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Lead Optimisation within Drug Discovery
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A multi-objective optimisation
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The Lead Optimisation cycle
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The Lead Optimisation cycle
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The Discovery Cycle

“Screening Cascade”

in vitro

2-7 years




An ideal opportunity for Machine Learning?
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Quantitative Structure Activity Relationships: (QSAR)

— A QSAR is a mathematical relationship between a measured parameter (e.g. biological activity) and the chemical
characteristics of the molecule that was measured

— since 1899 (and arguably1868)!
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Improving the optimisation process
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In order to have the most efficient optimisation
- Which compounds to make next? Funetion
- How to make them quickly? Safety Hazard
- Which assays to run on which compound?
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The nature of lead optimisation project data
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What if?

We put systematic ideation and modelling at the centre of the process?
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Building BRADSHAW: GSK’s automated molecular design platform @
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On the quantification of models @

George Box
1919-2013
All models are wrong; some models are useful

For such a maodel there is no need fo ask the guesfion “ls fthe model

true?™. If "truth™ is fo be the "whoaole truth™ the answer must be "No™.
The only question of interest is
“Is the model illuminating and useful?“

For our purposes, the question might be rephrased:
The only question of interest is:
“Is the model better than the current one?“

But how good is the current one? We shall have to quantify chemists’ intuition...




Quantitation case study
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Method 1:
A(best compound known — activity achieved)




Method 2:
Kendall TAU

Kendall Tou Rank Correlation Coefficient

=

In statistics, the Kendall rank correlation coefficient, commmonly referred to as Kendall's tau coefficient (after the
Creek letter 7), is a statistic used to measure the ordinal association between two measured quantities. A tau test
is a non-parametric hypothesis test for statistical dependence based on the tau coefficient.

It is a measure of rank correlation: the similarity of the orderings of the data when ranked by each of the
quantities. It is named after Maurice Kendall, who developed it in 1938,[” though Gustav Fechner had proposed a
similar measure in the context of time series in 1897.[4

Intuitively, the Kendall correlation between two variables will be high when observations have a similar (or
identical for a correlation of 1) rank (i.e. relative position label of the observations within the variable: 1st, 2nd, 3rd,
etc.) between the two variables, and low when observations have a dissimilar (or fully different for a correlation of
-1) rank between the two variables.

Both Kendall's 7 and Spearman’s p can be formulated as special cases of a more general correlation coefficient.

Definition

Let (x5, 1), (22, y5), -, (X, ¥n) be a set of observations of the joint random variables X'and Yrespectively, such that all
the values of (z;) and (y;) are unigue. Any pair of observations (:cq;,‘yi) and (:I:j,yj}_ where ¢ # j, are said to be
concordant if the ranks for both elements (more precisely, the sort order by x and by ) agree: that is, if both
E; > xjand y; > Y;orif both #; < &; and y; < y;. They are said to be discordant, if £; > x; and y; < y;;orif
T; < zjandy; > y; Ifx; = &y ory; = yj;. the pairis neither concordant nor discordant.
The Kendall ? coefficient is defined as:

(number of concordant pairs) — (number of discordant pairs)

T n(n—1)/2 o

http://www.like2do.com/learn?s=Kendall_tau_rank_correlation_coefficient

= 0.094 for our dataset

i.e. no correlation/optimisation




Simple model guided optimisation:

- build one QSAR model after 100 compounds, use it @
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This is what real optimisation looks like

MDMP-12 optimisation using an evolutionary optimisation method (EDQO)

20 random start points followed by iterations of 20 selected compounds
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Multi-objectives: potent, soluble, safe

multi-objective optimization (m-EDO)

Best molecules foundin 1000 runs The boxplot of the molecule values achieved in
1000 runs at each generation with Mixture of
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EDO on our Case study

Best compound found in 100 compounds!
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An example where EDO does not find the best molecule

Best molecule has Activity = 9.8
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Project Telemetry

When should we intervene and start using models?

» Continual model building

— Which endpoints are we now able to model?

— When can we model with confidence?
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Using a language to describe optimisation steps

Extrapolate
High
confidence
High novelty

Novelty

Explore Exploit

Low High
confidence confidence
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Visualisation of chemical space sampling
Reflect on what has been done or illustrate what we propose to do next

Where have we been?

Where have we over/under sampled?
Did we miss anything?

Why did we end up here?




Another real life example (1)

~~

——CEmmman

—

~~
il TN

~




Lessons learnt from collaboration with ECLT @

* [terative model building (EDO) can be an effective optimisation strategy

 Our public test set (single parameter MMP12) maybe too simple- most methods
work

* Encoding chemical structure for optimal model performance is not a solved
problem

* For “real life” projects, we may need to generate data for initial model building (cf
Chris Luscombe) before EDO-style optimisation

* Visualisation tools help people to understand what we are trying to achieve and
reflect on previous performance

* Collaborating with people from different backgrounds and approaches is a
productive and inspiring way of solving problems!
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