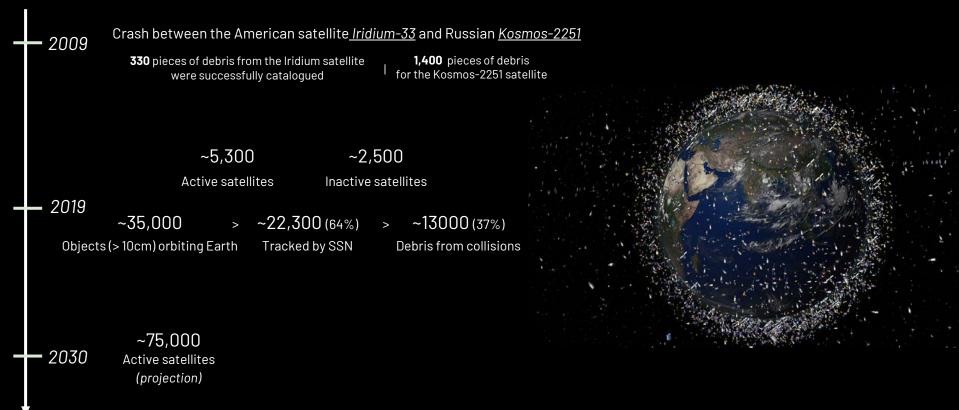


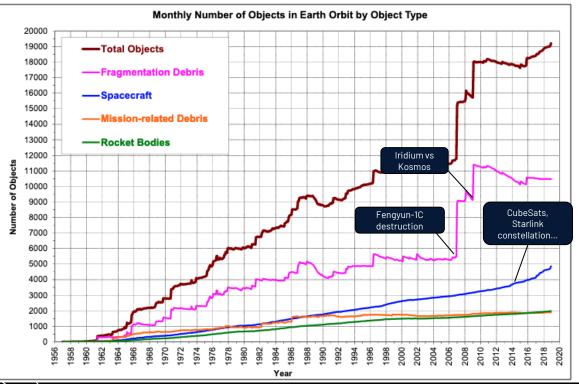
Automating Collision Avoidance Maneuvers On the use of available space monitoring data for improving the risk of collision avoidance

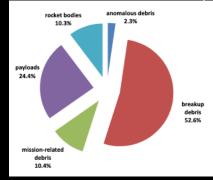
Prof. Adam F. Abdin, Assistant Professor


Laboratory of Industrial Engineering, CentraleSupélec, Université Paris Saclay

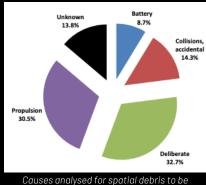
adam.abdin@centralesupelec.fr

Students : Nicolas BOURRIEZ; Adrien LOIZEAU; Susmitha Patnala

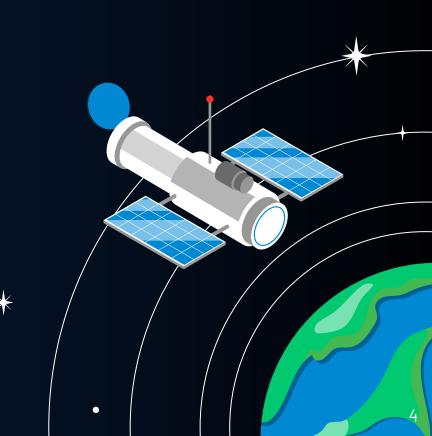

Kessler Syndrome


<u>"Trending analysis of historical conjunction data messages"</u>, 2019 "Space Navigator: a tool for the optimization of collision avoidance maneuvers", 2019

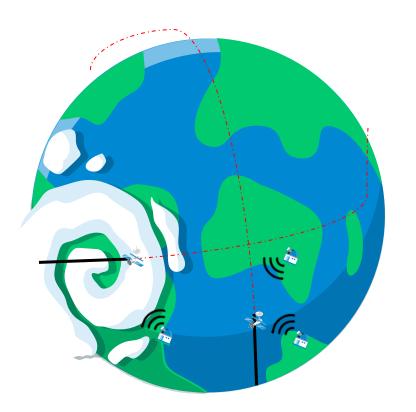
Orbit Debris Analysis



۲


Types of debris

NASA Orbital Debris Quarterly News (https://orbitaldebris.jsc.nasa.gov/quarterly-news/pdfs/odqnv23i1.pdf)



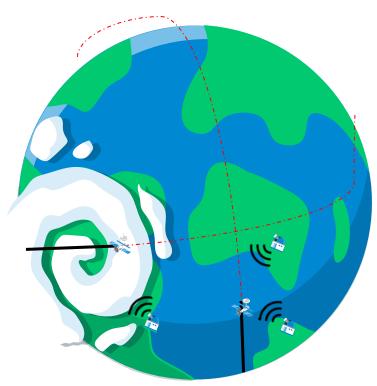
- 22040 Catelogued items in space and many more uncatalogued
- Collision models –MASTER(ESA), ORDEM(NASA)
- Lethality of debris depends on size, but no consensus reached
 - –> Aluminum sphere of 1cm of radius at 14km/s = 1MJ = 1500kg car at 130km/h.

–> Aluminum sphere of 1mm of radius at 14km/s = 1KJ = bowling pin at 100 ${\rm Km/h.^1}$

- Mean time between two successive collisions is inversely proportional to the size
- How to protect our spacecraft?? CAM -> for debris > 10cm else severe damage(CAM)

Global Objective: Determine within 7 days into the future which space objects/**debris** will come within proximity/**cunjunction** of a primary/protected asset (i.e. a satellite)

Objects type: Near-earth orbiting objects (< 225min revolution)


How: Assess the future <u>predicted</u> positions of both objects

Raw TLE (Two-Line Elements) received from Sensors & Radars Tracking (TDRSS, C-band, GPS)

State vector & **Covariance 7-day projection** (/min) (*Simplified General Pertubations-4* propagator)

What is the uncertainty in the propagated orbits?

- Normally distributed uncertainty [1]
- SGP4 model has an error ~1 km at epoch and grows at ~1–3 km per day [2]

What is behind the SGP4 Propagator algorithm ? [3]

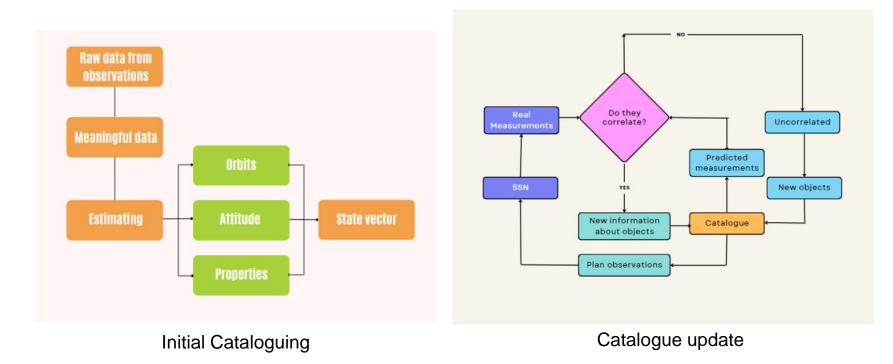
- **1.** Long-term propagation from Keplerian elements (Line 2 of TLE)
- 1. Short-term perturbations from external data (Line 1 of TLE)

[1] https://stacks.stanford.edu/file/druid:dg552pb6632/Foster-estes-parametric_analysis_of_orbital_debris_collision_probability
[2] https://celestrak.org/publications/AIAA/2006-6753/AIAA-2006-6753.pdf
[3] https://celestrak.org/NORAD/documentation/spacetrk.pdf

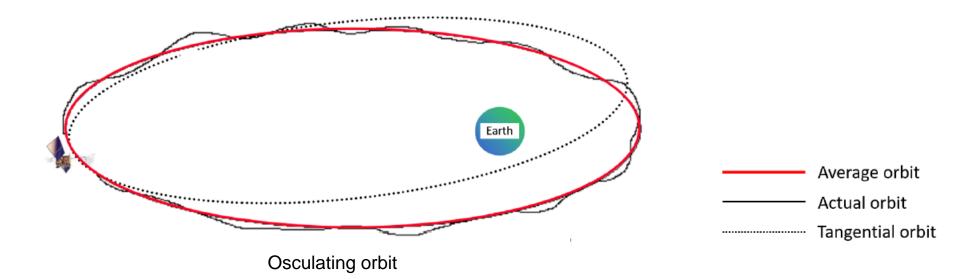
- $\bullet\,$ European space surveillance network EUSST database and catalogue –> 7 EU states collab. Source
- US Space surveillance network Open source data -> TLE data Source
- CDM US Joint Space Operations Center JSpOC
- SSN network

Initial Orbit Determination

- Principle (Kepler's method -> Taylor's expansion and dynamical model)
- \bullet Gauss method (3 pairs of angles) –> time-sequential and co-planar
- Gibbs method (3 position vectors) -> orbit from 3 position vectors


Orbit Determination

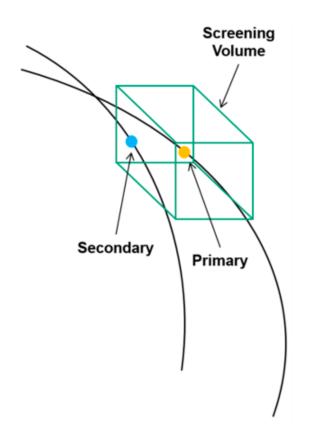
- Bayesian filtering -> prediction and correction
- Kalman filter (KF)
- Extended Kalman filter (EKF) -> For non-linear, we linearize using Taylor's expansion


Collision Risk Assessment

- Close approach detection
- Collision Data Message (CDM)
- Probability of collision

Cunjunction Event Prediction - Cataloguing by Space Surveillance Network (SST)

Cunjunction Event Prediction - Uncertainties Everywhere


 $a, e, i, \Omega, \omega, M \rightarrow \text{Osculating parameters}$

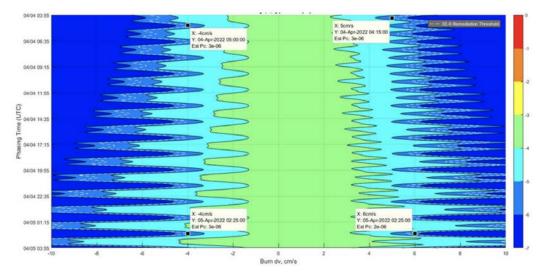
*Space Mechanics by B. Escudier & J.Y. Puillard

Cunjunction Event Prediction - Uncertainties Everywhere

- Size of orbital population is unknown, and time-varying
- Dynamics of orbital objects
 - Forces: Drag, Solar radiation pressure, Third-body, Earth potential…
 - External effects: Solar activity, Atmospheric density…
 - Behaviors: Unexpected manoeuvres of unknown nature
- Observation process of sensors
 - Measurement bias/noise, Atmospheric corrections
 - Missed detections, False positives
 - Origin object of measurement usually unknown

Close Approach Risk Assessment

- Using <u>projected</u> trajectories, assess if secondary object enters **screening volume**
- Screening volume is centered on the primary object (i.e. satellite)
- **<u>Probability of collision (Pc)</u>**: likelihood that the actual miss distance between the two satellites will be smaller than their combined size


=> this likelihood calculation assumes a probabilistic form because the ephemerides used to identify the conjunction represent predictions with uncertainty

$$PoC = \frac{1}{2\pi |Det(C)|^{1/2}} \iint_{x^2 + y^2 \le d^2} \exp\left(-\frac{1}{2}(\mathbf{r} - \mathbf{r}_{S/P})^T C^{-1}(\mathbf{r} - \mathbf{r}_{S/P})\right) dxdy$$

- $\pi = 3.141592653589793.$
- C is the 2X2 projection of the combined 3X3 covariance at TCA onto the collision plane²².
- Det(C) is the determinant of C.
- *d* is the sum of the two object sizes²³.
- "exp" is the exponential function, i.e., e to the power in parentheses with e = 2.718281828459045.
- $\mathbf{r} = (x, y)^T$ is any point in the collision plane such that $x^2 + y^2 \le d^2$.
- **r**_{S/P} = (r_{S/P}, 0)^T is the position of the secondary relative to the primary along the x-axis in the collision plane.
- C⁻¹ is the inverse of C.

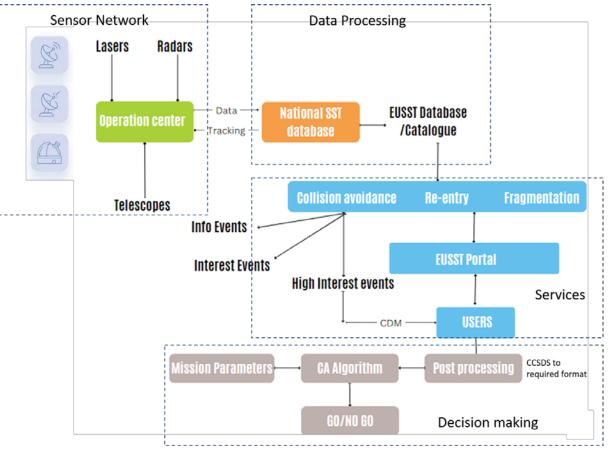
https://nodis3.gsfc.nasa.gov/OCE_docs/OCE_51.pdf

Close Approach Risk Mitigation

Maneuver trade-space plot

- CDM sent 3 days prior
- Either propulsion system or differential drag
- Manoeuver required when PoC > 1E-04[4]

[4] A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles


Existing data types

Data usage

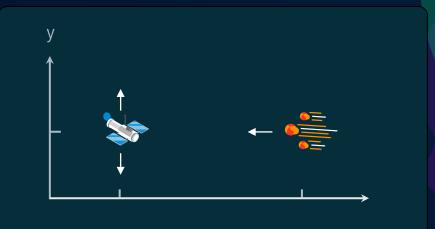
TLE	CDM		
Limited accuracy and precision	Provide precise and accurate information		
Limited information	Detailed analysis of potential collision		
Lack of real-time updates	Timely updates		
Assumes perfectly spherical earth	Perturbations are included		

Table: Comparison between TLE and CDM

From sensory data to decision making



Data handling framework

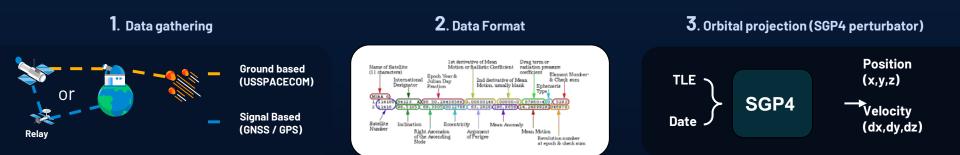

Automating Spacecraft Collision Avoidance

17

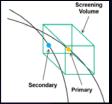
General Framework

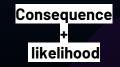
•

POMDP:

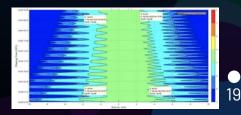

 $<\!\!\mathcal{S}_{ ext{tates}}$, $\mathcal{A}_{ ext{ctions}} \mathcal{O}_{ ext{bservations}} \mathcal{T}_{ ext{ransition}}$, $\underline{\mathscr{R}_{ ext{eward}}}$, $\gamma\!\!>$

julia


Collision avoidance



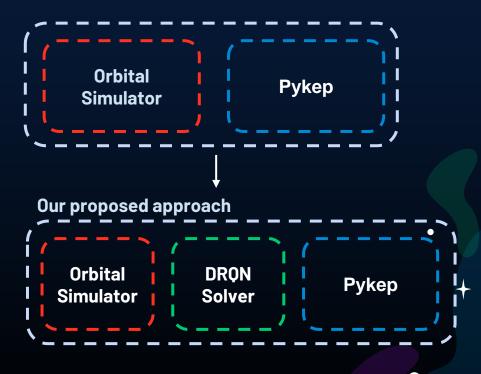
Cara: Conjunction Assessment Risk Analysis



2. Close Approach Risk Assessment

3. Close Approach Risk Mitigation

X


DATA FORMAT

🗶 TLE

Ӿ Private databases

X CDM

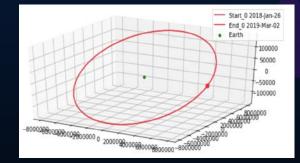
Scarcity of collision data

-

Model: POMDP

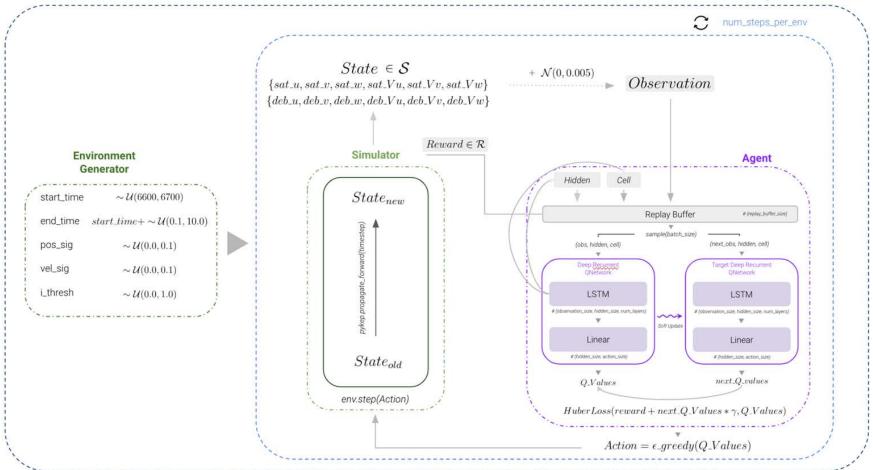
 $<\!\!\mathcal{S}$ tates , \mathcal{A} ctions , \mathcal{O} bservations, \mathcal{T} ransition , \mathscr{R} eward , $\gamma\!\!>$

S: Continuous u, v : (x, y, z, dx, dy, dz)


A: Discrete (625 actions) [0.0, 0.01, 0.05, 0.1, -0.05, time]

 \mathcal{T} : Model Free

O: Epistemic noise from SGP4 Noises from sensors


R: Collision probability Fuel level Trajectory deviation

 γ : Discounting rate

Solver - Deep learning

Dataset & Model

SIMULATOR

• Simple pipeline:

TLE Data Collection (SpaceTrack **API**/ Celestrack **JSON**)

Data Preprocessing (tle-tools/pandas)

Orbit Simulation (poliastro)

Next steps:

A more ready-to-use python simulator available
 ?

DATASET

- Historical TLE dataset publicly available
- BUT no precision on conjunction events -> hard to train RL algo without conjunction situations

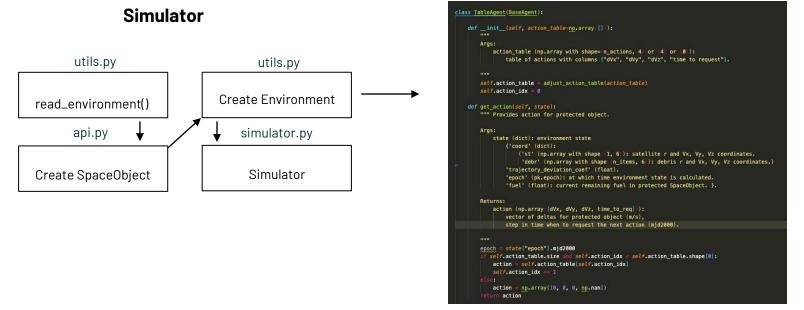
Next steps:

- Generate artificial TLE ?
- Correlate CDM with TLE ?

MODEL

- Actual simple pipeline helps understand the astrophysics -> helps to model the observations of our 3D problem
- BUT frequency of TLE data appears stochastic and object-dependent

Next steps:

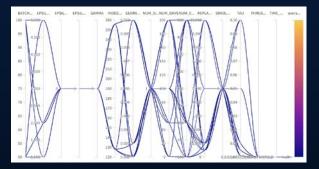

• Propagate each received TLE with SGP4 to a state vector ?

$\big[(X,Y,Z),(X',Y',Z')\big]$

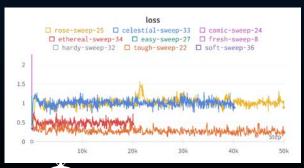
- Lambert method ?
- Use only TLE as observations ?

Pipeline

Agent

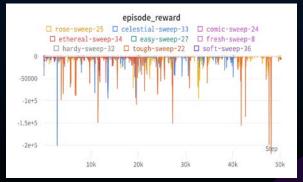

ti	me_mjd2000	epoch	protected_pos	protected_vel	debris_pos	debris_vel	alert	
0	6600.0000	2018-Jan-26 00:00:00	[-4209358.575576871, 6393808.673674893, -1080565.7993943808]	[5942.404053175507, 3627.609290210152, -1726.9822249887982]	[[2713394.019835856, -5280644.467331182, 6687217.586841969], [-496957.2053770637, 5019026.037633914, 5679853.592008259]]	[[-5985.48861375989, -2476.5442529082225, 1818.0490459729094], [3360.027219101076, 4914.968848441329, -4147.126471761581]]	{'is_alert': False, 'info': {}}	→ prote
	6600.0007	2018-Jan-26 00:01:00.480000	[-3843511.679768749, 6603006.401406782, -1183254.428461531]	[6152.521714303881, 3288.493346969752, -1667.9141353355612]	[[2348766.3802139875, -5425029.346431939, 6790366.05281432], [-293028.64093000744, 5307767.429083958, 5419724.026258173]]	[[-6069.989596000446, -2297.889672149641, 1593.132833811351], [3381.777273102908, 4630.625922316658, -4452.743071270137]]	{'is_alert': False, 'info': {}}	prote prote deb
2	6600.0014	2018-Jan-26 00:02:00.960000	[-3465541.322440386, 6791376.538647311, -1282210.7711207657]	[6343.208206753268, 2939.046604699317, -1603.592518872451]	[[1979444.158502754, -5558577.62091522, 6879950.104785391], [-88124.02781972336, 5578825.388436893, 5141538.5614142455]]	[[-6140.796644937557, -2118.2627835560493, 1369.5630667021776], [3392.288463640473, 4330.354465700382, -4744.037122299136]]	{'is_alert': False, 'info': {}}	det
3	6600.0021	2018-Jan-26 00:03:01.440000	[-3076640.9493011767, 6958327.315087309, -1377123.1453971958]	[6513.870295530154, 2580.3665031965206, -1534.2201291482263]	[[1606243.829369231, -5681243.215600596, 6956063.977468491], [117074.48328442452, 5831265.328088557, 4846194.911804498]]	[[-6198.299937592521, -1938.0794949060469, 1147.756761300748], [3391.4870592992083, 4015.1158741124027, -5019.9748159507635]]	{'is_alert': False, 'info': {}}	

Agent(

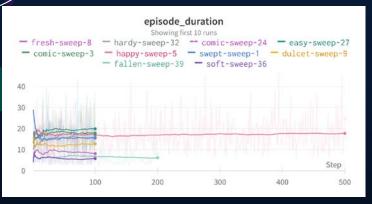

protected_pos, protected_vel, debris_pos, debris_vel)

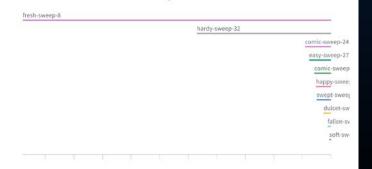
Experiments

Evaluating best hyper parameters


Best loss

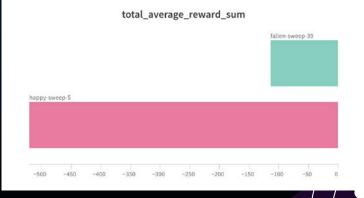
Best total reward sums


Best episode rewards


0

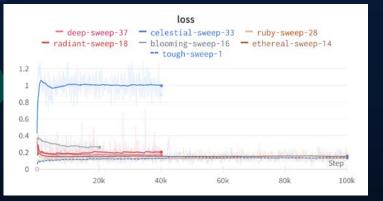
1 environment

All the runs



total_average_reward_sum

Converging vs diverging



 \bullet

200 environments

All the runs

Converging vs diverging

total_average_reward_sum

deep-sweep-37

CentraleSupélec

5

Thank You

Asst. Prof. Adam Abdin – CentraleSupelec – @ESA_Lab CentraleSupelec

adam.abdin@centralesupelec.fr

Students : Nicolas BOURRIEZ - Adrien LOIZEAU - Susmitha Patnala

