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Abstract. A perpetual continuous-installment option is an infinite ma-
turity option in which the premium is paid continuously instead of up-
front. The holder has the right to terminate payments at any time by
either exercising the option or dropping the option contract. Within the
standard Black-Scholes framework, the perpetual continuous-installment
option pricing problem is discussed and solved as a free boundary prob-
lem for a parabolic inhomogeneous ordinary differential equation. The
closed-form solution obtained for the special case of a non-dividend pay-
ing asset gives the possibility to observe some analytical properties of the
initial premium and the optimal boundaries for the perpetual continuous-
installment call option.
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1 Introduction

In this paper we consider a particular type of perpetual option in which the
buyer pays a small up-front premium and then a constant stream of installment
premiums to acquire and keep the right, but not the obligation, to exercise the
option at any time during the infinite life of the option. However, the holder can
choose at any time to stop making installment payments by either exercising
the option or dropping the option contract. Crucially, though, there must be a
critical value of the underlying asset at which it is optimal to exercise, as well
as a critical value at which it is advantageous to drop the option contract.

Literature on installment options is quite recent. [7] and [8] derive no-arbitrage
bounds for the initial premium of an installment option and study static versus
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dynamic hedging strategies within a Black-Scholes framework with stochastic
volatility. Their analysis is restricted to European discrete-installment options,
which allows for an analogy with compound options, previously considered by
[12] and [20]. [9] values venture capital using an analogy with installment op-
tion. [3] develops a dynamic-programming procedure to price American discrete-
installment options and derives some theoretical properties of the installment op-
tion contract within the geometric Brownian motion framework. This approach
is applied to installment warrants, which are actively traded on the Australian
Stock Exchange. [6] proposes three alternative approaches for valuing Ameri-
can continuous-installment options written on assets without dividends or with
constant continuous dividend yield. This analysis can be applied to value install-
ment derivatives on both non-dividend paying stocks and foreign currencies. [1]
and [2] use a partial Laplace transform to derive an integral equation for the
location of the free stopping boundary for a European continuous-installment
option and study its asymptotic behavior close to expiry. Using the concept of
compound options, [13] derives a closed-form solution to the initial premium of a
European discrete-installment option in terms of multi-dimensional cumulative
normal distribution functions and examines the limiting case of an installment
option with a continuous payment plan. Finally, [14] and [15] apply the Laplace
transform approach to solve the valuation problems of American and European
continuous-installment options.

Installment options can be found embedded in other contracts, including life
insurance contracts, and are also frequently used in financing capital investment
projects with some examples given in [11]. In the field of real options a meaning-
ful model is that due to [17], in which a firm invests in a project continuously
and receives no payoff until the project is complete. Although the model of [17]
bears many resemblances to a European continuous-installment option, it also
has some differences, notably that the project can be resumed at a later time
without loss of earlier capital outlays, whereas an installment option lapses if
the holder halts installment payments.

The aim of this paper is to price perpetual continuous-installment options
written on assets without dividends or with constant continuous dividend yield
by using the standard Black-Scholes framework and extending the analysis deve-
loped by [6]. This option pricing problem presents some significant analogies with
the investment decision problem under uncertainty analyzed by [10], in order to
determine an optimal entry/exit strategy for a firm facing the decision whether
or not to engage in an investment project, which is costly to both activate and
suspend. Furthermore, it might be of interest to point out similarity between the
analysis presented here and that concerned with the choice of optimal capital
structure and risk management as studied in [4] and [16].

The ability to halt installment payments during an infinite time horizon
by either exercising the option or dropping the option contract leads to two
free boundaries separating the region where it is advantageous to hold from
those where, respectively, exercise and stopping are optimal. In theory, exercise
and stopping strategies should take place only on these free boundaries, which
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themselves are unknown and must be determined along with the option’s initial
premium. However, this sort of free boundary problem is substantially easier
to handle than that arising for finite-lived American continuous-installment op-
tions, since the initial premium is not governed by an inhomogeneous partial
differential equation and the free boundaries do not vary with respect to the
time variable. In particular, it is possible to derive a closed-form solution to the
free boundary problem for perpetual continuous-installment options written on
a non-dividend paying asset, and provide some analytical properties of the initial
premium and the optimal boundaries of the call option.

The layout of the remainder of this paper is as follows. In Section 2, we dis-
cuss the distinctive features of the pricing problem for infinite-lived continuous-
installment options within the standard Black-Scholes framework and extending
the analysis developed by [6]. The pricing problems of perpetual continuous-
installment calls and puts are analyzed in Sections 3 and 4, respectively. We
conclude in Section 5.

2 The reduction to the Black-Scholes ODE for perpetual
continuous-installment options

We assume the standard model for perfect capital markets, continuous trading,
no-arbitrage opportunities, a constant risk-free interest rate r ≥ 0, and an asset
without dividends or with constant continuous dividend yield δ ≥ 0 with price
process S = (St)t≥0 governed by a geometric Brownian motion

dSt = µStdt + σStdWt, (1)

where µ = (r − δ) and W = (Wt)t≥0 is a standard Wiener process under the
risk-neutral probability measure. If the underlying asset is a foreign currency, δ
is replaced by the foreign risk-free interest rate rf .

Consider a perpetual continuous-installment option written on an asset whose
price process S follows (1) and with constant installment per unit time q ≥ 0
and plain vanilla payoff

H(St) =

{
(St −K)+, for a call option

(K − St)+, for a put option
∀ t ≥ 0, (2)

where (x)+ = max(x, 0) and K ≥ 0 is the exercise (or strike) price of the option.
In order to price such an infinite maturity option contract, the standard Black-
Scholes framework is adopted and the analysis developed by [6] to the valuation
of American continuous-installment options is extended.

From [6], the initial premium Vt = V (St, t; q) of a finite-lived continuous-
installment option is governed by the inhomogeneous Black-Scholes partial dif-
ferential equation (PDE)

∂Vt

∂t
+ µSt

∂Vt

∂S
+

1
2
σ2S2

t

∂2Vt

∂S2
− rVt = q . (3)
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The term q ≥ 0 represents the continual input of cash via the installment pre-
mium: in a time period dt a constant amount q dt must be paid to keep the
option alive. If q = 0 we have the usual Black-Scholes PDE for equity options.

Independently from the type of exercise, equation (3) is valid only on the
continuation region, that is, on the region where it is advantageous to continue
paying installment premiums since the option is worth more alive than dead.
For American continuous-installment options, specifically, equation (3) must be
solved together with the appropriate boundary conditions at the free stopping
and exercise boundaries, which themselves are unknown and must be solved for.
In the free boundary problems studied in [6], the conditions at the two free
boundaries are that the initial premium function and its Delta (∂Vt/∂S) must
be continuous across each free boundary.

However, since the dividend yield, the installment premium and the boundary
conditions are time-independent, then the initial premium of the continuous-
installment option with infinite maturity will not depend upon time either and
so PDE (3) reduces to an ordinary differential equation. This is a property of
perpetual options when the contract details are time-homogeneous, provided
that there is a finite solution. If the contract has no finite solution, then it has
no financial meaning. Furthermore, the free stopping and exercise boundaries,
which are time paths of critical asset prices when the life of the option is finite,
become time-invariant constants for the theoretical case of infinite maturity or
perpetual options.

Let us denote the Black-Scholes initial premium of a perpetual continuous-
installment option at time t ≥ 0 by Vt = V (St; q), defined on domain D ≡ {

St ∈
[0,∞)

}
. Over the range of underlying asset values at which it is optimal to

keep the option alive paying continuously the installment premium q, the initial
premium Vt of this option must satisfy the following equation

1
2

σ2S2
t

d2Vt

dS2
+ µSt

dVt

dS
− rVt = q. (4)

Equation (4) is the inhomogeneous Black-Scholes ordinary differential equation
(ODE) we get when the initial premium of the option is a function of St only.

Proposition 1. The solution V (St; q) to the Black-Scholes ODE (4 ) is given
by

V (St; q) = αSγ1
t + βSγ2

t − q

r
, (5)

with

γ1,2 =

(
1
2 σ2 − µ

)
±

√(
1
2 σ2 − µ

)2

+ 2rσ2

σ2
, (6)

and where α and β are constants to be determined.
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Proof. The Black-Scholes ODE (4) is a second-order, linear and inhomogeneous
ordinary differential equation. To find the complementary function for the ho-
mogeneous part of (4), we put V (St; q) = Sγ

t . Substitution yields

f(γ) ≡ 1
2

σ2γ2 −
(1

2
σ2 − µ

)
γ − r = 0,

and

γ1,2 =

(
1
2 σ2 − µ

)
±

√(
1
2 σ2 − µ

)2

+ 2rσ2

σ2
.

We note that the root γ1 is positive and the other γ2 is negative. In fact, if
we rearrange this to

γ1,2 =

(
1
2 σ2 − µ

)
±

√(
1
2 σ2 + µ

)2

+ 2(r − µ)σ2

σ2
,

we see immediately that γ1 ≥ 1, since (r − µ) = δ ≥ 0.
In the particular case where δ = 0 (i.e., the underlying asset pays no divi-

dends), we get

γ1 = 1, and γ2 = − 2r

σ2
.

Hence, the general solution of the homogeneous part is given by

V (St; q) = αSγ1
t + βSγ2

t ,

where α and β are constants to be determined. Trying a linear form V (St; q) =
m + nS for the inhomogeneous part gives

nµS − r(m + nS) = q.

In order to find the coefficients m and n, we impose the following conditions
{ −rm = q

n(µ− r)S = 0
⇒

{
m = −q/r

n = 0
.

Finally, we can write the general solution of the Black-Scholes ODE (4) as

V (St; q) = αSγ1
t + βSγ2

t − q

r
,

which is equation (5). 2
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The last term in the above expression for V (St; q) is the present value of a
constant stream of installment premiums to be paid to hold the option for an
infinite time horizon. Therefore, the remaining part of the solution must be the
value of the option to stop installment payments optimally.

3 Pricing of a perpetual continuous-installment call
option

Consider a perpetual continuous-installment call written on an asset whose price
process S follows (1) and with constant installment per unit time q ≥ 0 and plain
vanilla payoff H(St). Let C(St; q) be the initial premium function of this option,
defined on the domain D.

Independently from time t of entering this option contract, there exists a
sufficiently low underlying price, S̄c

l , for which it will be advantageous to ter-
minate payments by dropping the option contract, as well as a sufficiently high
underlying price, S̄c

u, for which it will be advantageous to terminate payments
by exercising the option. The stopping and exercise boundaries S̄c

l and S̄c
u

are time-invariant constants and divide the domain D into a stopping region
D1 =

{
St ∈ [0, S̄c

l ]
}
, a continuation region D2 =

{
St ∈ (S̄c

l , S̄
c
u)

}
and an exer-

cise region D3 =
{
St ∈ [S̄c

u,∞)
}
.

The initial premium function C(St; q) satisfies the inhomogeneous Black-
Scholes ODE (4) in D2, that is,

1
2

σ2S2
t

d2C(St; q)
dS2

+ µSt
dC(St; q)

dS
− rC(St; q) = q, on D2. (7)

Following the analysis of [18], [19] and [6], we determine that C(St; q) and the
stopping and exercise boundaries S̄c

l and S̄c
u jointly solve a free boundary problem

consisting of (7), subject to the following boundary conditions

C(St; q) = 0, on D1, (8)

dC(St; q)
dS

= 0, on D1, (9)

C(St; q) = St −K, on D3, (10)

dC(St; q)
dS

= 1, on D3. (11)

Substituting the expression of C(St; q) from (5) into the left-hand side of equa-
tions (8–11) and calculating each pair of them at the free stopping and exercise
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boundaries respectively, yields

αc(S̄c
l )

γ1 + βc(S̄c
l )

γ2 − q

r
= 0, (12)

γ1αc(S̄c
l )

(γ1−1) + γ2βc(S̄c
l )

(γ2−1) = 0, (13)

αc(S̄c
u)γ1 + βc(S̄c

u)γ2 − q

r
= S̄c

u −K, (14)

γ1αc(S̄c
u)(γ1−1) + γ2βc(S̄c

u)(γ2−1) = 1. (15)

Equations (12–15) allow us to determine the unknown constants αc and βc

of the initial premium function C(St; q), and the unknown optimal stopping
and exercise boundaries S̄c

l and S̄c
u. Since, in general, no closed-form solution

for the system of nonlinear equations (12–15) can be found, we have to resort
to a suitable numerical method. In order to solve numerically the system of
equations (12–15), arising from the boundary conditions of the free boundary
problem, we use the Newton-Raphson method.

As an example, we will consider K = 100, r = 0.07, δ = 0.05, σ = 0.25
and q = 1, for which we obtain the following stopping and exercise boundaries:
S̄c

l = 35.965 and S̄c
u = 213.692. Figure 1 shows the initial premium function

C(St; q) of the perpetual continuous-installment call for our standard example.
For comparison, the value (lump-sum premium) of the perpetual standard call
is also shown.
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Fig. 1. Initial premium of perpetual continuous-installment call and value of perpetual
standard call when underlying asset pays dividends. Parameters used: K = 100,
r = 0.07, δ = 0.05, σ = 0.25 and q = 1.
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3.1 Closed-form formulas for the case of a non-dividend paying
asset

An interesting special case occurs when the underlying asset does not pay divi-
dends, i.e., the continuous dividend yield δ equals zero. In the literature, it is
well known that in this situation it is never optimal to exercise the perpetual
standard call, independently of the strike price3. The value of the option simply
coincides with the value of the underlying asset.

For the perpetual continuous-installment call we cannot obtain the same
result, since in the absence of dividends early exercise may be optimal. Firstly,
for the case of a non-dividend paying asset we are able to find a closed-form
solution to both the initial premium C(St; q) and the optimal boundaries S̄c

l and
S̄c

u, because it is possible to perform an algebraic simplification of the nonlinear
equations (12–15) and thus solve them analytically.

Proposition 2. If the underlying asset does not pay dividends, i.e., δ = 0, the
initial premium function of a perpetual continuous-installment call is defined by

C(St; q) = αcSt + βcS
γ2
t − q

r
, (16)

where the constants αc and βc are given by

αc =
1

1−
(
1− rK

q

)1− 1
γ2

, (17)

βc = − 1
γ2


 q(

r + σ2

2

)



1−γ2

 1

1−
(
1− rK

q

)1− 1
γ2




γ2

, (18)

with γ2 = − 2r
σ2 . Furthermore, the optimal stopping and exercise boundaries are

defined respectively by

S̄c
l =

q(
r + σ2

2

)
[
1−

(
1− rK

q

)1− 1
γ2

]
, (19)

S̄c
u =

q(
r + σ2

2

)
[(

1− rK

q

) 1
γ2 −

(
1− rK

q

)]
. (20)

3 By not exercising, the owner loses nothing, because cash does not leak out via the
dividend. Thus the owner can wait until the present value of paying the strike price
is arbitrary small. Essentially, the option holder gets the underlying asset for nothing
in terms of the present value of the strike price. Hence, the option value must be the
same as the underlying value in order to avoid an arbitrage opportunity.
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Proof. From Proposition 1 we know that γ1 = 1 when the dividend yield δ
equals zero. Then, it follows that the general solution C(St; q) to the inhomo-
geneous Black-Scholes ODE (7) reduces to (16), and the system of nonlinear
equations (12–15) can be easily simplified to the form

αcS̄
c
l + βc(S̄c

l )
γ2 − q

r
= 0, (12′)

αc + γ2βc(S̄c
l )

(γ2−1) = 0, (13′)

αcS̄
c
u + βc(S̄c

u)γ2 − q

r
= S̄c

u −K, (14′)

αc + γ2βc(S̄c
u)(γ2−1) = 1. (15′)

Finding an expression for the term (S̄c
l )

γ2 from (13′) and substituting it
into (12′), we have

S̄c
l =

q(
r + σ2

2

) (
αc

)−1
.

Substituting for S̄c
l into (13′), yields

βc = − 1
γ2


 q(

r + σ2

2

)



1−γ2

(
αc

)γ2
.

Substituting for βc into (15′), gives

S̄c
u =

q(
r + σ2

2

)
[(

αc − 1
)(

αc

)−γ2
] 1

γ2−1
.

Finally, substituting for S̄c
u and βc into (14′) we obtain expression (17), and

combining this with the above results we can found expressions (18–20). 2

Since the initial premium C(St; q) and the optimal boundaries S̄c
l and S̄c

u

must be positive real numbers, we impose the constraint

(
1− rK

q

)
> 0. (21)

The financial interpretation of (21) is given in Proposition 3. While for perpetual
standard calls the early exercise is never optimal when the underlying asset does
not pay dividends, a perpetual continuous-installment call will be exercised early
also when the dividend yield equals zero.
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Proposition 3. Let the payoff function be given by (2 ), with the strike price
K > 0. If the underlying asset does not pay dividends, i.e., δ = 0, the risk-free
interest rate r is a positive constant and

q > rK, (22)

then it is optimal to exercise early an American continuous-installment call with
both finite and infinite maturity.

Proof. To prove condition (22), we demonstrate using no-arbitrage arguments
that the early exercise is never optimal when q ≤ rK. Let us consider the
following two portfolios:

1. Portfolio A consisting of

• an American continuous-installment call written on a non-dividend paying
asset whose price process S follows (1) and with maturity time T ≥ 0, plain
vanilla payoff H(St) and a constant installment per unit time q ≥ 0;

• K units of pure discount bonds at a price of b(t, T ) each;
• a steady stream of q units of pure discount bonds at prices b(t, s), for t ≤

s ≤ T ;

2. Portfolio B consisting of one unit of the asset underlying the option contract.

Both portfolios are performed at current time t ≤ T and b(t, s) ≡ e−r(s−t),
for s ∈ [t, T ], is the price at time t of a default-free pure discount bond paying
one monetary unit at maturity time s.

At any time t′ ∈ [t, T ], the value of portfolio A, ΠA(t′), is given by

ΠA(t′) = (St′ −K)+ + Ke−r(T−t′) + q

∫ T

t′
e−r(s−t′)ds,

while the value of portfolio B is ΠB(t′) = St′ .
Suppose that at time t′, the spot price of the underlying asset, St′ , is at some

level greater than K such that the call could be exercised. Then, we have

Πe
A(t′) = (St′ −K) + Ke−r(T−t′) + q

∫ T

t′
e−r(s−t′)ds

= St′ − K
(
1− e−r(T−t′)

)
+

q

r

(
1− e−r(T−t′)

)

= St′ −
(
1− e−r(T−t′)

)(
K − q

r

)
,

which is obviously not greater than St′ when the quantity (K− q
r ) is not negative,

since K, r > 0 and q ≥ 0. Hence, when q ≤ rK, portfolio A is worth less than
or equal to portfolio B if the call is exercised prior to maturity.
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If the call is held to expiration, the value of portfolio A at maturity time T
is equal to

ΠA(T ) = lim
t′→T

ΠA(t′)

= max(ST , K),

while the value of portfolio B is ΠB(T ) = ST . Hence, at expiration, portfolio A
is greater than or equal in value to portfolio B.

Therefore, when δ = 0, K, r > 0 and q ≤ rK, the value of portfolio A is not
greater than that of portfolio B if the call is exercised early, while it is at least
as much as the value of portfolio B if the call is only exercised at maturity.

Using the same no-arbitrage arguments, it is easy to show that this property
also holds when T →∞, since the value of both portfolios at maturity depends
only on the underlying asset price. Consequently, when the installment premium
is less than or equal to interest earned on the strike price, i.e., q ≤ rK, then it
is never optimal to exercise early an American continuous-installment call with
both finite and infinite maturity. 2

From Proposition 3 follows that if the condition (22) is not satisfied, i.e.,
q ≤ rK, then a finite-lived American continuous-installment call written on
a non-dividend paying asset is equivalent to its European counterpart, since
the additional feature of the early exercise privilege is worthless. Under these
circumstances, American and European continuous-installment calls are priced
the same, as well as it happens for American and European standard calls when
the underlying asset does not pay dividends. Furthermore, if δ = 0 and q ≤ rK,
then it has no financial meaning to writing a perpetual American continuous-
installment call due to the fact that there is no finite time at which it is optimal
to exercise early the option.

It is worth noting that in the limiting case as q → rK+, we obtain a similar
result to that of the perpetual standard call with no dividends, namely, the
optimal exercise boundary S̄c

u reaches the positive infinity and no early exercise
would occur. Indeed, substituting the expressions of αc and βc from (17–18)
into (16), and taking the limit of both the resulting equation and equations (19–
20) as q → rK+, yields

lim
q→rK+

C(St; q) = St − 1
γ2


 rK(

r + σ2

2

)



1−γ2

Sγ2
t −K,

and

lim
q→rK+

Sc
l =

rK(
r + σ2

2

) ,

lim
q→rK+

Sc
u = +∞.
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For our example with K = 100 and r = 0.07, the installment premium q
must be greater than rK = 7. Figure 2 shows the initial premium C(St; q) of a
perpetual continuous-installment call with q = 7.5 and the value of the perpetual
standard call when the underlying asset pays no dividends.
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Fig. 2. Initial premium of perpetual continuous-installment call and value of perpetual
standard call when underlying asset pays no dividends. Parameters used: K = 100,
r = 0.07, δ = 0, σ = 0.25 and q = 7.5.

4 Pricing of a perpetual continuous-installment put
option

For the pricing of a perpetual continuous-installment put we proceed in the same
way as for the call. Consider a perpetual continuous-installment put written on
an asset whose price process S follows (1) and with constant installment per unit
time q ≥ 0 and plain vanilla payoff H(St). Let us denote the initial premium
function of this option by P (St; q), defined on the domain D.

The optimal exercise boundary, S̄p
l , is defined as the critical asset price below

which it is optimal to terminate payments by exercising the option. Similarly, the
optimal stopping boundary, S̄p

u, is defined as the critical asset price above which
it is advantageous to terminate payments by dropping the option contract. The
exercise and stopping boundaries, which are time-invariant constants, divide the
domain D into an exercise region D̃1 =

{
St ∈ [0, S̄p

l ]
}
, a continuation region

D̃2 =
{
St ∈ (S̄p

l , S̄p
u)

}
and a stopping region D̃3 =

{
St ∈ [S̄p

u,∞)
}
.
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The initial premium function P (St; q) satisfies the inhomogeneous Black-
Scholes ODE (4) in the continuation region D̃2, that is,

1
2

σ2S2
t

d2P (St; q)
dS2

+ µSt
dP (St; q)

dS
− rP (St; q) = q, on D̃2, (23)

subject to the following boundary conditions

P (St; q) = (K − St), on D̃1, (24)

dP (St; q)
dS

= −1, on D̃1, (25)

P (St; q) = 0, on D̃3, (26)

dP (St; q)
dS

= 0, on D̃3. (27)

Similarly, substituting the expression of P (St; q) from (5) into the left-hand side
of equations (24–27) and calculating each pair of them at the free exercise and
stopping boundaries respectively, yields

αp(S̄
p
l )γ1 + βp(S̄

p
l )γ2 − q

r
= (K − S̄p

l ), (28)

γ1αp(S̄
p
l )(γ1−1) + γ2βp(S̄

p
l )(γ2−1) = −1, (29)

αp(S̄p
u)γ1 + βp(S̄p

u)γ2 − q

r
= 0, (30)

γ1αp(S̄p
u)(γ1−1) + γ2βp(S̄p

u)(γ2−1) = 0. (31)

As for the call, the system of nonlinear equations (28–31) is solved numeri-
cally using the Newton-Raphson method, since in general no closed-form solution
can be found.

For our standard example, we obtain the following exercise and stopping
boundaries: S̄p

l = 64.375 and S̄p
u = 253.368. Figure 3 displays the initial pre-

mium function P (St; q) of the perpetual continuous-installment put and the
value (lump-sum premium) of the perpetual standard put when the underlying
asset pays a continuous dividend yield.

For the case of a non-dividend paying asset, the system of nonlinear equa-
tions (28–31) simplifies to a more tractable form and then it can be solved ana-
lytically. Thus, the closed-form solution for the initial premium of the perpetual
continuous-installment put is defined by

P (St; q) = αpSt + βpS
γ2
t − q

r
,
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Fig. 3. Initial premium of perpetual continuous-installment put and value of perpetual
standard put when underlying asset pays dividends. Parameters used: K = 100,
r = 0.07, δ = 0.05, σ = 0.25 and q = 1.

with γ2 = − 2r
σ2 , and where the constants αp and βp are given by

αp =
1

(
1 + rK

q

)1− 1
γ2 − 1

, (32)

βp = − 1
γ2


 q(

r + σ2

2

)



1−γ2




1
(
1 + rK

q

)1− 1
γ2 − 1




γ2

. (33)

The optimal exercise and stopping boundaries are defined respectively by

S̄p
l =

q(
r + σ2

2

)



(
1 +

rK

q

)
−

(
1 +

rK

q

) 1
γ2


 , (34)

S̄p
u =

q(
r + σ2

2

)



(
1 +

rK

q

)1− 1
γ2 − 1


 . (35)

For the perpetual continuous-installment put there is no condition to impose,
since both the initial premium function and the two optimal boundaries are
always positive for any given value of the model parameters. Figure 4 shows
the initial premium P (St; q) of the perpetual continuous-installment put and
the value of the perpetual standard put when the underlying asset pays no
dividends.
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Fig. 4. Initial premium of perpetual continuous-installment put and value of perpetual
standard put when underlying asset pays no dividends. Parameters used: K = 100,
r = 0.07, δ = 0, σ = 0.25 and q = 1.

5 Concluding remarks

In this paper we studied the pricing problem of perpetual continuous-installment
options within the standard Black-Scholes framework and extending the analysis
developed by [6].

Firstly, we discussed the distinctive features of the pricing problem by com-
paring it with respect to the free boundary problem for an American continuous-
installment option with finite maturity. Since the contract details and the free
boundary conditions are time-independent, the inhomogeneous Black-Scholes
partial differential equation governing the initial premium function of a finite-
lived continuous-installment option reduces to an ordinary differential equation
when the life of the option becomes infinite. Moreover, the optimal stopping and
exercise boundaries of a perpetual continuous-installment option do not vary
with respect to the time variable and then their determination, along with that
of the initial premium, is more easy to handle.

Using these results, the perpetual continuous-installment option pricing pro-
blem was formulated as a free boundary problem for the inhomogeneous Black-
Scholes ordinary differential equation. Although the resulting system of nonlinear
equations can be solved in general by using an appropriate numerical technique,
e.g., Newton-Raphson method, closed-form solutions were found for both the
initial premium and the optimal exit and exercise thresholds when the option is
written on a non-dividend paying asset. Furthermore, it was shown that also in
the absence of dividends it is optimal to exercise early a perpetual continuous-
installment call if the installment premium is greater than the return on the
riskless investment of the strike price.
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