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Lead Optimisation within Drug Discovery
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A multi-objective optimisation

3

Solubility

Absorption

Metabolic

stability

Safety

XDrug

Potency

X

Lead

PC1

P
C

2



The Lead Optimisation cycle

Design

Make

Test

Analyse

SAR

“Lead”

“Candidate”



The Lead Optimisation cycle

Design

Make

Test

Analyse

SAR

“Lead”

“Candidate”



The Lead Optimisation cycle

Design

Make

Test

Analyse

SAR

“Lead”

“Candidate”



The Lead Optimisation cycle

Design

Make

Test

Analyse

SAR

“Lead”

“Candidate”



The Lead Optimisation cycle

Design

Make

Test

Analyse

SAR

“Lead”

“Candidate”



The Discovery Cycle



An ideal opportunity for Machine Learning?



Quantitative Structure Activity Relationships: (QSAR)

– A QSAR is a mathematical relationship between a measured parameter (e.g. biological activity) and the chemical 

characteristics of the molecule that was measured

– since 1899 (and arguably1868)!
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Improving the optimisation process

“Screening Cascade”

in vitro

in vivo
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In order to have the most efficient optimisation

- Which compounds to make next?

- How to make them quickly?

- Which assays to run on which compound?



The nature of lead optimisation project data

Presentation title 13

Sparse & Imbalanced
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We put systematic ideation and modelling at the centre of the process? 

Models



Building BRADSHAW: GSK’s automated molecular design platform
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But how good is the current one? We shall have to quantify chemists’ intuition…



Quantitation case study

Hit 2 Candidate in 459 compounds



Method 1:

D(best compound known – activity achieved)



Method 2:

Kendall TAU

http://www.like2do.com/learn?s=Kendall_tau_rank_correlation_coefficient

 = 0.094 for our dataset

i.e. no correlation/optimisation



Simple model guided optimisation:

- build one QSAR model after 100 compounds, use it

No Need to Make These!

Saving = 

~25% time and resource (!)
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This is what real optimisation looks like

20 random start points followed by iterations of 20 selected compounds

MMP-12 optimisation using an evolutionary optimisation method (EDO)

Pickett, Green, Hunt, Pardoe, Hughes, Automated Lead Optimization of MMP-12, ACS Med. Chem. Lett.2011,2.28-33



Multi-objectives: potent, soluble, safe



EDO on our Case study

Best compound found in 100 compounds!



An example where EDO does not find the best molecule

Best molecule has Activity = 9.8



Project Telemetry

• Continual  model building
– Which endpoints are we now able to model?

– When can we model with confidence?
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When should we intervene and start using models?
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Using a language to describe optimisation steps
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Visualisation of chemical space sampling

Reflect on what has been done or illustrate what we propose to do next

Where have we been?

Where have we over/under sampled?

Did we miss anything?

Why did we end up here?



Another real life example (!)



Lessons learnt from collaboration with ECLT

• Iterative model building (EDO) can be an effective optimisation strategy

• Our public test set (single parameter MMP12) maybe too simple- most methods 

work

• Encoding chemical structure for optimal model performance is not a solved 

problem

• For “real life” projects, we may need to generate data for initial model building (cf

Chris Luscombe) before EDO-style optimisation

• Visualisation tools help people to understand what we are trying to achieve and 

reflect on previous performance

• Collaborating with people from different backgrounds and approaches is a 

productive and inspiring way of solving problems!
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