selecting experiments at random.

&

Active machine learning puts artificial intelligence in charge of a sequential, feedback-driven discovery
process. We present the application of a multi-objective active learning scheme for identifying small
molecules that inhibit the protein—protein interaction between the anti-cancer target CXC chemokine
receptor 4 (CXCR4) and its endogenous ligand CXCL-12 (SDF-1). Experimental design by active learning
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was used to retrieve informative active compounds that continuously improved the adaptive structure—
activity model| The balanced character of the compound selection function rapidly delivered new

Received 9th N ber 2015 " . . - .
scelve overnoer molecular structures with the desired inhibitory activity and at the same time allowed us to focus on




Classic use of inSilico to Guide Decisions

— Passive Learning

Make and !
test

Select .
Compounds I(SQUSIIEF?
with best model
response
\ Predict new
Compounds

Typically the QSAR build is only done once

The model is built and
validated on available data.

The model will be predictive for
new compounds it ‘knows’
about — ie the Known Knowns

The model doesn’t ‘learn’
anything new.

The rebuild cycle only rarely
gets triggered

Presentation title
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Iterate utilising the model(s) @

Active Learning
Make and ’ Rebuitdthe

test QSAR The model is built and
validated on available data.
7 The model is updated ever
Select ‘ CyC|e
Compounds Predict
f thesi tential .
sing Active | 3 v The choice of what to make
learning Compounds i i
strategies next is gwdeq by the needs of
the model to improve as well
Evaluate the . :
compounds as the programme objectives
for potency,
novelty and
uncertainty

Top N Novelty! Uncertainty!
Potency maybe
This looks That’s New! much higher
potent IERRGTES

The current model
predicts a low
confidence in the
prediction

_ The current model
Exploit does not have any
data in this space
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MMP12 50 x 50 monomer array
This is a fixed pool to test Active learning strategies

<

— Range of pIC50 (3.7 —8.0)
— MMP-12 data set (1704 compounds)
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— Initialize by randomly taking = 3% of the compounds
with activity < 6 (about 37 compounds)

— Take 20 compounds per iteration and run for 20
iterations

— Questions to test :
— Does Explore add value over just Exploit?
— When should | Explore?
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Automated Lead Optimization of MMP-12 Inhibitors Using a Genetic Algorithm

Stephen D. Pickett, Darren V. S. Green, David L. Hunt, David A. Pardoe, and lan Hughes

ACS Medicinal Chemistry Letters 2011 2 (1), 28-33
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Exploit —ie just picking the predicted Top 20 each
iteration (building a model after each round)

18 All Exploit sinulations
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Iteration

Activity




One round of Novel selection followed by Exploit

18: 1 Hovel then exploit simulations

Activity

a a 1@ 15
Iteration




Predicted activity

MMP 12, 4 novel then exploit @

Predicted {y} v Actual {x) activity for compounds selected {green) or not {red} in each iteration for HHP12 with 4 rounds Movel then Exploit
Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
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Actual activity

Initial iteration - all predictions are in range of activities found in training data
As RF model is used. Compounds with a whole range of activities are selected




Combining Active

“Live” project example

Learning with MPO Selection

Rebuild

Make and the
test QSAR
model

st ’ i
Co ®)oun .
ds for “ > Predict

synthesis o polgeerxl al
Active Compoun
Active
learnin COrﬁb‘oun ds
strategie: mpou
potency,
novelty
and
uncertaint
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Higher Batter

Lower Better

Middle Good

Middle Bad

Categorical (Text)

Model Uncertainty
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Active Learning — Example 2
Generating new series

Initial model, one series

AL

Uncertainty

Predicted activity

40 45 50 55 6.0 65 7.0 75 80 85

45 50 55 60 65 70 7 1 85

Measured activity

New chemotypes
19 compounds synthesized from AL model

based on uncertainty —looking for positive
surprises!

4x3 core presentation Insert your date / confidentiality text here
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Adaptive strategy - when to explore ?

Start 50% Explore - “GOOdenough”dependson;
oo Belen — Resource remaining

— Required/expected level of activity

y — Uses Exploit compounds as a way of
xploit good . . i . i
enough? seeing how well active learning is doing
Yes .
— Explore could be “Novel” in early
100% Exploit iterations, “Uncertain” in later
— Not aware of adaptive strategies in AL-LO
Exploit still literature
good

enough?




Driving Medicinal Chemistry using Active Learning @

Experiments selected to improve models as well as drive programme goals

— Use Experimental design to efficiently scope SAR
—  Sparse Arrays
— Build insilico models to predict key properties
— Choose experiments to enhance model building
— Embed Active Learning strategies to aid synthesis decisions

—  Explore and Exploit the model

Machine
o Learning
Model
MO
N
I
CH,
Hit W
o Active
Learning to

aid synthesis
selections

& @B o
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o
7
s
Lt
\Candidate
o}
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Free Wilson theory R1-Core-R2 @

— First mathematical technique for quantitative SAR
— Response = effect of Core + effect R1 substituent + effect of R2 substituent

Q @)
/[ Core/Linker J/
N
— Assumptions ° H

— No interactions between core and substituent
— No interaction between substituents (R-groups)

— Can only explore chemical space defined by R-group combinations in the training set




FW analysis of monomer contribution @

— AFree —Wilson analysis is a regression _Predicted vs. Actual

based approach to establish monomer ra0 ]

contributions to a predictive model 5 "
— Ahigh degree of fit suggests that the o inﬂ'

potency profile could be additive in / = B

nature. g . --.’?2' o

2 O g ”
— The presence of outliers may imply non- WL
additive behaviour an 1

monomers if the output appears to be non-
additive

5.78 —| ng Un
- - - L]
— Assess potential interaction terms between §'. £
2|
[ ]
:

5.00 5.46 5.91 6.37 6.83 7.28 7.74

Actual




Design of Experiments (DOE) @

— Experimental Design approaches are well established for the optimization of multi-factor
experiments, such as reaction conditions.

— Typically these domains utilize ‘continuous’ variables such as temperature, addition rate,
time etc

— Can these same techniques be use where each variable is categorical?




Example of a Sparse Array

1/3'd fraction from an 6 x 12 array

Scatter Plot

Scatter Plot
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Sparse Array Data Analysis

7.5

5.5

Predicted potency from FW model

Scatter Plot (2)

55

Measured potency

Statistical analysis was done
to evaluate ‘additivity’

Free Wilson model: Predicted
potencies were plotted
against measured potencies

The FW model show potential
excellent additivity with no
outliers.




Find the predicted most potent compounds

that haven’t already been synthesized @
Array
\ \ \
O @ .
c1 C2
() @ c3
% ca ‘ \ \
RG-R2 : c5 ce
(48 variants) &

Indazole R1

RG-R1 (12 variants)




Predicted Potency for the complete array of 576
compounds (Fit and Predict), only Actives (pic50>6.5 shown) @

RG-R2
(48 Variants)

Sulphonamide R2

Indazole R1

RG-R1 (12 Variants)



Start with an intent to model

Experimental Design - Sparse Arrays

Evaluate defined N-x M _combinataorial space with_a fractional subset

12 x 48 (576) sampled in 144 compounds

Design Make & Test Model bredict
Scatter Plot ‘ - Scatter Plot (2) : Array :
T o
| * o g Y ‘ ‘
% E p B i ]
== ‘ £ f = (] e
i > 5 e oo
RZ H P + 2 P £
8 HE= =| I ”f..- H
| } T = © - 2
— $ y > | o '] @
e ——] - ° 5; E a
i S “j#.
T =l
t ! . O |
I i —— i s Tl ®
Indazoles Indazole R1
Measured potency ndazole R1

R1

*12 monomers per R1
*3 monomers per R2




Learnings from experience @

— Ideally 3 examples minimum for each monomer within the design, although 2
will work for a robust assay and chemistry

— Need to have confidence in getting some active compounds
— If all the compounds are inactive its difficult to fit a model!

— Confidence in ability to synthesize compounds

— Some loss of particular compounds can be tolerated but if whole reactions
fail then the array design will be compromised




Summary @

— Experimental Design may provide an alternative /complementary strategy

— Initial exploration of new monomer space
— lIdentification of back up compounds
— Establish Addivity in the series

— Efficient Lead Optimisation by exploring more than one point of change at the same time on the molecular
template

— Can unearth some surprises which may never have been found by traditional processes

— The data set generated is perfect for building QSARs




The Chemist Centric Design Process
Everything goes through the chemist(s), decisions are anchored by knowledge and intuition

ijprf Data

&

Desired CP

g

Available Synthesis

reaaents
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Where are we heading? @

— Quantification is key to improving our processes
— Chemist intuition probably does not hold up to statistical analysis

— Simple models can add value to the design process, and better ones can spectacularly
improve it

— Molecule Design is experiencing a revolution
— Data, algorithms, computers
— Requires Business Process Reengineering for the larger companies
— In the near future, who and what constitutes a “Medicinal Chemist” will be very different




What if ...

We put systematic ideation and modelling at the centre of the process?
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MMP 12, 4 novel then exploit

Predicted (y) v Actual {x} activity for conpounds selected (green) or not (red} in each iteration for HHP12 with 4 rounds Hovel then Exploit

Tteration 1 Tteration 2 Iteration 3 Iteration 4 Iteration 5

Predicted activity

8 8 8 8 8 T T T T T T
5 F.5 : : : ;
7 7
B Ri}
1] 6
29 Ri}
5 5
9 T H.9
. L Ly, L .
s ﬁzmﬁmﬁ,\ TOTS B A 45 5 BR8P 7 75 8 4 45 5 pa B 7 75 B
8 T 8
45

a
55 6 6.5 7 ?.5 8 4 45 5 5.5 6 6.5 7 7.5 &

4 4 4
5.5 6 6.5 7 7.5 8 4 45 5 55 6 6.5 7 7.5 8

Actual activity

Model clearly improves after first iteration, but does not seem to get much
better by selecting more novel compounds




MMP 12, 4 novel then exploit

Predicted (y) v Actual {x} activity for conpounds selected (green) or not (red} in each iteration for HHP12 with 4 rounds Hovel then Exploit
Tteration 1 Tteration 2 Iteration 3 Iteration 4 Iteration 5

Predicted activity

a
449 9 Pdrafion®s” 7 70 B4 49 9 Pedafiants Pedration®s® 7 77 Pedration®s’

8

P " N T N N R S N A s S N S I S N A S S N S I S N A S S Y M S S N I S S O Y N S S
4 45 5 55 6 65 7 7.5 8 4 45 5 55 6 6.5 7 7.5 B8 4 45 5 55 6 6.5 7 7.5 8 4 45 5 55 G465 7 7.5 & 4 45 5 55 6 6.5 7 7.5 &

Actual activity

Start exploiting after iteration 4, compounds are highly active (are found at
right side of graph). Although some lower activity compounds are selected

good compounds are selected for all 6 exploit iterations




