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Abstract. We propose a decomposition method for the solution of
a dynamic portfolio optimization problem formulated as a multistage
stochastic program. The method leads to the problem time and nodal
decomposition in its arborescent formulation applying a discrete version
of the Pontryagin Maximum Principle. The solution of the decomposed
problems is coordinated through a weighted fixed-point iterative scheme.
The introduction of an optimization step in the weights choice at each
iteration leads to a very efficient solution algorithm.
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1 Introduction

The stochastic programming approach to financial optimization, and dynamic
portfolio management in particular, is well documented in the literature, see,
for example, [3], [13], [14], [15], [16], [23], [24], and [46]. For a collection of
stochastic programming applications in many different fields and a survey of
publicly available stochastic programming codes see [45].

In this contribution we propose a solution approach for a dynamic
portfolio optimization problem formulated as a sequential decision problem
under uncertainty in discrete time, in the framework of multistage stochastic
programming.

We assume a discrete probability distribution for the vector stochastic process
underlying the decision problem, whose dynamics can then be conveniently
described using a scenario tree structure. These assumptions together with the
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specification of the non-anticipativity constraints – in explicit or implicit form
– allow us to recast the problem into a large-scale deterministic equivalent
optimization problem. As further discussed in the sequel the large scale
problem needs not be linear and is indeed well suited for the application of
a decomposition solution algorithm applied to general nonlinear problems.

The scheme exploits the main features of the stochastic programming
formulation and the discrete time version of the Pontryagin Maximum Principle,
and overcomes the difficulties associated with rapidly increasing problem
dimensions. The approach allows a solution method which applies to the
deterministic equivalent problem written in arborescent form, based on a time
decomposition and a further nodal decomposition of the problem.

In section 2 we briefly discuss the non-anticipativity property of the decision
process and the formulation of the non-anticipativity constraints either in
implicit or explicit form. Section 3 reviews the main solution approaches
proposed in the literature. In section 4 we present the dynamic portfolio
problem. In section 5 we describe our solution method. In section 6 we provide
some computational results comparing the proposed approach with the time
decomposition in the case of explicit non-anticipativity constraints and with the
direct solution of the deterministic equivalent problem. Moreover we present
some results on dynamic investment experiments using data from the Italian
market and applying the proposed solution method. Section 7 concludes.

2 Implicit versus explicit non-anticipativity constraints

Scenario trees provide a common method to characterize uncertainty in a
stochastic optimization problem. This can be done assuming that the probability
distribution P of the random quantities affecting the problem solution can be
described or approximated by a discrete distribution with a finite number of
possible outcomes.

The discrete distribution can be represented through an event tree with nodes
associated with the realizationas of the stochastic quantities. The structure of
the event tree is related to information arrival process. In a multistage framework
information is revealed through time and at each stage the decision process can
depend on decisions made at previous stages and realizations of the stochastic
quantities up to that point, but cannot anticipate future outcomes. We say that
the decision process is measurable with respect to the current sigma-algebra and
all decisions are made in the face of residual uncertainty.

The introduction of an event tree to describe uncertainty, that is a finite
number of possible outcomes at each stage t, allows us to formulate the
deterministic equivalent problem which can have implicit or explicit non-
anticipativity constraints (see, for example, [7]). The resulting problem is
characterized by large dimensions and a block diagonal structure of the
constraint matrix. We obtain a sparse large-scale optimization problem ideal
for the application of a decomposition solution method.
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The definition of the non-anticipativity constraint is central to the
formulation of multistage stochastic programming problems and the choice of
the most suitable solution approach. Non-anticipativity can be forced in explicit
or implicit form.

In the case of explicit constraints we split the event tree path-wise and the
decision process – every node has an associated local decision problem – follows
the scenario evolution. The decision hierarchy is in this case forced along every
scenario consistently with the original tree strcture. The procedure leads to S
dynamic problems, where S represents the number of scenarios, characterized
by the same time structure where each scenario describes a unique path from
the root of the tree to the leaf node. Non-anticipativity constraints are thus
added explicitly to ensure feasibility of the decisions with respect to the set of
information constraints.

In the case of implicit constraints the property of non-anticipativity is
automatically fulfilled by introducing a unique vector of decision variables for
each node of the tree making sure that the random coefficients of the problem
are properly associated.

Both in the cases of explicit and implicit non-anticipativity constraints, a
deterministic optimization problem is obtained from our multistage portfolio
optimization model that can be tackled in the framework of discrete time optimal
control problem with mixed constraints.

In the first case, already analyzed in [1], we relaxed the non-anticipativity
constraints obtaining separability with respect to scenarios and then solved each
scenario problem as a deterministic discrete time optimal control problem, see
[11] and [12].

In this contribution we propose a new decomposition method, based on
discrete time optimal control applied to the nodal formulation of the problem
with implicit non-anticipativity constraints, which leads to time and nodal
decomposition.

3 Solution approaches and decomposition methods

As widely pointed out in the literature (see, for example, [27], [38], [42], and
[44]), the dimension of the deterministic equivalent problem, obtained from real
applications, is frequently too large to be tractable by direct solution.

These problems present special structures which can be approached with
solution methods based on decomposition. According to the literature see,
for example, the review in [5], solution approaches for multistage stochastic
programming problems can be broadly classified into two main groups.

In the first group we include general purpose algorithms specialized to
improve the data structures and the solution strategies according to the problem
features, i.e. sparsity or block diagonal structure of the coefficient matrix. Among
these approaches we may cite [6], [8], [20], and [25].
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In the second group we consider decomposition approaches which take
advantage of the stochastic program structure aiming at reducing the original
problem into a collection of small and easy-to-solve sub-problems.

Within decomposition methods we can also distinguish between methods
that result in a nodal decomposition and methods that produce a scenario
decomposition of the original problem.

In the first case the original problem is decomposed into a collection of
subproblems each related to a node in the event tree see, for example, [4], [9],
[17], [21], [39], [41], and [43].

In the second case each subproblem corresponds to a scenario and the original
problem is decomposed according to the stochastic component, see, for example,
[28], [29], [31], [36], and [40].

In [38] the authors propose an augmented lagrangian decomposition method
that can be applied to obtain either a decomposition according to stages or a
decomposition according to scenarios.

For decomposability features in the framework of large-scale linear-quadratic
programming and discrete time optimal control problems see [34], [35], and [37].

For a review of decomposition methods and for more extensive references on
solution approaches see [5] and [42].

We propose here a decomposition method for the solution of a
dynamic portfolio optimization problem formulated as a multistage stochastic
programming problem. The proposed method, that combines the main features
of the stochastic programming formulation and a discrete version of the
Pontryagin Maximum Principle, to obtain a time and nodal decomposition of
the original problem.

The method allows nonlinear objective functions which arise in portfolio
theory due to risk-averse investors and to exploit the time-decomposability
feature provided by discrete time optimal control problems.

The motivation for the development of this method arises from the portfolio
management problem but the formulation is quite general and can be adapted
to a broader class of problems dealing with planning under uncertainty where
the dynamics are linear and the objective function is additive in time.

4 The portfolio model

We consider a dynamic portfolio optimization problem over a finite horizon [0, T ].
Key features of the model from a financial viewpoint are the explicit inclusion the
transaction costs and a risk averse utility function for the investor. The model
includes also restrictions on short-selling and borrowing.

For a review of discrete time dynamic portfolio management models see [14],
[22], [30], and [47].

Uncertainty is modeled by a discrete time, discrete state stochastic process
represented by an event tree. We assume a general structure for the tree. At
time t = 1, . . . , T there are Kt −Kt−1 nodes denoted by kt = Kt−1 + 1, . . . , Kt,
while at time t = 0 there is a root node denoted by k0 ≡ K0 from which the tree
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originates. Let b(kt) be the ancestor of node kt in the previous period, where
b(k1) = k0, and let d(kt) = 1, . . . , D(kt) be the descendants from node kt in
the subsequent period. At the planning horizon there are S = KT −KT−1 leaf
nodes. Each path connecting the root node with a leaf node is a scenario, i.e. a
sequence of possible realizations. Therefore S is the number of scenarios which
corresponds to the number of leaves of the tree. The probability of each scenario
is denoted by πkT

, with πkT
> 0 and

∑KT

kT =KT−1+1 πkT
= 1.

At the initial time t = 0 the prices of the risky assets are known while prices
and returns at future dates are described by a stochastic vector process. At each
trading date, conditionally on previous information, the distribution of prices
and returns of risky assets is described by a finite number of realizations which
correspond to the time-t, Kt −Kt−1 nodes.

The model includes purchase and sale variables for each risky asset and a
liquidity component (see, for example, [10]). We denote with I = {1, . . . , n + 1}
the set of assets among which we can choose the composition of the portfolio;
there are n risky assets and a liquidity component, denoted by n+1. We denote
with xkt = (x1kt , . . . , xn+1 kt) ∈ Rn+1 the vector of the amounts of each asset
held in node kt, with akt = (a1kt , . . . , ankt) ∈ Rn the vector of the amounts
of each risky asset purchased in node kt, and with vkt = (v1kt , . . . , vnkt) ∈ Rn

the vector of the amounts of each risky asset sold in node kt. The transaction
costs, cta and ctv, are expressed as a percentage of the amount of purchased and
sold assets; moreover we set d+ = (1 + cta) and d− = (1− ctv). rkt denotes the
return rate on the liquidity component of the portfolio in the period [t − 1, t];
ρkt = (ρ1kt , . . . , ρnkt) is the vector of return rates on the risky assets in the
period [t − 1, t] moving from node b(kt) to node kt. U(·) denotes a risk averse
utility function.

We denote with K̂ = {kt : kt = Kt−1 + 1, . . . ,Kt, t = 1, . . . , T} the set of
nodes in the tree from time t = 1 to t = T and with K̃ = {K0} ∪ {kt : kt =
Kt−1 + 1, . . . , Kt, t = 1, . . . , T − 1} the set of nodes from time t = 0 to time
t = T − 1.

The deterministic equivalent model with implicit non-anticipativity
constraints in arborescent form is

max
xkt , kt ∈ K̂

akt , kt ∈ K̃

vkt , kt ∈ K̃

KT∑

kT =KT−1+1

πkT
U(1′xkT

) (1)

s.t.
xi kt = (1 + ρi kt)[xi b(kt) + ai b(kt) − vi b(kt)] kt ∈ K̂, i = 1, . . . , n (2)

xn+1 kt = (1 + rkt)[xn+1 b(kt) − d+1′ab(kt) + d−1′vb(kt)] kt ∈ K̂(3)
xk0 = x̄ (4)
akt ≥ 0 kt ∈ K̃ (5)
vkt ≥ 0 kt ∈ K̃ (6)
xkt ≥ 0 kt ∈ K̂. (7)
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where 1′ denotes a row vector of proper dimension with all components equal
to one. The wealth in each node is given by the value of the portfolio and xk0

denotes the initial endowment. The objective (1) is to maximize the expected
utility of final wealth. Constraints (2) and (3) represent the asset inventory
constraints and the cash balance equations, respectively. Borrowing and short
selling are not allowed.

5 Decomposition of the problem

We follow the convention that variables akt
, vkt

and xkt
are determined in node

kt at time t = 1, . . . , T − 1 according to the following scheme.

½¼

¾»

½¼

¾»xkt

b(kt)

t− 1

kt

t

akt

vkt

xb(kt)

ab(kt)

vb(kt)

ρkt

Fig. 1. Decision variables for t = 1, . . . , T − 1.

where b(k1) = k0 denotes the root node and xb(k1) = xk0 = x̄ is the initial
endowment. The variables xkt , kt ∈ K̂ denote amounts available at the end
of the period associated with returns that mature in the period [t − 1, t]. For
t = T , i.e., the leaf nodes in the tree, no investments and dis-investments are
allowed, and only the variables xkT appear to denote the final composition of
the portfolio:

In equation (2) and (3) we can recognize an implicit dynamics from time
(t − 1) to time t. Exploiting this feature we can write problem (1)-(7) as a
discrete time optimal control problem where xkt represent the state variables
and akt and vkt the controls. To this aim we reformulate the problem in order to
avoid the non negativity constraints on the state variables. Taking into account
equations (2) and (3), the non negativity constraints (7) become

xi b(kt) + ai b(kt) − vi b(kt) ≥ 0 i = 1, . . . , n (8)

xn+1 b(k) − d+1′ab(kt) + d−1′vb(kt) ≥ 0. (9)
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½¼

¾»

½¼

¾»
xkT

b(kT )

T − 1

kT

T

xb(kT )

ab(kT )

vb(kT )

ρkT

Fig. 2. Decision variables for t = T .

5.1 Time and nodal decomposition

Problem (1)-(6) together with (8)-(9) can be written as a discrete time optimal
control problem, with mixed constraints, where the dimensions of the state and
control variables vary with time (see [35]).

Let x(t) = (xKt−1+1, . . . , xKt
) be the vector of state variables at time t, with

t = 1, . . . , T and u(t) = (uKt−1+1, . . . , uKt) be the vector of control variables
at time t, with t = 1, . . . , T − 1 and for t = 0 u(0) = (uk0). The discrete time
optimal control problem is

max
u(0),...,u(T−1)

{LT (x(T ))} (10)

x(t + 1) = A(t)x(t) + B(t)u(t) + q(t) (11)
x(0) = x0 (12)
G(t)x(t) + H(t)u(t) + r(t) ≤ 0 (13)
u(t) ≥ 0 (14)

t = 0, . . . , T − 1

where the matrices in (11) and (13) are characterized by time varying dimensions
and have block structure as follows

A(t) =







A1

...
AD(Kt−1+1)




Kt−1+1

. . . 0

...

0 . . .




A1

...
AD(Kt)




Kt




(15)
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B(t) =







B1

...
BD(Kt−1+1)




Kt−1+1

. . . 0

...

0 . . .




B1

...
BD(Kt)




Kt




(16)

q(t) = 0 r(t) = 0 (17)

G(t) =




GKt−1+1 . . . 0
...

...
0 . . . GKt


 H(t) =




HKt−1+1 . . . 0
...

...
0 . . . HKt


 . (18)

The sub-matrices are defined as

Akt =
(

diag(1 + ρi kt) 0
0 (1 + rkt)

)
(19)

Bkt =
(

diag(1 + ρi kt) −diag(1 + ρi kt)
−(1 + rkt)d

+1′ (1 + ri kt)d
−1′

)
(20)

Gkt = −In+1 Hkt =
(

0 In

d+1′ −d−1′

)
. (21)

Let ψ(t + 1) be the lagrangian multipliers associated with the dynamics of
the state variables at each time t and with λ(t) the multipliers associated with
the mixed constraints. The generalized Hamiltonian is then

H̃(x(t), u(t), ψ(t + 1), λ(t)) = ψ(t + 1)′[A(t)x(t) + B(t)u(t)] +
λ(t)′[G(t)x(t) + H(t)u(t)] (22)

Applying a discrete version of the Pontryagin Maximum Principle [32], we
obtain for any time t the necessary, and in this case also sufficient, optimality
conditions which can be written as the optimality conditions for a saddle point
problem of the generalized Hamiltonian. These optimality conditions can be
separated in time and reorganized into four different subproblems.
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The resulting decomposed problems are

x(t + 1) = A(t)x(t) + B(t)u(t) (23)

x(0) = x̄ (24)

ψ(t) = A(t)′ψ(t + 1)−G(t)′λ(t) (25)

ψ(T ) =
∂LT (x(T ))

∂x(T )
(26)

8
>>>><
>>>>:

maxu(t){ψ(t + 1)′B(t)u(t)}

H(t)u(t) ≤ −G(t)x(t)

u(t) ≥ 0

(27)

8
>>>><
>>>>:

minλ(t){−[G(t)x(t)]′λ(t)}

H(t)′λ(t) ≥ B(t)′ψ(t + 1)

λ(t) ≥ 0

(28)

t = 0, . . . , T − 1.

Given the block-diagonal structure of the matrices involved in problems (23)-
(28) a further decomposition arises. Let xkt be the vector of decision variables
at time t in node kt; and ukt the vector of controls at time t in node kt. For each
t conditions (23)-(28) can be decomposed with respect to the nodes of the event
tree at time t.

The resulting sub-problems are

xkt = Aktxb(kt) + Bktub(kt) kt ∈ K̂ (29)
xkt(0) = x̄ (30)

ψkt =
D(kt)∑

j=1

A′jψj −G′kt
λkt kt ∈ K̃ (31)

ψkT
=

∂LT (xkT )
∂xkT

(32)





maxukt

{[∑D(kt)
j=1 ψ′jBj

]
ukt

}

Hktukt ≤ −Gktxkt

ukt ≥ 0

(33)

kt ∈ K̃.
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



minλkt
{−[Gkt

xkt
]′λkt

}

H ′
kt

λkt ≥
∑D(kt)

j=1 B′
jψj

λkt
≥ 0

(34)

kt ∈ K̃.

Conditions (29)-(34) can be solved separately in the framework of an iterative
scheme which is presented in the next subsection.

Applying a discrete version of the Maximum Principle to the arborescent
formulation of the multistage stochastic programming problem we have obtained
a time and nodal decomposition of the dynamic portfolio problem.

The main advantage is that the deterministic equivalent problem can be
tackled solving a number of smaller and easier subproblems linked together.

The proposed time decomposition applies both to the problem in the case
of implicit non-anticipativity constraints and to the problem with explicit non-
anticipativity constraints. In the first case it is self contained and allows to obtain
a further nodal decomposition of the problem while, in the second case, it must
be jointly applied with a solution approach that supplies scenario decomposition.
We refer to [1] for the development of this time decomposition in the case
of explicit non-anticipativity constraints in conjunction with the Progressive
Hedging Algorithm [36], and to [2] for an application of the method to a dynamic
tracking error portfolio problem.

5.2 The iterative solution scheme

To obtain the optimal solution of the global problem (10)-(14) we apply an
iterative scheme in which, at each iteration, we first solve conditions (29)-(34)
separately for each time t and node kt, and then adopt an iterative fixed-point
update

yν+1 = F (yν) (35)

where F is the transformation defined by conditions (29)-(34). We set yν =
{xkt , kt ∈ K̂}; and for each ν the next value yν+1 is obtained solving the four
subproblems for each t and each kt. At the first step an initial admissible solution
y0 is obtained substituting an initial admissible sequence for the controls in (29)-
(30). The admissible sequence in the case of the portfolio problem is ukt ≡ 0
for all kt ∈ K̃. The values obtained from the first subproblem for all kt and the
initial admissible sequence for the controls are used as initial conditions to obtain
initial values for λkt and ψkt for all kt through conditions (34) and (31)-(32),
respectively.

The iterative scheme is applied to (35) according to the mean value iterative
method introduced by Mann (see [26], [19], and [33]) which at each step of
the algorithm considers a weighted average of the admissible solutions found
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in previous steps. Let zν be the weighted average of optimal solutions up to
iteration ν and z0 = y0. The mean value iteration scheme is defined as

yν+1 = F (zν) (36)

zν =
ν∑

i=1

δν
i yi (37)

where δν
i denotes the elements of the ν-th row of an infinite triangular matrix

∆ with the following properties

δν
i ≥ 0 ∀ν, i (38)

δν
i = 0 ∀i > ν (39)
i∑

j=1

δν
j = 1 ∀i. (40)

Different matrices ∆ can be applied, among them the Cesáro matrix (see [26]).
To improve the speed of convergence we introduce an optimization step which
allows us to choose the weights in an optimal way with respect to the objective
function of the original problem.

At each step ν of the iterative scheme we do not fix a priori the weights,
δν = (δν

1 , . . . , δν
ν ), as in the Cesàro matrix, but we look for the coefficients best

choice, as the solution of:

max
δν

f(δν) (41)

ν∑

i=1

δν
i = 1 (42)

δν
i ≥ 0 ∀i = 1, . . . , ν. (43)

where f is the objective function (1) of the portfolio problem in which the
decision variables xkT are substituted with the linear combination of the values
obtained at previous iterations expressed as functions of δν .

At each step of the iterative scheme the feasibility of the proposed solution,
zν , is guaranteed by the constraints imposed on δ, since the feasible region of
the original problem is convex.

For example, if f is a quadratic utility function of the form f(w) = w− aw2,
where w denotes the wealth at the end of the horizon, problem (41)-(43) is
a quadratic optimization problem which is rather easy to solve. In general,
if f is nonlinear it is possible either to directly solve the resulting nonlinear
optimization problem or to consider a linear-quadratic approximation to f(δ) in
(41) and solve the resulting quadratic optimization problem. The weights must
satisfy constraints (42) and (43) and that choosing the weights in an optimal
way improve considerably the convergence speed of the iterative scheme.
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The number of variables of the optimization problem (41)-(43) increases
linearly with the number of iterations of the fixed-point scheme, which ultimately
depends on the precision required for the optimal solutions.

The convergence of the iterative scheme is monitored through two different
stopping criteria. The first relates the objective function while the second
applies to the sequence of the proposed solutions. If we denote with ε1 and
ε2 the parameters for the precisions, we require that ||fν − fν−1|| ≤ ε1 and/or
||zν − zν−1||∞ ≤ ε2.

This improvement in the iterative scheme has a minor impact in the case
of PMPTD (Portfolio Maximum Principle Time Decomposition, see [1]). In
that case, however, the major concern for the convergence is the outer iterative
procedure governed by the Progressive Hedging Algorithm. The main drawback
of PHA, which is widely documented in the literature, is the sensitivity of the
convergence speed and solution accuracy to the penalty parameter involved in
the augmented objective function.

6 Computational results

We test our solution method against two other methods to solve problem (1)-
(7). The first method, referred to as PMPTD, applies the Progressive Hedging
Algorithm obtaining a scenario decomposition and solves each scenario problem
applying the Maximum Principle that brought a time decomposition (see [1]).
The second method, referred to as ICGLOBAL (Implicit Constraints Global),
solves the global deterministic-equivalent optimization problem with a general
purpose routine without exploiting the structure. Our method, that applies
the Maximum Principle to the deterministic equivalent problem written in
the arborescent form, is denoted by ICMP (Implicit Constraints Maximum
Principle).

In our tests we consider a quadratic utility function in (1), as a consequence
the objective function (41) is quadratic in the vector of weights δ. Let w be the
vector whose elements are the final wealths in each scenario, that is the values
of the portfolio, corresponding to the vectors of the amounts y. W is the matrix
whose columns are given by the vectors wi, i = 1, . . . , ν obtained in the first ν
iterations of the fixed-point scheme. Moreover using the vector of probabilities
assigned to each scenario, π, and denoting Π = diag(π) a diagonal matrix that
has the elements of π as diagonal elements we obtain for (41) the expression

f(δ) = π′Wδ + aδ′W ′ΠWδ (44)

We consider a set of test problems with increasing number of scenarios and
risky assets. To generate the scenario trees we apply an historical simulation
approach using data from the Milan Comit Indexes quoted in the Italian stock
market. The dataset ranges from November 28, 1996 to September 14, 2006.
The Indexes data history is presented in Figure 3. In Table 1 we present a set
of descriptive statistics on the log-returns obtained from the time series of the
indexes. We apply a simultaneous bootstrapping techniques across all time series
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to generate return scenarios over different horizons. We consider regular 3-period
scenario trees and for each node we randomly choose from historical returns the
realization for the descendant nodes. The resulting random return dynamics
are thus model independent and eliminate, if present, serial correlation. The
procedure is repeated for each node in the tree from t = 0 to t = T − 1.
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Fig. 3. Values of the Comit Sector Indexes: Banking, Communication, Estate, , Food,
Industrial, Insurance, Transportation & Tourism, for the period November 28, 1996 to
September 14, 2006.

Table 1. Statistics on the logarithmic returns for the Comit Sector Indexes in the
period December 5, 1996 to September 14, 2006.

mean variance asymmetry kurtosis

Banking 0.00274 0.00114 -0.27837 3.37530
Communication 0.00193 0.00113 0.11400 1.11916
Estate 0.00335 0.00083 0.06336 2.46251
Finance 0.00269 0.00124 -0.10303 1.71502
Food 0.00141 0.00091 -0.95065 4.48844
Industrial 0.00163 0.00083 -0.45302 2.69041
Insurance 0.00186 0.00112 -0.30728 2.73643
Transp.& Tourism 0.00413 0.00087 0.24116 4.27671

We present in Table 2 the number of iterations and the time (in seconds)
required by each method. The computational experiments have been carried
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out on a personal computer with Pentium 4, 3.2 Mhz CPU and 1 GB RAM.
The algorithm was coded using Gauss (Aptech Systems, Inc.) and its quadratic
optimization routine.

For PMPTD and ICPM we set the following tolerance parameters ε1 =
0.5 · 10−5 and ε2 = 10−3, while in the case of ICGLOBAL we accept the
default tolerance parameter of Gauss optimization routine. Moreover in the case
of PMPTD we need to choose a penalty parameter ρ which is crucial in the
trade-off between solution accuracy and convergence speed. A good range of
values, in the analyzed cases where we set the initial wealth w0 = 100 and the
utility parameter a ∈ [−0.3/w0,−0.1/w0], proved to be ρ ∈ [0.01, 0.1].

We observe that in the case of ICGLOBAL the algorithm reaches the
insufficient memory limit (i.m.) very soon, while the PMPTD requires a great
amount of iterations which results in a time limit exceeded (t.l.), this means that
the computational time exceeded the 240 000 seconds.

Table 2. Comparison among PMPTD, ICGLOBAL and ICMP solution approaches
for a set of problems with increasing number of scenarios (S), and risky assets (n); i.m.
= insufficient memory and t.l. = time limit exceeded.

PMPTD ICGLOBAL ICMP

n S iter. time(sec.) iter. time(sec.) iter. time(sec.)

4 64 1196 141 392 0.3 10 0.2
6 512 837 379 2186 78 9 0.5
7 2744 1266 2416 9218 7707 40 3
8 2744 657 1395 i.m. - 38 3

10 2197 959 2130 9357 7853 51 4
11 2197 1451 3666 i.m. - 40 3
13 1728 2951 4429 10407 8611 41 3
14 1728 7612 11363 i.m. - 28 2
17 1331 6042 8389 10401 9714 31 3
18 1331 9931 18261 i.m - 37 4
22 1000 9389 16370 9799 7678 30 3
23 1000 13790 17313 i.m. - 29 3
24 1000 - t.l. i.m. - 24 3
25 1000 - t.l. i.m. - 61 7
25 8000 - t.l. i.m. - 232 162
25 27000 - t.l. i.m. - 268 276
27 8000 - t.l. i.m. - 210 147
27 27000 - t.l. i.m. - 370 301
30 27000 - t.l. i.m. - 279 319
30 91125 - t.l. i.m. - 453 2218
30 140608 - t.l. i.m. - 551 3774
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6.1 Dynamic portfolio management: an example

We consider a dynamic portfolio management problem and apply the proposed
decomposition method to solve the sequence of 2-period portfolio problems in
the framework of a rolling horizon simulation.

Scenario generation and portfolio evaluation are based on the same dataset of
the Comit indexes described at the beginning of section 6. Besides the eight risky
assets we include a liquidity component for the portfolio for which we assume a
weekly constant interest rate of 0.03%.

The scenario trees are generated using historical simulation from the time
series of the Comit indexes as already described in this section. We consider
regular 2-stage scenario trees with a constant number of branches from each
node and a rolling simulation over a 10-week period with weekly re-balancing.
The simulation experiments has been conducted according to the following steps.
At time t = 0 we start our simulation experiment with an initial endowment in
cash, normalized to 100 for sake of simplicity. We generate a 2-period scenario
tree applying historical bootstrap and solve the corresponding 2-stage stochastic
programming problem using the approach proposed in section 5. The first period
optimal decision is implemented and the corresponding portfolio is composed.
At the end of the first period we observe the realized returns in the market and
compute the values of each component of the portfolio. These values represent
the initial endowment for the next period. For each t = 1, . . . , 9 we generate
a 2-period scenario tree and repeat the optimization and evaluation procedure
described in the first step. At time t = 10 we evaluate the portfolio at the current
realized returns.

The optimal policy over the 10-week simulation period is thus obtained as
the sequence of first time optimal decisions for each problem, where the initial
endowment depends on the value of the portfolio obtained from the previous
period evaluated using the current market conditions.

The values obtained from the sequence of optimal problems are compared
with those obtained from a static equally-weighted buy and hold strategy, in
which the portfolio is composed at the beginning of the investment period and
there is no re-balancing. We consider two equally-weighted portfolios composed
using only the risky assets. In the first we do not include transaction costs while
in the second we consider the same proportional transaction cost, equal to 0.2%,
used in the optimized portfolio.

We carried out different experiments over different periods, in each
experiment we consider a 10-week management period and in order to generate
the scenario trees we consider all the observations in the dataset up to the
beginning of the simulation period in such a way that there is no overlap
between the data used to generate the scenarios and the data used to evaluate
the portfolio.

Different examples can be considered, using scenario trees with more periods
or considering different methods for turning the optimal solutions into a dynamic
trading strategy, for a brief discussion see, for example, [18].
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In the sequel we present the results obtained with increasing number of
scenarios. The 10-week simulation period from April 15, 2004 to July 1, 2004,
considered in the example, corresponds to a relatively stable period with respect
to the values of the indexes considered. In Figure 4 we compare the values of
the optimal portfolio strategies obtained solving the problem with an increasing
number of scenarios, ranging from 25 to 500, with the values of the equally-
weighted static portfolio composed with and without transaction cost, and
denoted with ew 8 tc and ew 8, respectively. We can observe that increasing
the number of scenarios the solution of the problem becomes more stable
and outperforms the static strategy. The portfolio values obtained optimizing
over scenario trees with few branches are more volatile and the corresponding
optimal solution are heavily dependent on the associated scenario tree while
increasing the number of scenarios the optimal solution becomes more stable
across different scenario trees and with respect to a larger number of branches. A
sufficient number of scenarios can thus be implicitly identified and an associated
robust portfolio strategy suggested to the decision maker. The optimal portfolio
values and the optimal solutions obtained with 200 and 500 branches are
not distinguishable. These results are confirmed independently of the adopted
simulation periods.
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Fig. 4. Comparison among the values of the equally-weighted portfolios, with and
without transaction costs, and the optimized portfolios with an increasing number of
scenarios for the 10-week period April 15, 2004 - July 01, 2004.
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7 Concluding remarks

We did present in this work a solution approach for a dynamic portfolio problem
written as a multistage stochastic program in arborescent form, with implicit
non-anticipativity constraints.

The problem can be rewritten as a discrete time optimal control problem,
in which the state variables dynamic equations in the primal space connect a
node with its descendants (forward from time t to time t + 1), while the adjoint
variables dynamics connect in the dual space a node with its (unique) ancestor
(backward from time t + 1 to time t). The mixed constraints represent the
feasibility conditions with respect to the information structure: they relate the
optimal decision in a specific node with the endowment received from previous
period.

Applying a discrete version of the Maximum Principle to the arborescent
formulation of the problem we have shown how to obtain a time and then a
nodal decomposition of the original problem into smaller subproblems.

To reach a global solution we apply an iterative scheme in which, at each
iteration we solve for each time step and for each node in the event tree four
subproblems. The solution obtained at each iteration is certainly feasible but
not necessarily optimal. For optimality we apply an iterative mean value method
with an optimization step which allows us to optimally choose the weights. This
method allows both an efficient decomposition of the deterministic equivalent
problem and the convergence towards the optimal solution for the global problem
with a limited number of iterations.

The comparison with two other solution approaches, such as the direct
solution of the global deterministic equivalent problem and a decomposition
according to scenarios, shows that the proposed method efficiently solves
higher dimensional problems with reduced iterations and very competitive
computational times.

In the final section relying on the proposed solution method the suitability
of a dynamic approach against other commonly adopted portfolio strategies has
also been documented with data from the Italian stock market.
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