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Abstract. The paper is devoted to the the construction of spaces of
scaling functions Vj [a, b] in order to obtain multiresolution analysis on a
finite set of intervals and determine the corresponding spaces of wavelets.
Our approach is based on the method by Anderson, Hall, Jawerth and
Peters (1994). For simplicity the only intervals with the rational end-
points are on the consideration. We describe also an example of such
construction for two disjoint intervals. This case is relevant to the appli-
cation to the study of financial time-series with gaps.
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1 Introduction

The wavelet-analysis is nowadays one of the most powerful tools in the study
of time series. This method allows to investigate both short-term and interme-
diate term series, as well as to make simultaneous localization as in spectral
(frequency) area, as in scale (time) area. By using wavelet approach one can
successfully determine the trend and eliminate a “white noise” from considered
time series. The basic idea of wavelet-analysis is in a representation of a “signal”
(e.g., time series) in the form of series with respect to specially constructed basis,
made from a highly localized functions (wavelets) by means of scale changes and
shifts along the time-axis.

At the study of time series, especially in practical applications, it is frequently
necessary to handle the series with the data gaps. Due to incompleteness of

? The work is partially supported by the Belorussian Fund for Fundamental Scientific
Research.
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the data set the prediction of the behavior of time series becomes in this case
inconvenient or even practically impossible. The length of the gaps plays an
important role in such an investigation. Moreover, if we use the incomplete data
at the analysis of the time series, then we can miss the significant information
presented in the series. All above said have to be taken into account at the
developing of the method of an investigation and forecasting.

Various approaches to the study of time series with data gaps have been
proposed (see, e.g., [11]). Traditional methods, which propose to fill in the gaps
by using the first order interpolation, are not so effective for nonlinear and non-
stationary time series. If we deal with financial time series it is necessary to
note, that presence of data gaps for Saturday and Sunday is the usual situation
for such series. On Monday, when stock exchange offices reopen, the prices for
shares (indexes) are taken from Friday (so-called Monday’s price) and only on
Tuesday we have new so-called Tuesday’s price. Such predicted gaps, as well as
(what is more important) unexpected random gaps make significant influence
on behavior of the series.

When a great number of the data is missed, and their distribution is casual,
the evaluation of the “internal” behavior of the series and prediction on its base
becomes a difficult problem. Thus it is very important to propose new methods
of such kind evaluation for the time-series with gaps.

This paper is devoted to the application of the wavelet-analysis to the study
of the time series containing data gaps. Our approach is based on the method by
Anderson, Hall, Jawerth and Peters (1994). Their main idea, which is proposed
for the construction of an orthonormal wavelet-bases for the unit interval (see
[1]), is in splitting of the initial basis into three parts (analyzing the behaviour
of a “signal” near end-points of interval and in its middle). Here we extend this
approach to the construction of wavelet-bases for interval with arbitrary rational
endpoints. This case is relevant to the above described application to the study
of financial time-series with gaps.

We begin with the construction of wavelets on a bounded interval. There
are several approaches to such construction. To illustrate these approaches it is
better to use the functional (continuous) language, i.e. to extrapolate the discrete
time series by the continuous function.

In this article we deal with the following questions: to study the main concepts
of wavelet-transformations; to present a multiresolution analysis on the interval
with rational endpoints. Such approach is close to that presented, e.g., in [1],
[3], [5]. Our method differs from the above said by more explicit determination
of the index sets corresponding to the wavelets. We start with the construction
of spaces of scaling functions Vj [a, b] forming the multiresolution analysis on
the corresponding interval. Then we determine the spaces of wavelets Wj [a, b]
which form the wavelet bases for the case of arbitrary finite interval with rational
endpoints. The main difficulty to be overcame is to determine the bases which
are in a sense minimal and to evaluate more precisely the behavior of the data
near the end-points. Then we generalize our construction for the situation with
analyzing function given on two disjoint interval in order to prepare the study
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of financial time series with data gaps (cf., e.g. [2], [4]). The complete algorithm
of the construction of sampling, as well as an application of this construction to
the analysis of time series with data gaps is rather cumbersome and couldn’t be
include it into this article. It will be present in a forthcoming paper.

2 Multiresolution.

To give the definition of the multiresolution analysis [5], [12] we consider a se-
quence {Vj}j∈Z of closed subspaces Vj ⊂ L2(R) with the following properties:

1)
...V−1 ⊂ V0 ⊂ V1 ⊂ V2...;

2) ⋃

j∈Z
Vj = L2(R)

(or limj→+∞ Vj = L2(R));

3) ⋂

j∈Z
Vj = 0

(or limj→−∞ Vj = {0}).
For all f(x) ∈ L2(R) we assume that the following conditions hold:
4)

f(x) ∈ Vj ⇔ f(2jx) ∈ Vj+1;

5) invariancy concerning shift: f(x) ∈ V0 ⇔ f(x− n) ∈ V0 for all n ∈ N;
6) we also suppose that there exists a function φ(x) ∈ L2(R) (called a scaling

function) that the collection {φ(x− k)}k∈Z forms an orthonormal basis for V0.
The collection of the subspaces {Vj}j∈Z of L2(R) forms the multiresolution

analysis genrated by the scaling function φ.
If we know additionally that the following representation of φ holds:

φ(x) =
2N−1∑

k=0

hk

√
2φ(2x− k)

for certain N ≥ 1 with coefficients hk, which satisfy
∑2N−1

k=0 (−1)khkkα = 0
for all 0 ≤ α ≤ N − 1 then this function φ(x) ∈ L2(R) has a compact support
supp φ(x) = [0, 2N − 1]. It is called a compactly supported scaling function, which
generates a multiresolution analysis {Vj}j∈Z of L2(R).

We can define a wavelet associated to the above introduced multiresolution
analysis as follows. Let

φjk(x) = 2j/2φ(2jx− k), j, k ∈ Z.



30 Natallia Makarava and Sergei Rogosin

Here the set {φjk(x)|k ∈ Z} forms an orthonormal basis Vj in L2(R). The func-
tion ψ(x) defined by

ψ(x) =
∑

k

gk

√
2φ(2x− k),

where gk = (−1)kh1−k, j, k ∈ Z, is called a wavelet (corresponding the multires-
olution analysis {Vj}j∈Z).

For every j ∈ Z define Wj as orthogonal complement Vj in Vj+1 as

Vj+1 = Vj

⊕
Wj .

By the construction we can write

L2(R) =
∞⊕

j=−∞
Wj .

As all spaces Wj are mutually orthogonal then by combining all orthonormal
bases in L2(R) we obtain our orthonormal wavelet basis in L2(R), namely
{ψjk(x) := 2j/2ψ(2jx− k)|j, k ∈ Z}. Note, that for the applications it is con-
venient to replace

⊕j=−1
j=−∞Wj by V0:

Vo

⊕




∞⊕

j=0

Wj



 = L2(R).

3 Multiresolution analysis on an interval

There are some alternative constructions of multiresolution approximation on
L2([a, b]) proposed by different researchers (see, e.g. [3], [10]). We follow here
the Meyer’s construction ([8], see also [6]).

For this purpose we need to determine functions φjk whose support has
non empty intersection with interval [a, b]. So the following set of indexes is
introduced

Sj = {k : supp φjk

⋂
(a, b) 6= 0} = {k : 2ja− (2N − 1) < k < 2jb}.

Here δL and δR are represent two fixed nonnegative integers as it was proposed
in [1]. Let us define three subsets of the set Sj with the indexes associated with
the left, right endpoints and with the interior of the interval respectively:

Sj,L =
{
k : 2ja− (2N − 1) < k < 2ja + δL

}
,

Sj,R = {k : 2jb− (2N − 1)− δR < k < 2jb}
and

Sj,I = {k : supp φj,k−δL and supp φj,k+δR ⊂ (a, b)} =

=
{
k : 2ja + δL ≤ k ≤ 2jb− (2N − 1)− δR

}
.



Wavelet-analysis of time series with gap data 31

Each set Sj,L, Sj,R independently of j contains 2N−2 items, so for index j be-
ing large enough these sets Sj,L and Sj,R are disjoint and Sj = Sj,L

⋃
Sj,I

⋃
Sj,R.

We can construct the spaces Vj [a, b] by

Vj [a, b] = {(X − a)α
j,L}0≤α≤N−1

⋃
{φjk}k∈Sj,I

⋃
{(X − b)α

j,R}0≤α≤N−1
.

Here
(X − a)α

j,L(t) =
∑

k∈Sj,L

(t− a)α
j (k)φjk(t)|[a,b],

(X − b)α
j,R(t) =

∑

k∈Sj,R

(t− b)α
j (k)φjk(t)|[a,b].

Let {(t−a)α
j,L(k)}0≤α≤M−1 and {(t−b)α

j,R(k)}0≤α≤M−1 be components of (X−
a)α

j,L(t) and (X − b)α
j,R(t), respectively:

{(t− a)α
j,L(k)}

0≤α≤M−1
= {{(k − 2ja)α}k∈Sj,L

}
0≤α≤M−1

,

{(t− b)α
j,R(k)}

0≤α≤M−1
= {{(k − 2jb)α}k∈Sj,R

}
0≤α≤M−1

, M ≤ N.

In the following we use a notation

tαj (k) =

= 〈2j/2(2jt)α, φjk〉 = 〈2j/2(2jt)α, 2j/2φ(2jt− k)〉 =
∫

2j(1+α)tαφ(2jt− k)dt =

= [2jt− k = y, dt = dy/2j ] =
∫

(y + k)αφ(y)dy =
∑α

i=0 Ci
αkiMα−i,

where Mi =
∫

yiφ(y)dy is the i-th moment of φ. We can notice that tαj (k) are
independent of j.

To provide the process of orthonormalization we can follow [8] and take the
square root inverse of the mass matrices of (X − a)α

j,L and (X − b)α
j,R. Let

XL = (XL
mn) and XR = (XR

mn) for 0 ≤ m,n ≤ N − 1 where

XL
mn =< (X − a)m

j,L, (X − a)n
j,L >

XR
mn =< (X − b)m

j,R, (X − b)n
j,R > .

Both matrices XL and XR are symmetric and positively defined. There exist
S =

(
XL

)−1/2 and T =
(
XR

)−1/2. Let




ϕj,2ja+δL−N+1(x)
...
...
...

ϕj,2ja+δL
(x)




= S




(X − a)0j,L(x)
...
...
...

(X − a)N−1
j,L (x)



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


ϕj,2jb−(2N−1)−δR
(x)

...

...

...
ϕj,2jb−N−δR

(x)




= T




(X − b)0j,R(x)
...
...
...

(X − b)N−1
j,R (x)




.

Hence we can build for k ∈ Sj,I the set of functions which form an orthonor-
mal basis of Vj [a, b]:

{ϕj,2ja+δL−N+1, ..., ϕj,2ja+δL
, Φjk, ϕj,2jb−(2N−1)−δR

, ..., ϕj,2jb−N−δR
}.

The basic elements of Vj [a, b] are defined by the following notation:

ϕjk =





ϕα
j,L if k = 2ja + δL − α for α = 0, ..., N − 1;

Φjk if k ∈ Sj,I ;
ϕα

j,R if k = 2jb− (2N − 1)− δR + α for α = 0, ..., N − 1.

Next, we build a projection Vj+1[a, b] onto Vj [a, b]. Consider a low pass filter
H which we can define as Φj = HΦj+1, where

Φj =




ϕj,2ja+δL−N+1

...

...

...
ϕj,2ja+δL

...

...

...
ϕj,2jb−(2N−1)−δR

...

...

...
ϕj,2jb−N−δR




, Φj+1 =




ϕj+1,2j+1a+δL−N+1

...

...

...
ϕj+1,2j+1a+δL

...

...

...
ϕj+1,2j+1b−(2N−1)−δR

...

...

...
ϕj+1,2j+1b−N−δR




.

We can construct the block-matrixmatrix H = Hmn =< ϕjm, ϕ(j+1)n > of the
general form as is

H =




HLL HLI HLR

HIL HII HIR

HRL HRI HRR


 .

Let us describe in details the components of this matrix. By the orthogonality
conditions the matrices HLR,HIL,HIR,HRL will be zero matrices. Now we build
the remaining matrices. N ×N matrices HLL and HRR are defined as follows:

HLL =

0
@

< ϕj,2ja−N+1+δL
, ϕj+1,2j+1a−N+1+δL

> . . . < ϕj,2ja−N+1+δL
, ϕj+1,2j+1a+δL

>

. . . . . . . . .
< ϕj,2ja+δL

, ϕj+1,2j+1a−N+1+δL
> . . . < ϕj,2ja+δL

, ϕj+1,2j+1a+δL
>

1
A =

= S

0
B@

< (X − a)0j,L, (X − a)0j+1,L > . . . < (X − a)0j,L, (X − a)N−1
j+1,L >

. . . . . . . . .

< (X − a)N−1
j,L , (X − a)0j+1,L > . . . < (X − a)N−1

j,L , (X − a)N−1
j+1,L >

1
CAS

∗
.
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HRR =

0
@

< ϕj,2jb−2N+1−δR
, ϕj+1,2j+1b−2N+1−δR

> . . . < ϕj,2jb−2N+1−δR
, ϕj+1,2j+1b−N−δR

>

. . . . . . . . .
< ϕj,2jb−N−δR

, ϕj+1,2j+1b−2N+1−δR
> . . . < ϕj,2jb−N−δR

, ϕj+1,2j+1b−N−δR
>

1
A =

= T

0
B@

< (X − b)0j,R, (X − b)0j+1,R > . . . < (X − b)0j,R, (X − b)N−1
j+1,R >

. . . . . . . . .

< (X − b)N−1
j,R , (X − b)0j+1,R > . . . < (X − b)N−1

j,R , (X − b)N−1
j+1,R >

1
CAT

∗
.

HLI and HRI are matrices most elements of which are zero:

HLI =

0
@

< ϕj,2ja+δL−N+1, ϕj+1,2j+1a+1+δL
> . . . < ϕj,2ja+δL−N+1, ϕj+1,2j+1b−2N−δR

>

. . . . . . . . .
< ϕj,2ja+δL

, ϕj+1,2j+1a+1+δL
> . . . < ϕj,2ja+δL

, ϕj+1,2j+1b−2N−δR
>

1
A

HRI =

0
@

< ϕj,2jb−2N+1−δR
, ϕj+1,2j+1a+1+δL

> . . . < ϕj,2jb−2N+1−δR
, ϕj+1,2j+1b−2N−δR

>

. . . . . . . . .
< ϕj,2jb−N−δR

, ϕj+1,2j+1a+1+δL
> . . . < ϕj,2jb−N−δR

, ϕj+1,2j+1b−2N−δR
>

1
A .

The main part of matrix H makes a band matrix HII :

HII =

0
@

< ϕj,2ja+1+δL
, ϕj+1,2j+1a+1+δL

> . . . < ϕj,2ja+1+δL
, ϕj+1,2j+1b−2N−δR

>

. . . . . . . . .
< ϕj,2jb−2N−δR

, ϕj+1,2j+1a+1+δL
> . . . < ϕj,2jb−2N−δR

, ϕj+1,2j+1b−2N−δR
>

1
A .

Even in the case of intervals with rational endpoints we can get the incom-
mensurability of scales. It means that we can obtain the different spaces Vj of
scaling functions and the different spaces Wj of wavelets whenever the scaling
coefficients hk and the sets of indexes are the same for two different intervals.

4 Wavelets on an interval

Consider the construction of the wavelet spaces Wj [a, b]. By definition Wj [a, b]
has to be an orthonormal complement of Vj [a, b] in Vj+1[a, b]

dim Wj [a, b] = dimVj+1[a, b]− dim Vj [a, b] =

= 2j+1 − δL − δR + 1− 2j + δL + δR − 1 = 2j .

Let us introduce the functions

Ψjk(x) =
∑
m

gm−2kΦj+1,m(x), gm−2k 6= 0. (1)

The subspace Vj+1[a, b] is splitted into three parts:

Vj+1[a, b] = {(X − a)α
j+1,L}

⋃
{Φj+1,k}

⋃
{(X − b)α

j+1,R}.

As left collection could be rewritten in a way

(X − a)α
j,L(t) =

∑

k∈Sj,L

(t− a)α
j (k)

∑

m∈Sj+1

gm−2kΦj+1,m(x) =
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=
∑

m∈Sj+1

∑

k∈Sj,L

(t− a)α
j (k)gm−2kΦj+1,m(x)

and based on the Proposition 4.1 from [1] not difficult to see that the “left” and
“right” collections consist of combinations of functions from Vj [a, b]. Hence we
need to provide more precise description of functions from {Φj+1,k}. For this we
represent the function Ψjk(x) in the form (1) and use the change of a variable
x = 2jx− k in the corresponding terms in the right hand-side.

The set of all integers k such that k ∈ Sj+1,I and Ψjk(x) ∈ Vj+1[a, b] is follows:{
k : 2ja + δL

2 + N − 1 ≤ k ≤ 2jb−N + 1
2 − δR

2

}
and as it is known the demen-

sion of the Wj [a, b] we need for our construction approximately 2j−(2jb−N+ 1
2−

δR

2 )+(2ja+ δL

2 +N−1) = 2j(a−b+1)+2N + δL+δR−3
2 functions, which we have

to select from those functions that belong to the space Vj+1[a, b] and correspond
to the middle part of [a, b]. Let us consider those indexes k for which gm−2k 6= 0
which implies m ∈ Sj+1,I . It follows from the previous consideration that an in-
equality 0 ≤ m−2k ≤ 2N−1 holds for all these indexes k. Besides they belong to
the set Sj,I [a, b] ≡ {

k : 2j+1a + 2δL ≤ 2k ≤ 2j+1b− 2(2N − 1)− 2δR

}
. Combin-

ing the above inequalities we arrive at the following relations 2j+1a+2δL ≤ 2k ≤
m ≤ 2j+1b−2N+1−2δR. Now to describe the collection of indexes corresponding
to the set Φj+1,k we have to add 2(N−1) to the left side and to subtract the same
number from the right side of the inequalities. Hence 2j+1a + 2δL + 2(N − 1) ≤
k ≤ 2j+1b − 2(2N − 1) + 1 − 2δR. Finally, we have to take into account the
following two conditions, namely, the left side of the last inequality ought to be
greater then the left side of that in the definition of Sj+1,I and the right side
ought to be less than the right one: 2j+1a + δL ≤ 2j+1a + 2(N − 1) − 1 + 2δL

and 2j+1b − 2(2N − 1) + 2 − 2δL ≤ 2j+1b − (2N − 1) − δL. The index j has to
satisfy an inequality 2j(b− a) ≥ δL + δR + 3(N − 1)− 1.

Since the functions Φj+1,k can be represented in the form

Φj+1,k =
∑

l

< Φj+1,k, Φj,l > Φj,l +
∑

l

< Φj+1,k, Ψj,l > Ψj,l =

=
∑

l

hk−2lΦj,l +
∑

l

gk−2lΨj,l = hkΦj,0 + hk−2Φj,1 + hk−4Φj,2 + ... (2)

we describe only those relations which correspond to the left endpoint. Here we
use an extra notation δl arriving in the second index of the initial function Φ
of the series in the following way: the function Φj,δL−δl

corresponding to such a
value of index δl is an initial function Φ in (2). Then for δl = 1 we have

Φj+1,2j+1a+2δL+2(N−1)−1 = h2j+1a+2N−1Φj,δL−δl
+ h2j+1a+2N−3Φj,δL−δl+1 + ... =

= h2j+1a+2N−1Φj,δL−1 + h2j+1a+2N−3Φj,δL
+ ...

δl := 1 :

Φj+1,2j+1a+2δL+2N−4 = h2j+1a+2N−2Φj,δL−δl
+ h2j+1a+2N−4Φj,δL−δl+1 + ... =

= h2j+1a+2N−2Φj,δL−1 + h2j+1a+2N−4Φj,δL
+ ...
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δl := 2 :

Φj+1,2j+1a+2δL+2N−5 = h2j+1a+2N−1Φj,δL−δl
+ h2j+1a+2N−3Φj,δL−δl+1 + ... =

= h2j+1a+2N−1Φj,δL−2 + h2j+1a+2N−3Φj,δL−1 + ...

...
The end of such a chain of relations depends on the parity of the last value

of δl. If this last value of δl is even, i.e δl = 2tL, then the last relations have the
form

...
δl := 2N − 2 :

Φj+1,2j+1a+δL+1 = h2j+1a+2N−1Φj,δL−δl
+ h2j+1a+2N−3Φj,δL−δl+1 + ... =

= h2j+1a+2N−1Φj,δL−2N+2 + h2j+1a+2N−3Φj,δL−2N+3 + ...

δl := 2N − 2 :

Φj+1,2j+1a+δL
= h2j+1a+2N−2Φj,δL−δl

+ h2j+1a+2N−4Φj,δL−δl+1 + ... =

= h2j+1a+2N−2Φj,δL−2N+2 + h2j+1a+2N−4Φj,δL−2N+3 + ...

If the last value of δ is odd, i.e. δl = 2tL − 1, then the last relations have the

form
...
δl := 2N − 1 :

Φj+1,2j+1a+δL+1 = h2j+1a+2NΦj,δL−δl
+ h2j+1a+2N−2Φj,δL−δl+1 + ... =

= h2j+1a+2NΦj,δL−2N+1 + h2j+1a+2N−2Φj,δL−2N+2 + ... =

δl := 2N − 1 :

Φj+1,2j+1a+δL
= h2j+1a+2N−1Φj,δL−δl

+ h2j+1a+2N−3Φj,δL−δl+1 + ... =

= h2j+1a+2N−1Φj,δL−2N+1 + h2j+1a+2N−3Φj,δL−2N+2 + ...

Now using the orthogonality relations

∑

k

hkhk−2l =< Φj,0, Φj,l >= δ0l,

∑

k

hkgk−2l =< Φj,0, Ψj,l >= 0,

we can select coefficients hk for which our functions belong to the Vj [a, b]. We
multiply the first equality in sequence by h1 and the second one by h0. Then we
arrive at the following expression:

h1Φj+1,2j+1a+2δL+2(N−1)−1 + h0Φj+1,2j+1a+2δL+2N−4 =
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= (h1h2j+1a+2N−1 + h0h2j+1a+2N−2)Φj,δL−1+

+(h1h2j+1a+2N−3 + h0h2j+1a+2N−4)Φj,δL + ...

Since the almost all items in the right side belong to Vj [a, b], it suffices to consider
the remainder:

(h1Φj+1,2j+1a+2δL+2(N−1)−1 + h0Φj+1,2j+1a+2δL+2N−4)|[a,b] =

(h1h2j+1a+2N−1 + h0h2j+1a+2N−2)Φj,δL−1|[a,b] (mod Vj [a, b]) = 0 (modVj [a, b]).

Hence:

(h3−2N−δL
Φj+1,2j+1a+2δL+2N−3 + h4−2N−δL

Φj+1,2j+1a+2δL+2N−4 + ...

+h1Φj+1,2j+1a+δL+1 + h0Φj+1,2j+1a+δL
)|[a,b] = 0 (mod Vj [a, b]).

The missing functions belonging to Wj [a, b] and corresponding to the left
endpoint have the following form:

Ψ1
j,L = Φj+1,2j+1a+2δL+2N−3|[a,b] − projVj [a,b]Φj+1,2j+1a+2δL+2N−3

Ψ2
j,L = Φj+1,2j+1a+2δL+2N−5|[a,b] − projVj [a,b]Φj+1,2j+1a+2δL+2N−5 (3)

. . .

The same construction can be realized for the right endpoint.
Then all such functions Ψ∗j,L ∈ Wj [a, b] are linear independent and also or-

thogonal to the wavelets {ψjk}k∈Sj,I . To get an orthonormal basis for Wj [a, b]
we need to orthonormalize them. For this process let XL

1 and XR
1 are the mass

matrices of Ψ∗j,L and Ψ∗j,R respectively, and I be the indentity matrix. Note, that
XL

1 and XR
1 are symmetric positively defined. So we have

XL
1 = I −Ht

LLHLL

XR
1 = I −Ht

RRHRR.

Now we define functions ψα
j,L and ψα

j,R of Wj [a, b], corresponding to the left and
right end-points, respectively:




ψj,2ja+δL/2+tL
(x)

...

...

...
ψj,2ja+δL/2+N−2(x)




=
(
XL

1

)−1/2




Ψ1
j,L

...

...

...

ΨN−1−tL

j,L (x)




(4)
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


ψj,2jb−N+1−δR/2(x)
...
...
...

ψj,2jb−1−δR/2−tR
(x)




=
(
XR

1

)−1/2




Ψ1
j,R

...

...

...

ΨN−1−tR

j,R (x)




. (5)

Now we can write an orthonormal basis of Wj [a, b]:

{ψj,2ja+δL/2+tL
, ..., ψj,2ja+δL/2+N−2, ..., ψj,2jb−N+1−δR/2, ..., ψj,2jb−1−δR/2−tR

}.

We can define the basic elements of Wj [a, b] by following relations:

ψ̃jk =





Ψα
j,L, if k = kj,l − α for α = 1, ..., N − 1− tL,

Ψjk, if kj,l ≤ k ≤ kj,r,
Ψα

j,R, if k = kj,r + α for α = 1, ..., N − 1− tR,

where kj,l is the smallest integer ≥ 2ja + N − 1 + δL/2 and kj,r is the largest
one ≤ 2jb−N − δR/2.

We can summarize all above said in the following theorem.

Theorem 1. The space Wj [a, b], j ≥ j1 is a linear span of the functions
Ψjk, 2ja + N − 1 + δL/2 ≤ k ≤ 2jb − N − δR/2, where the functions Ψα

j,L, 0 ≤
α ≤ N − 1 − tL (3), and Ψα

j,R, 0 ≤ α ≤ N − 1 − tR are defined in (4) and (5),
respectively.

Considering the missing functions in Wj [a, b] at the left and right endpoint sep-
arately we can build a block matrix G of the wavelet coefficients (see [1], [8]) as
Ψj = GΦj+1, where

Ψj =




Ψj,2ja+δL/2+tL

. . .

. . .

. . .
Ψj,2ja+δL/2+N−2

. . .

. . .

. . .
Ψj,2jb−N+1−δR/2

. . .

. . .

. . .
Ψj,2jb−1−δR/2−tR




, Φj+1 =




ϕj+1,2j+1a+δL−N+1

. . .

. . .

. . .
ϕj+1,2j+1a+δL

. . .

. . .

. . .
ϕj+1,2j+1b−(2N−1)−δR

. . .

. . .

. . .
ϕj+1,2j+1b−N−δR




.

Our construction of matrix G is same what we have for H:

G =




GLL GLI GLR

GIL GII GIR

GRL GRI GRR


 .
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In terms of matrix H, we can rewrite that

GLL=(I −Ht
LLHLL)1/2

GLI=−(I −Ht
LLHLL)(Ht

LLHLI)

GRI=−(I −Ht
RRHLL)(Ht

RRHRI)

GRR=(I −Ht
RRHRR)1/2

.

We can note that HtH + GtG = I. Under the interior orthogonality some ma-
trices will be zero matrixes and the general shape of matrix G will be as

G =




GLL GLI 0
0 GII 0
0 GRI GRR


 .

The entries of the matrix G are mainly determined by the sets {(X − a)α
j,L}

and {(X − b)α
j,R} corresponding at upper left and lower right endpoints. The

matrix G can be obtained by using finite number of transformation (applied
to the matrix H). Hence each of the spaces Vj [a, b] has an orthonormal basis
determined by dilation and translation of certain functions φi:

φjk(x) = 2j/2φi(2jx− k), j, k ∈ Z.

There are only finite number of such functions φi. Therefore the bases of Wj [a, b]
can be obtained as dilation and translation of one of them.

The remaining question is to find such indexes for every interval and to
remove those functions appeared more than one time. For instance, there are
2N − 2 wavelets whose support contains each endpoint. But we need only N − 1
basic functions at each endpoint.

5 The structure of the spaces Vj and Wj corresponding
to different intervals

Now we consider the concrete example of a “signal” defined on the union of two
intervals [0, 2] and [7, 12]. Our aim is to construct the spaces Vj and Wj for both
of these intervals and to show how the incomparability of the length of intervals
impacts on the structure of the spaces. For determines we put δL = δR = 1. By
applying the results of the previous section we obtain:
for interval [0, 2]

Sj,L = {k : −(2N − 1) < k < 1} ,

Sj,R =
{
k : 2j+1 − 2N < k < 2j+1

}
,

Sj,I = {k : supp φj,k−1 and supp φj,k+1 ⊂ (0, 2)} =
{
k : 1 ≤ k ≤ 2j+1 − 2N

}
,
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Vj [0, 2] = {(X)α
j,L}0≤α≤N−1

⋃
{φjk}k∈Sj,I

⋃
{(X − 2)α

j,R}0≤α≤N−1
;

for interval [7, 12]

Sj,L =
{
k : 7 · 2j − (2N − 1) < k < 7 · 2j + 1

}
,

Sj,R =
{
k : 12 · 2j − 2N < k < 12 · 2j

}
,

Sj,I = {k : supp φj,k−1 and supp φj,k+1 ⊂ (7, 12)} =

=
{
k : 7 · 2j + 1 ≤ k ≤ 12 · 2j − 2N

}
,

Vj [7, 12] = {(X − 7)β
j,L}0≤β≤N−1

⋃
{φjk}k∈Sj,I

⋃
{(X − 12)β

j,R}0≤β≤N−1
.

The basic elements for the spaces Vj [0, 2] and Vj [7, 12] are given by the for-
mulas:

ϕjk =





ϕα
j,L, if k = 1− α for α = 0, ..., N − 1;

Φjk, if k ∈ Sj,I ;
ϕα

j,R, if k = 2j+1 − 2N for α = 0, ..., N − 1.

and

ϕ′jk =





ϕβ
j,L, if k = 7 · 2j + 1− β for β = 0, ..., N − 1;

Φjk, if k ∈ Sj,I ;
ϕβ

j,R, if k = 12 · 2j − 2N for β = 0, ..., N − 1.

In our example, scaling function ϕ(t) can be chosen to be characteristic func-
tion on the interval [0, 1), known as the box function:

ϕ(t) =
{

1, for 0 ≤ t < 1,
0, otherwise.

Fig. 1. The box function. Fig. 2. Translations of the box function.

It can be noted that ϕ(t) are satisfied for all conditions for multiresolution
analysis: they are orthonormal since there is no overlap between the supports of
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functions ϕ(t−k) and ϕ(t−k′) whenever k 6= k′ and the integral of ϕ2(t) is equal
1. Any function in V0 can be written as a superposition of these box functions

f(t) =
∞∑

k=−∞
f(k)φ(t− k). Therefore, the box function is the desired scaling

function for the multiresolution analysis which is called the Haar multiresolution
analysis.

Now we can use such functions to provide the multiresolution analysis on our
set [0, 2] and [7, 12]. Using the translations of the function ϕ(t), we can cover all
our set.

By fixing the level of j, for instance j = 4, one can carry out the same
procedure for the scaling function ϕ(2j · t) (see Fig. 3, Fig. 4). So the associated
wavelet will be as

φ4k(t) = 4φ(16t− k) =
{

4, for k/16 ≤ t < (1 + k)/16,
0, otherwise.

Fig. 3. Translations and dilations of the
box function on the interval [0,2].

Fig. 4. Translations and dilations of the
box function on the interval [7,12].

The orthonormal wavelet-basis for our intervals will be

{ψ4,1, ..., ψ4,N−3/2, ..., ψ4,65/2−N , ..., ψ4,30}

and
{ψ4,113, ..., ψ4,221/2+N , ..., ψ4,385/2−N , ..., ψ4,190}

respectively for interval [0, 2] and [7, 12]. Suchwise we have for the first interval
30 basis functions and 78 for the second interval. Now we could summarize this
in a form of propositon.

Proposition 1. The basis of two intervals could be obtain as the combination
of the basic functions from each intervals through the continuation its elements
up to the functions defined on the whole real line R.
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Remark 1. The traces of this functions on the second interval form the family
which, generally speaking, has a nonempty intersection with the linear span of
the wavelet-basis on the second interval. This hold to the necessity to select
those family of functions from the union of two basis, which can engender an
orthonormal basis on each interval. Exists the difference of the quantity of the
corresponding to different intervals translations of a fixed basic function. By
increasing the level of j we increase such difference. Eliminating of the extra-
functions can be done algorithmically and this is the topic of the future work.

6 Conclusion

We discuss here the construction of the multiresolution corresponding and the
wavelet spaces corresponding to a finite interval. The corresponding construction
is generalized for the case of two intervals with rational endpoints. The main
difficulties are outlined. The application to the study of financial time series is
described.
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