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Abstract. This paper presents the construction of a new kind of eva-
luators, which are studied on a vector lattice. In particular, by using an
important identity on a vector lattice, we prove a characterization of su-
permodular property and we construct supermodular evaluators, briefly
named SM -evaluators. Then in a particular lattice SM -evaluators be-
come aggregation functions. Similarly we construct ultramodular evalu-
ators, briefly named UM -evaluators.
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1 Introduction

Normalized scalar evaluators were characterized in [9] as real functions which
obey only two properties: boundary requirements and monotonicity. Evaluators
on a complete lattice have been studied in [3] with an investigation about TL and
SL evaluators. Our purpose in this work is to study supermodular property for
normalized scalar evaluators on a complete vector lattice, which is not necessarily
of finite dimension. In fact on vector lattices we have some simple but important
results and in particular we study the complete vector lattice [0, 1]n for studying
aggregation of supermodular evaluators. First of all we recall some concepts and
results largely discussed in [22]. Then we study normalized scalar evaluators from
complete vector lattices and we recall some definitions given in [4].
A particular complete vector lattice is [0, 1]n and it is interesting for our analy-
sis to study aggregation operators, their compositions and relationships with
evaluators and the particular case of supermodular aggregation evaluators.
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2 Lattices and Vector Lattices

A partially ordered set (poset) is a set X on which there is a binary relation ¹
that is reflexive, antisymmetric and transitive.
The set Rn = {x = (x1, . . . , xn) : xi ∈ R1 for i = 1, . . . , n} with the ordering
relation ≤ where x′ ≤ x′′ in Rn if x′i ≤ x′′i in R1 for i = 1, . . . , n is a partially
ordered set. If two elements, x′ and x′′, of a partially ordered set X have a
supremum (infimum) in X, it is their join (meet) and is denoted x′∨x′′(x′∧x′′).
A partially ordered set that contains the join and the meet of each pair of its
elements is a lattice.
For any positive integer n, Rn is a lattice with x′ ∨ x′′ = (x′1 ∨ x′′1 , . . . , x′n ∨ x′′n)
and x′ ∧ x′′ = (x′1 ∧ x′′1 , . . . , x′n ∧ x′′n) for x′ and x′′ in Rn.
If X ′ is a subset of a lattice X and X ′ contains the join and meet (with respect
to X) of each pair of elements of X ′, then X ′ is a sublattice of X. For example
the closed intervals of a lattice are sublattices. Moreover, a lattice in which
each nonempty subset has a supremum and an infimum is complete. If X ′ is a
sublattice of a lattice X and if, for each nonempty subset X ′′ of X ′, supX(X ′′)
and infX(X ′′) exist and are in X ′, then X ′ is a subcomplete sublattice of X. A
sublattice of Rn is subcomplete if and only if it is compact (Theorem 2.3.1 in
[22]).
Moreover a vector lattice is an ordered vector space whose underlying poset is a
lattice. We use the term Riesz space to mean a real vector lattice, i.e., a vector
lattice over R.
It is well known that spacesRn of all vectors [x1, . . . , xn] with n real components,
Rd of all infinite sequences x1, x2, x3, . . . of real numbers, and Rc of all real
functions f(x) defined on the interval 0 ≤ x ≤ 1 are complete vector lattices.
It is also clear that any subspace of a vector lattice, which is a sublattice as well,
is a vector lattice. That is, if a subset contains with any f and g also f +g, f ∧g,
f ∨ g and every λf , then it is a vector lattice relative to the same operations.
We recall also that in a general vector lattice LV we have the following identity
(see page 207 in [19]), ∀x,y ∈ LV

x + y = x ∨ y + x ∧ y. (1)

3 Supermodularity and ultramodularity on vector lattices

Now we consider a vector lattice LV and a vector sublattice X ′ ⊂ LV . We recall
also the following definition of supermodularity.

Definition 1. A function f : X ′ → R is said supermodular if for every x,
y ∈ X ′

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y).

The concept of supermodularity is strictly connected to the concept of increasing
differences, so that we give the following definition and result.
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Definition 2. A function f : X ′ → R is said to have increasing differences on
X ′ iff f(x + h + h′) − f(x + h) ≥ f(x + h′) − f(x), for all x ∈ X ′ and all
h,h′ ∈ X ′

+ with h ⊥ h′, where X ′
+ = {x ∈ X ′ : x ≥ 0} is the positive cone of

X ′.

Theorem 1. Let X ′ ⊂ LV and f : X ′ → R. Then f is supermodular on X ′ if
and only if f has increasing differences on X ′.

Proof. (⇐) Pick x and y ∈ X ′ and set h = x − x ∧ y, h′ = y − x ∧ y. Then
h ∧ h′ = (x − x ∧ y) ∧ (y − x ∧ y) = (x ∧ y) − (x ∧ y) = 0, i.e. h ⊥ h′. Since
x + y = x ∨ y + x ∧ y, for all x, y ∈ LV , replacing x by h + x ∧ y and y by
h′ + x ∧ y we get x ∨ y = x ∧ y + h + h′. Since f(a + h + h′) − f(a + h) ≥
f(a+h′)−f(a) for h and h′ ∈ X ′

+ as chosen and every a ∈ LV , taking a = x∧y
we get supermodularity. (⇒) Pick a ∈ LV and h,h′ ∈ X ′

+ such that h ⊥ h′.
Let x = a + h and y = a + h′. Clearly, x ∧ y = a + h ∧ h′ = a. Hence,
x ∨ y = a + h ∨ h′ = a + h + h′ − h ∧ h′ = a + h + h′. Using the definition of
supermodularity we get the property of increasing differences.

Now we consider the ultramodular (or directionally convex) functions, a class
of functions that generalizes scalar convexity and that naturally arises in some
economic and statistical applications (see [13] and [20]).

Definition 3. A function f : X ′ → R is said to be ultramodular iff

f(x + h + k)− f(x + k) ≥ f(x + h)− f(x)

for all x ∈ X ′ with h,k ∈ X ′
+.

Proposition 1. A function f : X ′ → R is ultramodular if and only if

f(x3)− f(x1) ≤ f(x4)− f(x2)

for all collections {x1,x2,x3,x4} of vectors in X ′ such that x1 ≤ x2 ≤ x4 and
x1 + x4 = x2 + x3.

Proof. By definition and replacing x4 by x + h + k, x3 or x2 by x + h or x + k,
and x1 by x, where h, k ∈ X ′

+, we immediately get the result.

4 Supermodular and ultramodular evaluators

As in [4] we consider a complete sublattice (X ′,≤,⊥,>), which is in our case a
vector sublattice too with the least and the greatest elements ⊥ and >, respec-
tively and we will focus on the evaluation of elements from LV by real numbers
in the unit interval.

Definition 4. A function φ : X ′ → [0, 1] is said to be an evaluator on X ′ iff it
satisfies the following properties:
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– φ(⊥) = 0, φ(>) = 1,
– φ(x) ≤ φ(y) for all x,y ∈ X ′ such that x ≤ y.

An evaluator φ is called existential if for arbitrary x ∈ X ′,

φ(x) = 0 ⇒ x = ⊥.

An evaluator φ is called universal if for arbitrary x ∈ X ′,

φ(x) = 1 ⇒ x = >.

The standard comparison of real numbers allows us to compare evaluators on
the same system of objects. In this case we utilize the usual pointwise ordering
of functions. This means that if φ1 and φ2 are two evaluators on X ′, we say that
φ1 is greater than φ2, with notation φ2 ≤ φ1 if for all x ∈ X ′, φ2(x) ≤ φ1(x).
The greatest evaluator is the existential evaluator φE defined for all x ∈ X ′ by

φE(x) =
{

0 if x = ⊥,
1 otherwise.

The smallest evaluator is the universal evaluator φU defined for all x ∈ X ′ by

φU (x) =
{

1 if x = >,
0 otherwise.

Now we introduce the modular, supermodular and ultramodular evaluators on
the general complete vector sublattice X ′ ⊂ LV .

Definition 5. An operation SM : X ′ → [0, 1] is said to be a supermodular
evaluator iff it is an evaluator and it satisfies the following property:

SM(x ∧ y) + SM(x ∨ y) ≥ SM(x) + SM(y).

In the case of equality in the above equation, we have the modular evaluator.

Definition 6. An operation U : X ′ → [0, 1] is said to be a ultramodular evalua-
tor (UM evaluator for short) iff U is an evaluator satisfying the property:

U(x1) + U(x4) ≥ U(x2) + U(x3)

for all collections {x1,x2,x3,x4} of vectors in X ′ such that x1 ≤ x2 ≤ x4 and
x1 + x4 = x2 + x3.

For a detailed study of the properties of supermodular and ultramodular func-
tions we refer to [13], [14], [20], [21] and [22] as well as the references therein.
One of the most important consequence is that the t-norms are SM evaluators,
while the t-conorms are not.
It is known that aggregation of evaluators yields an evaluator (see Proposition
1 in [4]). Now we continue the discussion about aggregation of several kinds
of evaluators and we will focus on aggregation of supermodular evaluators. We
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would like to know which aggregation of supermodular evaluators yields a su-
permodular evaluator.

Let K1, . . . , Km : X ′ → [0, 1], i = 1, 2, . . . , m be SM evaluators. A vector
function K : X ′ → [0, 1]m given by K(x) = (K1(x), . . . ,Km(x)) is said to be an
SM evaluator.

Proposition 2. If ψ : [0, 1]m → [0, 1] is an increasing UM evaluator and
K : X ′ → [0, 1]m is an increasing SM evaluator, then the function

H : X ′ → [0, 1]given byH(x1, . . . , xn) = ψ(K)(x) = ψ(K1(x), . . . , Km(x))

is an SM evaluator.

Proof. We consider 3 vectors x,h,k such that h,k ≥ 0 and h ⊥ k. For all
i = 1, . . . ,m, Ki(x + h + k) −Ki(x + k) ≥ Ki(x + h) −Ki(x) and then there
exist si, ti with si ≥ ti ≥ 0 such that

Ki(x + h + k) = Ki(x + k) + s Ki(x + h) = Ki(x) + ti.

So there exist s, t vectors in Rm such that s ≥ t ≥ 0 and

K(x + h + k) = K(x + k) + s K(x + h) = K(x) + t.

Since ψ is an increasing UM evaluator and K is increasing in each variable one
has:

ψ(K)(x + h + k)− ψ(K)(x + k) = ψ(K(x + k)) + s)−

−ψ(K(x + k)) ≥ ψ(K(x + k) + t)− ψ(K(x + k)) ≥

≥ ψ(K(x) + t))− ψ(K(x)) =

ψ(K(x + h))− ψ(K(x)) = ψ(K)(x + h)− ψ(K)(x).

Corollary 1. Let A be an SM evaluator. If ϕ : [0, 1] → [0, 1] is a continuous
increasing and convex function with ϕ(0) = 0 and ϕ(1) = 1 then the function

Aϕ(x) := ϕ (A(x1, . . . , xn))

is an SM evaluator.

Proof. It is obvious that Aϕ(⊥) = 0 and Aϕ(>) = 1. Then, it suffices to apply
the above theorem to the function H(x1, . . . , xn) = ψ(K1(x)), with ψ = ϕ and
K1 = A. In fact scalar convex functions are ultramodular and so ψ is increasing
and ultramodular.
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5 The [0, 1]n case

A particular and important kind of evaluator is the aggregation function.
Let n ∈ N, n ≥ 2. An n–ary aggregation function is a mapping A from

⋃
n∈N [0, 1]n

into [0, 1] that satisfies the following properties:

(A1) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1;
(A2) A is increasing in each component.

Each aggregation function A can be canonically represented by a family (A(n))n∈N
of n-ary operations, e.g., functions A(n) : [0, 1]n → [0, 1], given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn).

Each function A(n) is an evaluator on the complete vector lattice
([0, 1]n,≤,⊥,>). If A(x1, . . . , xn) = 0 implies that xi = 0 for i = 1, . . . , n,
we say that aggregation operator A does not have zero divisors. In this case,
function A(n) is an existentional evaluator and A is an existentional aggregator.
If A(x1, . . . , xn) = 1 implies that xi = 1 for i = 1, . . . , n, function A(n) is a
universal evaluator and A is a universal aggregator. Now we study particular
families of SM evaluators on the complete vector lattice ([0, 1]n,≤,⊥,>) used
for the aggregation of evaluated elements from [0, 1]n.

Proposition 3. The quasi–arithmetic mean

Mf (x) := f−1

(
f(x1) + · · ·+ f(xn)

n

)
,

where f : [0, 1] → R is a continuous strictly monotone function, is an SM
evaluator if and only if f−1 is convex.

Proof. Mf is an SM aggregation evaluator if, and only if, for any couple of
integers α, β, such that 1 ≤ α < β ≤ n,

Mf (xα, xβ) = Mf (a1, . . . , aα−1, xα, aα+1, . . . , aβ−1, xβ , aβ+1, . . . , an)

is an SM evaluator, if and only if f−1 is convex.

Due to wellknown characterization of quasi-arithmetic means Mf bounded from
above by the arithmetic mean M (see lemma 1 in [5]) we have the next result.

Corollary 2. Mf is an SM aggregation evaluator if and only if Mf ≤ M .

A similar result holds for weighted quasi-arithmetic means, that is with n-
dimensional weighting vector w = (w1, . . . , wn) ∈ [0, 1]n such that

∑n
i=1 wi = 1

and Wf (x) := f−1
(Pn

i=1 wif(xi)

n

)
we have:

Corollary 3. Wf is an SM aggregation evaluator if and only if Wf ≤ W .
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Proof. From convexity of f−1 and Jensen’s inequality we have:

Wf (x) = f−1

(∑n
i=1 wif(xi)

n

)
≤

(∑n
i=1 wif

−1(f(xi))
n

)
=

=
∑n

i=1 wixi

n
= W (x).

Proposition 4. Let fi : [0, 1] → [0, 1] be increasing functions such that fi(0) =
= 0 and fi(1) = 1, i = 1, 2 . . . , n. If A is an SM evaluator, then the function
defined by

Af1,...,fn(x1, . . . , xn) := A(f1(x1), . . . , fn(xn))

is an SM aggregation evaluator.

Proof. It is obvious that Af1,...,fn
(0, . . . , 0) = 0, Af1,...,fn

(1, . . . , 1) = 1 and
Af1,...,fn

is increasing in each place. Moreover, given xj
1 ≤ xj

2, ∀j = 1, . . . , n,
one obtains

Af1,...,fn
(x1

1, x
2
1, . . . , x

n
1 ) + Af1,...,fn

(x1
2, x

2
2, . . . , x

n
2 ) ≥

Af1,...,fn(x1
2, . . . , x

h
2 , xh+1

1 , . . . , xn
1 ) + Af1,...,fn(x1

1, . . . , x
h
1 , xh+1

2 , . . . , xn
2 ),

because A is an SM evaluator and fi are increasing.

Corollary 4. Let A be an SM aggregation evaluator and ϕ : [0, 1] → [0, 1] be
a continuous strictly monotone function with ϕ(0) = 0 and ϕ(1) = 1. Then the
following statements are equivalent:

(a) ϕ is concave;
(b) the function Aϕ(x) := ϕ−1 (A(ϕ(x1), . . . , ϕ(xn))) is an SM aggregation eva-

luator.

Proof. (a) ⇒ (b) If ϕ is concave and positive, then ϕ−1 is convex. By Corollary
1 and Proposition 4 we have the result.
(b) ⇒ (a) If Aϕ(x) is an SM aggregation evaluator, we can consider

Mϕ(x) := ϕ−1

(
ϕ(x1) + · · ·+ ϕ(xn)

n

)
.

By Proposition 3, Mϕ(x) an SM aggregation evaluator if and only if ϕ−1 is
convex. So, ϕ is concave.

A special subclass of SM evaluators is that formed by modular aggregation
functions, i.e. those A’s for which

A(x ∧ y) + A(x ∨ y) = A(x) + A(y),

for all x,y ∈ [0, 1]n. For these operators the following characterization holds.
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Proposition 5. For an aggregation operator A the following statements are
equivalent:

(a) A is modular;
(b) there exist increasing functions fi : [0, 1] → [0, 1] such that fi(0) = 0,

i = 1, . . . , n,
∑n

i=1 fi(1) = 1, and

A(x1, . . . , xn) =
n∑

i=1

fi(xi); (2)

(c) A is strongly additive, i.e., if x∧y = 0 and x+y ∈ [0, 1]n, then A(x+y) =
A(x) + A(y).

Proof. (a) ⇒ (b) If A is modular, set fi(xi) := A(0, . . . , xi, . . . , 0), ∀i = 1, . . . , n.
From modularity of A we get

A(x) + A(0) = A(x1, 0 . . . , 0) + A(0, x2, . . . , xn) =
= f1(x1) + A(0, x2, . . . , xn),

and also,

A(0, x2, . . . , xn) + A(0) = A(0, x2, 0 . . . , 0) + A(0, 0, x3 . . . , xn) =
= f2(x2) + A(0, 0, x3, . . . , xn),

which implies (b) recursively.
(b) ⇒ (c) A(x + y) = A(x1 + y1, . . . , xn + yn) =

∑n
i=1 fi(xi + yi).

Since x ∧ y = 0, then
∑n

i=1 fi(xi + yi) =
∑n

i=1(fi(xi) + fi(yi)), i.e. A(x + y) =
A(x) + A(y).
(c) ⇒ (a) By (1) x + y = x ∧ y + x ∨ y. So,

A(x ∧ y) + A(x ∨ y) = A(x + y) = A(x) + A(y).

6 Conclusion

Aggregation of evaluators by an aggregation operator yields an evaluator [4]. In
this work we have shown that aggregation of supermodular evaluators yields a su-
permodular evaluator and in several cases a supermodular aggregation evaluator.
In particular we have analyzed supermodularity property for quasi-arithmetic
means, by using appropriate functions on [0, 1]. So we have studied this kind of
transformation in general to present some interesting applications in our future
work.
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