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Abstract. We propose to measure the value added by periodic portfolio
rebalancing in actively managed strategies. Using Monte-Carlo simula-
tion and dynamic stochastic programming we simulate the pay-off of
an actively managed strategy. We seek to replicate this pay-off using a
static investment based on the same Monte-Carlo scenarios and the same
investment timeframe, but including in the static portfolio some deriva-
tive strategies not available to the active manager. We contend that the
allocation to the derivative strategies quantifies the value added by ac-
tive management. We then test the sensitivity of the solution to various
parameters of the problem.

Keywords. Stochastic optimization, option hedging, simulated anneal-
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1 Introduction

The goal of this paper is to simulate an actively managed total return portfolio
as a pseudo ALM problem of managing a portfolio of assets against a simulated
LIBOR rate and to try to quantify the value added by the active manager under
different circumstances. We do this by attempting to replicate the managers final
payoff using an optimal static portfolio including options.

Our approach to ALM problems is based on multi-stage stochastic optimiza-
tion; see for example Mulvey et al. [11] for an introduction to ALM problems and
Dempster et al. 2002 [5] for a general and complete description of the stochastic
optimization approach. See Grinold and Kahn [6] for a discussion of active port-
folio management with risk controls, or Scherer [17] for a treatment of option
replicating strategies such as portfolio insurance. For details on modern portfolio
management and risk budgeting techniques see [14] or [15].
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1.1 Description of the approach

We model two simplified investment strategies. In the first strategy an active
manager manages a portfolio consisting of a “safe” money market index and
one or more “risky” assets (equities, fixed income or credit), against a bench-
mark of the money market index, re-balancing the strategy periodically. In the
second a passive manager makes a static investment in the same instruments
plus a number of derivative instruments whose underlying assets are the risky
assets, benchmarked against the money market index. The exposure to option
instruments in some sense quantifies the value added by the active management.
Using such a framework we can measure the difficulty of the active manager’s
job under different hypothesis.

The modelling is performed within a Monte Carlo framework. We generate
a large number of forward trajectories for each of the assets under consideration
in order to generate an expected distribution of final wealth for the dynamic
strategy, and then attempt to match that pay-off as closely as possible with a
static portfolio based on the same scenarios.

This problem presents several numerical challenges. The dynamic problem
requires solving a large linear optimization problem with a large number of vari-
ables and constraints (see [21]). While the static optimization problem involves
a much smaller number of variables and constraints, the utility function we will
consider is extremely badly behaved, with many local minima and discontinu-
ities, making it completely unsuited to variance-based optimization methods and
thus we must consider alternative optimization methods.

1.2 An actively managed portfolio

We mimic the active manager’s decision process using multi stage optimization
and stochastic programming. Consider for example a situation in which a man-
ager chooses an initial allocation between a money market index and an equity
index to be held for one period, at which stage the portfolio may be rebalanced
to a new allocation to be held for a further period. The target of the manager
is to beat the benchmark (the money market index) at the end of the second
period.

The factors which influence the manager’s decision include the allowed budget
of risk (defined, for example, in terms of a maximum probability of shortfalling
the target) and the expected returns on the assets but also the knowledge that
he will be free to change his allocation in the future in response to the actual
performance of the assets during the first period. For example, in a scenario
in which the equity underperforms expectations in the first period, thereby in-
creasing the probability of a shortfall at the end of period two, the manager may
decide to increase his holding of the money market index for the second period
in order to minimize the expected downside. Thus the manager can make more
efficient use of the risk budget with his initial allocation, in the knowledge that
he will be able to rebalance after one period.
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This decision is essentially a two-stage linear stochastic program, where a
decision maker takes some action at the first stage, after which a random even
occurs, affecting the outcome of the first stage decision. A recourse decision can
then be made in the second stage that compensates for any bad effects that might
have been experienced as a result of the first stage decision. The optimal policy
from such a model is a first stage policy and a collection of recourse decisions (a
decision rule) defining which second stage action should be taken in response to
each random outcome.

We model this procedure using a Monte Carlo tree which branches at the
start of the first period and then again in each scenario at the start of the
second period. Then we seek a strategy consisting of an allocation at the start
of the first period and an allocation for each possible scenario at the start of
period two, which is optimal in some sense. The exact nature of the solution
will be determined by the choice of utility function used to evaluate different
strategies, which must reflect both the investment style under consideration and
the budget of risk available to the manager.

1.3 A static portfolio

Next we try to replicate the payoff achieved by an active manager using a static
“buy and hold” strategy. The ability of the active manager to rebalance his
portfolio in response to portfolio performance, moving 100% into the money
market index if necessary in order to hedge against any downside, introduces
a measure of optionality into the active portfolio’s expected payoff. Therefore,
including a put option on the equity index with strike price equal to the expected
final value of the benchmark in the static portfolio increases the ability of the
passive manager to replicate the active payoff. We can also allow the active
manager to buy a call on the equity with a much higher payoff, allowing us
to mimic the ability of the active manager to increase risk in well performing
scenarios.

We model the static portfolio by using the same scenarios for the underlying
assets as above, and seeking the allocation between the assets and a number of
optional strategies on the assets which produces a payoff that “best” (in a sense
to be described below) matches the payoff of the dynamic strategy.

1.4 Overview of the paper

In the next section we will present a more thorough mathematical description
of the two stages of the problem. We will then enumerate the various options
in the way we tackle the problem. In Section 3 we will present the results of a
control case and then we will examine the effect of varying each of the options
listed in Section 2.
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2 Problem description

2.1 Mathematical formulation of the optimization problem

The forward asset price scenarios are arranged in a tree structure as shown in
Figure 1. Letting T denote the time horizon of the simulation in years and f
denote the number of sampling times per year, then the set TS of sampling times
is given by TS = {0, 1

f ,
2
f , ..., 1, ..., 2, ..., T − 1

f , T}. Let A denote the set of assets
we are considering; for each scenario we will simulate the price of each asset
a ∈ A at each time t ∈ TS . In Figure 1 the vertical dimension represents time
and there is a node on each scenario at each sampling time.
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Fig. 1. Scenario tree: the broken line represents a single scenario

Let TD ⊂ TS denote the portfolio decision times at which rebalancing may
occur (TD must include t = 0). As explained above, each scenario branches at
each time t ∈ TD, and this branching behaviour is regular in the sense that the
same number of new scenarios is the same in each scenario at a given t ∈ TD. It
should be clear that the structure of the tree is completely specified by T, f, TD

and by the number of new branches at each t ∈ TD.

We also use the following notation; N denotes the set of all nodes of the tree,
ND the set of all decision nodes and n0 the unique node at time t = 0. To each
node n we assign a probability, P (n), which is the reciprocal of the number of
scenarios at that time and for each node n ∈ N − {n0} we denote by p(n) ∈ N
the unique node preceding n on the same scenario.

Let a′ ∈ A be the target asset (i.e. the money market rate). For each node
we simulate an asset price for each asset and thus for each node n ∈ N − n0 we
can define rn,a to be the return on asset a between nodes p(n) and n.
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Let xn,a be the amount of asset a held at node n and let x+
n,a and x−

n,a denote
respectively the amount of a bought and sold at node n ∈ ND. Let W (n) denote
the total portfolio wealth at node n and let B(n) denote the target at node n.

The following constraints completely define the optimization problem;

xn,a ≥ 0 for all a ∈ A,n ∈ N, (1)

x+
n,a ≥ 0, x−

n,a ≥ 0 for all a ∈ A,n ∈ ND, (2)∑
a∈A

(x+
n,a − x−

n,a) = 0 for all n ∈ ND, (3)

xn,a = xp(n),a(1 + rn,a) for all n ∈ N −ND, (4)

xn,a = xp(n),a(1 + rn,a) + x+
n,a − x−

n,a for all n ∈ ND − {n0}, (5)

W (n) =
∑
a∈A

xn,a for all n ∈ N, (6)

B(n) = B(p(n))(1 + rn,a′) for all n ∈ N − n0, (7)

and

W (n0) = B(n0) = 100. (8)

For the static problem we also have the extra constraint

x+
n,a = 0, x−

n,a = 0 for all a ∈ A,n ∈ ND, (9)

i.e. no rebalancing is permitted.

2.2 Dynamic Setup

The choice of objective function will determine the shape of the distribution of
final wealth resulting from the optimal allocation strategy - thus we need to find
an objective function which reflects the investment style of total return strategies
as well as the available budget of risk.

Typically the simulated pay-off distribution from a total return strategy as-
sumes a quite skewed shape. The manager trades off a little decrease in ex-
pected absolute returns for active downside protection (perhaps specified as a
pre-determined probability of a shortfall relative to the benchmark). In the ex-
amples we will use the Semivariance Utility function, defined as follows;

U({xn,a}) =
∑

n∈NF

Pn(βW
−(n)− (1− β)W (n)) (10)

where

W−(n) =

{
B(n)−W (n) if W(n) < B(n)

0 otherwise.
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The relative risk aversion of utility as a function of wealth is defined as

R(W ) =
−WU ′′(W )

U ′(W )

(see for example [7]). Thus for W > B this utility displays constant relative risk
aversion (R(W ) = 0) meaning that the relative allocation to risky assets does
not change as wealth increases on the upside. For W < B we find that

R(W ) =
−1

1− 1−β
2βW

which is negative for β > 1
2W+1 , meaning that the utility displays decreasing

relative risk aversion on the downside. Thus the allocation to risky assets will
decrease as the wealth decreases leading to a truncated left tail in the expected
final wealth distribution.

The degree of downside risk aversion is determined by the value of β. In
practice we choose β ∈ [0, 1) to reflect the risk budget of the portfolio. For values
of β close to 1, the objective function penalizes a shortfall more heavily than it
rewards excess return, while decreasing β allows the manager more latitude for
tolerating a shortfall in some scenarios if it is rewarded by a higher excess return
in other scenarios.

By only applying the objective function at the final nodes we also allow the
manager more freedom to choose a risky initial allocation than if the objective
were applied at all times, or even just the rebalancing times. Fig. 2 illustrates
how the desired right skewed payoff emerges over time, in this case for a three
stage optimization problem.

90 100 110 120 130 140 150
0

200

400
Year 2

90 100 110 120 130 140 150
0

1

2
x 10
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90 100 110 120 130 140 150
0

2

4
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Fig. 2. Distribution of dynamic wealth: Results after three re-balancing stages.
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2.3 Static Setup

For the static portfolio we broaden the investment universe to include a num-
ber of option strategies based on the risky asset(s) and seek an allocation that
matches as closely as possible the payoff produced by the active management.

Thus in this optimization problem the benchmark is the distribution of final
wealth of the active strategy and the objective is to find the static allocation
strategy for which the distribution of final wealth is as close as possible to the
dynamic distribution.

We consider strategies consisting of long and short positions in put options
and call options. In some cases we also allow the optimizer to determine the
optimal strike price of each option so as to be able to achieve the closest possible
fit.

Let FA denote the cumulative density function of the active strategy. Let S
represent any choice of static asset allocation strategy (including the choice of
strike prices) and let FS denote the cumulative density function of the associated
final NAV. Then the utility function is defined as

U(S) = maxx∈(− inf,inf)(|FA(x)− FS(x)|), (11)

that is the test statistic of the two-sample Kolmogorov-Smirnov test.

This problem sets a numerically challenging problem. The objective function
has a large number of discontinuities and local minima and is completely unsuited
to traditional variance based optimization methods. In addition the fact that
the strike prices may be variables of the problem makes it quite different to
traditional asset allocation optimizations. Thus in this case we use the Adaptive
Simulated Annealing technique [3], a guided random search engine suitable for
problems with many local minima.

2.4 Scenario generation

We present two different processes for generating future price scenarios for the
assets; Geometric Brownian Motion and multivariate GARCH.

Geometric Brownian Motion The process is defined as:

dS(t)
S(t) = µdt+ σdW (t)

dW (t)
D≈

√
dtZ

(12)

where Z is a standard Gaussian random variable. The drift µ and volatility σ is
set equal to the historical risk premium and volatility for the sake of simplicity.
The correlations are based upon historical correlations and are modelled via
Cholesky decomposition.
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GARCH DCC Time varying correlations are often estimated with Multivari-
ate Garch models that are linear in squares and cross products of the data. A
new class of multivariate models called dynamic conditional correlation (DCC)
models was proposed by Engle [8] 1999,2002).This family of models is a very
useful way to describe the evolution over time of the correlation matrix of large
systems. The DCC-GARCH model overcomes the computational constraints of
the multivariate GARCH models by adopting a two-step procedure. In the first
step, a set of univariate GARCH models is estimated for each asset return. In the
second stage, a simple specification is used to model the time-varying correlation
matrix, which is obtained using the standardised residuals from the first stage.
A particularly appealing feature of the model is that it preserves the simple in-
terpretation of univariate GARCH models, while providing a consistent estimate
of the correlation matrix. The inefficiency inherent in the two stage estimation
process is coped with by modifying the asymptotic covariance of the correlation
estimation parameters. Correlations are critical inputs for many of the common
tasks of financial management, including risk management. Hedges require esti-
mates of the correlation between the returns of the assets in the hedge. If the
correlations and volatilities are changing, then the hedge ratio should be adjusted
to account for the most recent information. By using this specification we aim to
account for this feature and the variability induced by the dynamic re-balancing
activity. Similarly, structured products such as rainbow options that are designed
with more than one underlying asset, have prices that are sensitive to the cor-
relation between the underlying returns. A forecast of future correlations and
volatilities is the basis of any pricing formula.

We’ll use a standard GARCH DCC framework to generate Monte Carlo sce-
narios in replacement of the GBM described in the general set up. We follow the
general approach as described by Engle (2002) [8].

rt |ℑt−1| ≈ N(0, DtRtDt)

D2
t = diag(ωi) + diag(κi) ◦ rt−1r

′

t−1 + diag(λi)D
2
t−1

ϵt = D−1
t rt

Qt = S ◦ (u′ −A−B) +A ◦ ϵt−1ϵ
′

t−1 +B ◦Qt−1

Rt = diag(Qt)
−1Qtdiag(Q

−1
t )

(13)

Where R is a correlation matrix containing the conditional correlations. It’s not
the goal of the paper to provide a detailed description of the model, please refer
to Engle (2002). The assumption of normality in the first equation gives rise to
a likelihood function. Without this assumption, the estimator will still have the
QML interpretation. The second equation simply expresses the assumption that
each of the assets follows a univariate GARCH process.

2.5 Objective and risk neutral measures

Consider put or call options on a given underlying asset with different strikes but
the same expiration. If we obtain market prices for those options, we can apply
the Black-Scholes (1973) model to back-out implied volatilities. Intuitively, we
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might expect the implied volatilities to be identical. In practice, it is likely that
they will not be.

Most derivatives markets exhibit persistent patterns of volatilities varying by
strike. In some markets, those patterns form a smile. In others, such as equity
index options markets, it is more of a skewed curve. This has motivated the name
volatility skew. In practice, either the term ”volatility smile” or ”volatility skew”
(or simply skew) may be used to refer to the general phenomena of volatilities
varying by strike.

There are various explanations for why volatilities exhibit skew. Different ex-
planations may apply in different markets. In most cases, multiple explanations
may play a role. Some explanations relate to the idealized assumptions of the
Black-Scholes approach to valuing options. Almost every one of those assump-
tions - log normally distributed returns, return homoskedasticity, etc. - could
play a role. For example, in most markets, returns appear more leptokurtic than
is assumed by a log normal distribution. Market leptokurtosis would make way
out-of-the-money or way in-the-money options more expensive than would be
assumed by the Black-Scholes formulation. By increasing prices for such options,
the volatility smile could be the markets’ indirect way of achieving such higher
prices within the imperfect framework of the Black-Scholes model. Other expla-
nations relate to relative supply and demand for options. In equity markets, the
volatility skew could reflect investors’ fear of market crashes which would cause
them to bid up the prices of options at strikes below current market levels.

It is generally considered best practice to use implied volatility when pricing
equity options (see for example [18]). We will compare the effects of using histor-
ical volatility versus implied volatility. In fact, as we will see, the outcome of our
experiment is relatively insensitive to the method used to price the options, and
in most cases we have considered historical volatility for the sake of objectivity
and expediency.

3 Results

Below we will present the results of the experiments. We performed a basic
version of the job as a control case and then observed the sensitivity of the
results to changing different options. The variables of the problem which we
vary are;

– the risk budget of the active manager,
– the asset return generating process (i.e. GBM or GARCH DCC),
– the investment universe,
– the dimensions of the tree, i.e. the number of rebalancings and the number

of scenarios,
– the use of risk neutral or objective measures in pricing the options.

3.1 Case 1: The control case

In the control version of the problem we use the following parameters. The
simulation horizon is set at 3 year, (T = 3), with rebalancing at 0, 1 and 2 years
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(TD = {0, 1, 2}) with branching factors of respectively 50,50 and 40, giving
100,000 terminal scenarios. The sampling frequency is weekly (f = 52) and the
scenarios are generated using Geometric Brownian Motion.

We consider an investment universe consisting of two asset classes, money
market and equities. To simulate these assets we have used JP Morgan 3M Cash
Index and the Dow Jones EuroStoxx index respectively (both denominated in
Euro), based on a 5 year sample of weekly data(2001-2006). The money market
index also acts as the benchmark.

Of course, it is not possible to directly invest in an index such as the Eu-
roStoxx (although one can replicate such an investment using index futures or
exchange traded funds). However the intention is that the return and volatility
of the index could be considered as a proxy for the return and vitality one could
expect of an investment in the relevant asset class.

We have used the SemiVariance loss objective function described in 2.2, ap-
plied at terminal nodes and we have set β = 0.3. For the static portfolio we have
included two derivatives.

In this case we do not allow the optimizer to vary the strike prices, but
instead we have chosen two option strategies which we believe should allow the
static manager to better replicate the active strategy.

The first is a put option on the equity index with strike price 108.2, which
is the expected value at t = 3 of a portfolio invested 100% in the money market
index. This is intended to mimic the active manager’s ability to create downside
protection by increasing the allocation to the safe asset if the risk of a shortfall
become too high.

The second is a call option on the equity with strike price equal to 140.0,
which gives us access to more upside in the scenarios in which the equity performs
particularly strongly. This is analogous to the ability of the active manager
increase the equity allocation when the risk of a shortfall is low.

For simplicity we have used flat historical volatility in pricing the options.
We will see the effect of risk-neutral pricing in a later section.

The results of the dynamic and static portfolio allocation decisions are shown
in Table 1. Fig 3 displays the distribution of final wealth across 100,000 scenarios
of the two strategies.

3.2 Effect of varying the risk parameter

We consider the effect on the outcome of our problem of changing the value of
the risk parameter β. We consider two different versions of the control case with
tighter risk control - a medium risk case with β = 0.7 and a low risk case with
β = 0.9.

Case 2(a): β = 0.7. Table 2 summarizes the results of the medium risk
problem. In comparison to the control case, two differences are notable. Firstly
the lower allocation to derivatives reflects the lower allocation to equities in
the dynamic portfolio and the lower level of dynamic hedging performed by the
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Fig. 3. Case 1: Control Case

Table 1. Case 1: Control Case

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 80.7% 74.8% 73.9% 18.21%
Equity Index 19.3% 25.2% 26.1% 80.25%
Put Option (Equity, strike 108.3) 1.12%
Call Option (Equity, strike 140.0) 0.42%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 114 112.5
Standard deviation NAV 13.3 9.3
Probability NAV > benchmark 0.56 0.58

ks-statistic 4.26%
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active manager. Secondly the lower value of the ks-statistic indicated that a more
accurate replication job is possible in comparison to the higher risk case.

Table 2. Case 2(a): Medium Risk

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 96.3% 95.1% 94.6% 95.4%
Equity Index 3.7% 4.9% 5.4% 4.28%
Put Option (Equity, strike 108.3) 0.29%
Call Option (Equity, strike 140.0) 0.03%

Final result Dynamic Static

Benchmark wealth 108.28 108.28
NAV 109.12 109.38
Standard deviation NAV 2.62 1.78
Probability NAV > benchmark 0.56 0.58

ks-statistic 4.03%

Case 2(b): β = 0.9. Table 3 summarizes the results of the low risk case. Note
again that, in comparison to the β = 0.3

Table 3. Case 2(b): Low Risk

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 98.6% 98.2% 97.9% 98.13%
Equity Index 1.4% 1.8% 2.1% 1.75%
Put Option (Equity, strike 108.3) 0.098%
Call Option (Equity, strike 140.0) 0.012%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 108.7 108.6
Standard deviation NAV 0.74 0.89
Probability NAV > benchmark 0.60 0.60

ks-statistic 2.93%
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3.3 Changing the data generating process

Next we examine the sensitivity of the solution to the data generating solution.
We compare the results of the control case with the solution to an identical prob-
lem with only the scenario generating process changed. In Table 4 we note the
larger allocation to options compared to the control case. This reflects the extra
value added by active management in the context of time varying correlations
and volatilities. Also the ks-statistic is slightly higher than in the control case.

Table 4. Case 3: Garch scenarios

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 66.1% 57.4% 52.3% 58.34%
Equity Index 33.9% 42.6% 40.7% 39.62%
Put Option (Equity, strike 108.2) 1.92%
Call Option (Equity, strike 140.0) 0.12%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 117.5 115.7
Standard deviation NAV 17.5 13.4
Probability NAV > benchmark 0.63 0.65

ks-statistic 4.61%

3.4 Changing the investment universe

Next, we increase the size of the investment universe to 4 assets by adding
a government bond index and a corporate bond index, calibrated to the JP
Morgan EMU Government Bond Index and the MSCI EMU Credit (Investment
Grade) Index (2001-2006) (see Fig 4).

A total return manager would typically utilize a much broader universe of
asset classes in order to exploit the benefit of diversification. Unfortunately in
this case we are constrained by the numerical complexity of the optimization
problems. We consider the four asset case for the purposes of comparison with
the two asset case.

Table 5 summarizes the results. In comparison with the control case we see
a much lower allocation to options. This indicates the greater ease with which a
manager can beat his benchmark in this context (the dynamic portfolio displays
a far higher Sharpe Ratio). The ks-statistic is slightly lower than the control case
as the extra asset classes make it easier to replicate a given strategy. One could
extrapolate from these results that the effect of adding further assets would allow
us to better replicate the dynamic strategy.
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Fig. 4. The historical performance of the indices used to calibrate the 4 assets classes

Table 5. Case 4: 4 assets

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 0% 0% 0.1% 6.29%
Equity Index 41.8% 28% 39.7% 39.13%
Bond Index 0% 1.2% 3.4% 0.64%
Corp Bond Index 58.2% 70.8% 56.8% 53.36%
Put Option (Equity, strike 108.3) 0.41%
Call Option (Equity, strike 140.0) 0.17%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 123.6 122
Standard deviation NAV 18.8 15.3
Probability NAV > benchmark 0.84 0.82

ks-statistic 3.62%
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3.5 Changing the rebalancing frequency

In this section we change the frequency of rebalancing, comparing the results of
the control case to the results obtained using a tree with branching at times 0,
1
2 , 1, 1

1
2 and 2 years and using 300,000 (20× 15× 10× 10× 10) scenarios.

The extra rebalancing times produces a notable effect of the dynamic payoff,
with an expected NAV of 121.5 after three years. This presents a much harder
challenge for the static portfolio to achieve. To facilitate the task we include
two extra options on the equity index, so that the static portfolio now includes
two puts and two calls. Furthermore, we allow the optimizer to chose the strike
prices of all but one of the options (the first put option, as before, has a strike
of 108.3, being the expected value of a 100% money market portfolio).

However, even with these extra degrees of freedom, the optimal static port-
folio is a much poorer fit to the dynamic portfolio compared to any of the cases
considered so far, as evidenced by the ks-statistic of 7.58%. This, in spite of the
much higher overall exposure to derivatives (Table 6).

Unfortunately the numerical difficulty of the optimization problem increases
exponentially with the addition of extra rebalancing times, but certainly the
evidence of the extra value added by more active management is clear.

Table 6. Case 5: “bushy tree”

Dynamic Static

Asset Allocation t = 0 t = 0.5 t = 1 t = 1.5 t = 2 t = 0

Money Market Index 81.8% 60.4% 63.2% 59.4% 58.5% 74.74%
Equity Index 18.2% 39.6% 36.8% 40.6% 41.5% 26.04%
Equity Put 1 (strike 108.3) - 0.98%
Equity Put 2 (strike 84.01) - 1.0%
Equity Call 1 (strike 122.2) -0.29%
Equity Call 2 (strike 141.7) 1.49%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 121.5 117.5
Standard deviation NAV 23.6 19.7
Prob NAV > benchmark 0.69 0.64

ks-statistic 7.58%

3.6 Changing from objective to risk neutral pricing

In this section we test the effects of changing from flat historical volatilities to
market implied volatilities in pricing the options in the static portfolio. Fig. 5
displays the data sample we used of to calibrate our model.
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Fig. 5. The chart displays smirk effect on Dow Jones Eurostoxx Equity Index Options:
DJ Index Options 3 years horizon as of November the 22nd 2007.

Table 7 displays the results. The change from the control case is slight. The
effect of using the volatility smile is to increase the price of the options, conse-
quently we can afford less exposure. The effect is that while the option exposure
is only slightly reduces (1.41% compared to 1.54% in the control case), the fit is
significantly poorer (5.55% compared to 4.26%).

Table 7. Case 6: Volatility smile

Dynamic Static

Asset Allocation t = 0 t = 1 t = 2 t = 0

Money Market Index 80.7% 74.8% 73.9% 76.36%
Equity Index 19.3% 25.2% 26.1% 22.23%
Put Option (Equity, strike 108.2) 1.33%
Call Option (Equity, strike 140.0) 0.08%

Final result Dynamic Static

Benchmark wealth 108.3 108.3
NAV 114 112.3
Standard deviation NAV 13.3 9
Probability NAV > benchmark 0.56 0.6

ks-statistic 5.55%
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4 Conclusion

We have attempted to quantify the value of active portfolio management in a
total return context and to examine the effect on the quantification of various
choices considered in our setup. Table 8 summarizes our findings.

Table 8. Summary

Case Total option exposure p.a. Goodness of fit

Control 0.51% 4.26%
Medium Risk 0.11% 4.03%
Low Risk 0.04% 2.93%
Garch Scenarios 0.68% 4.61%
4 Assets 0.20% 3.62%
More Rebalancing 1.25% 7.58%
Volatilty Smile 0.47% 5.55%

We interpret the first column as the value added by the active management
compared to a static strategy. Thus the results indicate;

– The value added by active management increases with increasing risk budget.
For the medium risk strategy which delivers approximately 27 bps p.a. over
the benchmark the value added is of the order of 11 bps. In comparison, the
control case delivers approximately 180 bps over the benchmark with a value
added of 51 bps.

– The value added by the manager increases when a more realistic asset return
generating process (GARCH) is used.

– The value added by the manager decreases with a broadening of the invest-
ment universe. Increasing the investment universe allows the manager to
exploit the benefits of diversification.

– The value added by the manager (and the difficulty of replicating the results
statically) increase dramatically with increased rebalancing.

– The results are relatively insensitive to a change from objective to risk neu-
tral option pricing.
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