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Overview

• Modelling regression in various forms with many variables,
p >> n
• n ≈ 100,p ∈ (100,10000)

• Fitting a ‘minimal prior’ distribution bringing out sizeable
effects without necessarily removing small effects which
may be important for following-up designs
• Nominally roots in Bayesian theory but a long stretch from

Rev Thomas Bayes (1763)
• Many flavours of Bayes (46656!, IJ Good, ’Good Thinking’)

Now even more with MCMC



Introduction

We look at the standard regression model

yi = α +

p∑
j=1

xijβj + εi

where response yi (eg activity), errors εi ∼ N(0, σ2), and
xij , j = 1, . . . ,p, are p measured variables (eg fragments) on
n < p observations, i = 1, . . . ,n.

Work over the past twenty year has looked at how to estimate α
and β if we believe that β is sparse (many of the regressors
zero or close to zero) but don’t know which. They try to improve
on methods of variable selection and regularisation (i.e. using
shrinkage).



Linear model with interactions

Suppose that we extend the regression model to include
interactions

yi = α +

p∑
j=1

xijβj +

p∑
j=1

i−1∑
k=1

xijxikγjk + εi .

Potentially many more interaction parameters than main
effects, combinatorial 2 from p.
An assumption often made is that an interaction (γjk ) parameter
will be close to zero if either main effects (βj or βk ) is close to
zero, often referred to as heredity, strong or weak : strong
heredity requires both main effects to be included, eg not near
zero. [Blood Glucose example]



General Additive Model (GAM)

The general additive model assumes that

yi =

p∑
j=1

fj(xij) + εi .

Suppose that fj(xij) is expressed in some basis function, gk ()
(such as a spline) with hyperparameters κk eg knots for splines.

fj(xij) = xijθj +
m∑

k=1

βjkgk (xij , κk ).



General Additive Model (GAM)

The general additive model becomes

yi =

p∑
j=1

xijθj +

p∑
j=1

m∑
k=1

βjkgk (xij , κk ) + εi

There are two-LEVELS of regularization problems here:
• Basis-level: The βj1, . . . , βjm have to be regularized.
• Variable-level: Removing a variable corresponds to setting
θj = βj1 = · · · = βjm = 0.

[Prostate data Example]



Multivariate extensions

• p variables on each of q responses eg [Activity, Solubility,
ClogP, Safety]
• Matrix of coefficients B(p × q)

• Perhaps structured as ’main effects’ and ’interaction’ for
shrinkage
• Errors in each regression typically correlated

Leverhulme Emeritus fellowship to exploit correlation,
2018-2020.



Sequential Design

• Sequential design, , perhaps ten observations at a time
• Can use Bayesian predictive distribution to choose the next

ten observations
• Maximise expected gain of Shannon information (Chaloner

& Verdinelli, 1996; Gramacy & Lee, 2012) for activity or
other responses.
• fills in where data is needed
• use an exchange algorithm to optimise (Wynn, 1972)



Hierarchical shrinkage

In all cases, the regression coefficients can be arranged in
levels.

Here we have two LEVELS but we can have more levels.

They have the property that:
• The shrinkages at different LEVELS are linked.
• There are different pressures on shrinkage at different

LEVELS (i.e. there is greater sparsity at higher levels).



Structure of Talk

• Shrinkage using continuous priors
• Hierarchical shrinkage priors
• Forms of heredity
• Comparative shrinkage propagation
• Example: Linear model with interactions
• Example: GAM



Bayesian variable selection / regularization

There are many proposed priors for Bayesian variable selection
and regularization including:
• Spike-and-slab priors (Mitchell and Beauchamp, 1988)
• Lasso prior (cf earlier Lasso with Penalisation motivation
• Horseshoe prior (Carvalho et al, 2010)
• Normal-Gamma (Caron and Doucet, 2008, Griffin and

Brown, 2010)
• Normal-Gamma-Gamma (Armagan et al, 2011)



Bayesian variable selection / regularization

These have a common form. The regression coefficients βi are
given the prior

βi ∼ N(0,Ψi), Ψi ∼ F

for some distribution F .

The one group priors assume that F is continuous.

Normal-Gamma: F = Ga(λ,1/(2γ2)).

Normal-Gamma-Gamma(λ, c,d): F = Ga(λ, γj), γj = Ga(c,d).
c controls heaviness of tails, scale d (Special case Horseshoe)



Log density of the Normal-Gamma prior with variance 2
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• λ = 0.1 (solid line)
• λ = 0.333 (dot-dashed line)
• λ = 1 (dashed line)



Shrinkage profiles for NG
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Figure: Shrinkage profiles for an NG prior with λ = 0.1, (solid line),
λ = 1 (dot-dashed line) and λ = 5 (dashed line) with γ = 1/SE2.

t = β̂/SE



Super efficiency and tail robustness priors

These are illustrated in Polson and Scott (2010).

Kuhlback Leiber super-efficiency relates the the prior having a
spike at zero, whereas tail robustness requires the prior to have
’fat’ tails (polynomial rather than exponential.)

For certain hyperparmeter values the Normal Gamma (λ, γ) is
super efficient since it has a spike at zero when λ ≤ 1 but is not
tail robust since it has exponential tails, whereas the NGG can
be both super efficient and tail robust, (includes horseshoe
prior).



Linear model with interactions

The linear model with interactions can be expressed as

yi = α +

p∑
j=1

xijβj +

p∑
j=1

i−1∑
k=1

xijxikγjk + εi

Priors for β’s and γ’s is a scale mixture of normals, i.e.

βj ∼ N
(
0,Ψj

)
, γjk ∼ N

(
0,Ψjk

)

The following hyperpriors for the Ψ’s includes the assumption
that γjk will be close to zero if either βj or βk are close to zero.

Ψj = ηj , Ψjk = ηjηkηjk .

Products promote strong , sums weak heredity



Shrinkage for products

Gamma priors can be given to all the η’s and so generalize the
Normal-Gamma prior.

We are interested in priors defined by products: Ψi =
∏Ki

j=1 ηsi,j

where si,1, . . . , si,Ki ∈ {1,2, . . . ,m}, η1, . . . , ηm are independent
and ηj ∼ Ga(λi ,bi).

This allows different Ψ’s to share the same value of η.

The shrinkage parameter of the product prior is
min{λsi,1 , . . . , λsi,Ki

}. This will allow us to control the shrinkage
at different levels of a hierarchical prior.



Sparsity of the priors

Linear model with interactions

ηj ∼ Ga(λ, δ) and ηjk ∼ Ga(λint ,1).

The shrinkage parameter of the main effects is λ and the
shrinkage of the interactions is min{λ, λint}.

GAM

ηj ∼ Ga(λgroup, δ) and ηjk ∼ Ga(λ,1).

The sparsity at the variable level is λgroup and at the basis level
is min{λ, λgroup}



Blood glucose

Previously analysed by Hamada and Wu (1992) and using a
LARS-based algorithm by Yuan et al (2007).

The data has one two-level factor and seven three-level factors.

The three-level factors are included as linear and quadratic
effects using orthogonal polynomials.

All interactions are included.



Blood glucose: Prior structure

NGG with heavy tail behaviour but finite variance (c = 2)

Adaptive shrinkage of main effects exponential mean 1 for λ1

Adaptive shrinkage of interactions, λ2 = rλ1 where r is beta
mean 1/3: interactions more aggressively shrunk

Scale parameter given a heavy tailed prior with mean 1



Blood glucose: regression coefficients
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Blood glucose: Ψ
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Blood glucose: posterior hyperparameters

λ1 0.48 (0.15, 2.71)
λ2 0.054 (0.018, 0.89)
d 2.69 (0.26, 27.9)



Out-of-sample predictive performance

The results are summarized by the root mean squared error
(RMSE) where the posterior predictive mean was used as the
estimated prediction; S&S denotes Slab and Spike Bayes

Blood glucose Ozone Boston housing
S&S strong heredity 13.0 4.0390 3.83
S&S weak heredity 11.4 4.0469 3.75
S&S relaxed heredity 12.2 4.0482 3.70
Hierarchical shrinkage 10.5 4.0272 3.40
Hierarchical lasso 14.4 4.0181 3.70



Prostate data

Data from a prostate cancer trial has become a standard
example in the regularization literature (Tibshirani, 1996, Zou &
Hastie, 2005). We use a GAM.

The response is the logarithm of prostate-specific antigen.

There are seven continuous predictors, one binary (svi):
• log(cancer volumne) (lv)
• log(prostate weight) (lw)
• age
• log(benign prostatic hyperplasia) (lbph)
• log(capsular penetration) (lcp)
• Gleason score (gl)
• percentage Gleason score 4 or 5 (pg)
• seminal vesicle invasion (svi)



Prostate data: regression coefficients

Effect of svi: Posterior medain = 0.58, 95% CI: (0.08,1.06).
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Figure: Prostate cancer data – the posterior distribution of the linear
effects βj (x) for each variable summarized as the posterior median
(solid line) and pointwise 95% credible interval (grey shading)



Prostate data: Ψ
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Figure: Prostate cancer data – posterior distribution of Ψ with
posterior median (cross) and 95% credible interval (solid line)



Discussion

• Hierarchical shrinkage priors can be defined using
products of Gamma or Gamma-Gamma random variables.
• These priors allow dependence of the shrinkage across

levels of the hierarchy and different pressures on shrinkage
at different levels.
• An aid to sequential design
• An Application to GAMs with interactions is included in the

published paper in Bayesian Analysis (2017)
• Multivariate exploiting correlation, yet to develop funded by

Leverhulme Emeritus Fellowship


