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Abstract. In this paper we considered the initial premium under dif-
ferent risk adjusted premium principles for an excess of loss reinsurance
contract with paid reinstatements when the distribution of aggregate
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1 Introduction

The present paper is concerned with the concept of excess of loss reinsurance
with reinstatements. The problem was first studied by Simon [9] and Sundt [10].
More recent papers on the subject include Walhin and Paris [12], Mata [8],
Walhin [11], Hess and Schmidt [5], Hürlimann [6] and Campana [1].

Simon [9] studied some of the relationships in the catastrophe reinsurance
area.

Sundt [10] explained concepts known in reinsurance jargon as reinstatements,
aggregate deductible and aggregate limit. He also studied pure premiums and
premiums loaded by the standard deviation principle to price a layer with any
number of free or paid reinstatements.

Walhin and Paris [12] studied the effect on the probability of ruin for the
cedent when it buys excess of loss reinsurance with reinstatements and the rein-
surance premiums are calculated under different premium principles.
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Mata [8] developed a methodology to calculate the distribution of total ag-
gregate losses for two or more consecutive layers when there is a limited number
of reinstatements.

Walhin [11] studied two approximations in order to price reinstatements re-
lated to excess of loss reinsurance.

Hess and Schmidt [5] considered optimal premium plans for a reinsurance
contract with reinstatements by assuming that constant reinstatement premiums
are due when reinsurer’s loss exceeds certain bounds. They showed existence and
uniqueness of a premium plan which minimizes the expected squared difference
between the loss and the total premium income of the reinsurer.

Hürlimann [6] considered the situation of incomplete information, where only
a few characteristics of the aggregate claims to an excess of loss layer can be
estimated. He showed that the method of stop-loss ordered bounds yields a
simple analytical distribution-free approximation to pure premiums of excess of
loss reinsurance with reinstatements.

Campana [1] studied premium calculation when the reinstatement percent-
ages are derived to obtain local equilibrium for each reinstatement and the ag-
gregate claims to the layer are generated by a discrete distribution

In this paper, we assume that the distribution aggregate claims to an excess
of loss layer is a discrete one or it is approximated by an arithmetic distribution
using the method of mass dispersal. Then we study how to calculate the initial
premium under different risk adjusted premium principles for an excess of loss
reinsurance with paid reinstatements when the reinstatement percentages are
given.

This paper is divided as follows. In section 2 we introduce the notation and
some basic concepts such as aggregate deductibles, aggregate limits and rein-
statements. In section 3 we describe the methodology developed by Sundt [10]
to price excess of loss reinsurance with reinstatements for pure premiums and
the standard deviation principle. Then we examine risk adjusted premium prin-
ciples, like the PH-transform premium principle which belong to the class of
distortion risk measures defined by Wang [14]. In section 4 we study the case
in which the distribution of aggregate claims is a discrete one. In section 5 we
show how the distribution of aggregate claim to the layer can be approximated
by an arithmetic distribution by using the method of mass dispersal. In section 6
we give numerical examples which illustrate formulae obtained when there are
only total losses, i.e. losses completely hitting the layer: the reinsurance compa-
nies normally asses treaties on this basis that is very nearly the true situation.
Finally, in section 7 we give some concluding remarks.

2 Excess of loss reinsurance with reinstatements

Let us recall the main definitions and notations for the non-proportional rein-
surance covers described in detail by Sundt [10].
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Given an insurance portfolio in one-year period, let N indicate the number
of claims occurring in the portfolio during the year and Yi the i-th claim size
(i = 1, 2, . . . , N).

An excess of loss reinsurance (in short, XL reinsurance) for the layer m in
excess of d, written m xs d, covers for each claim the amount

LYi(d, d+m) = min(max(0, Yi − d),m).

The aggregate claims to the layer is given by

X =
N∑
i=1

LYi
(d, d+m). (1)

We make the convention that X ≡ 0 if N = 0.
In practise the reinsurer does not pay all the claims that hit the layer during

the period under consideration because there are often an aggregate deductible
D and an aggregate limit M .

An XL reinsurance for the layer m xs d with aggregate deductible D and
aggregate limit M covers the aggregate claims to the layer that exceeds D but
with a limited payment M , that is

LX(D,D +M) = min(max(0, X −D),M).

This cover is called an XL reinsurance for the layer m xs d with aggregate
layer M xs D.

The aggregate limit M is usually given as a whole multiple of the limit m,
i.e. M = (K+1)m, and one speaks of a limit in the number of the losses covered
by the reinsurer, where a loss is defined in the aggregate as a layer of the same
size of the maximum amount of an individual claim to the reinsurer.

This reinsurance cover is called an XL reinsurance for the layer m xs d with
aggregate deductible D and K reinstatements and provides total cover for the
following amount

LX(D,D + (K + 1)m) = min(max(0, X −D), (K + 1)m).

If the aggregate payment exceeds a multiple of the limit m, the layer has to
be “reinstated” .

There are two kinds of reinstatements: free and paid reinstatements. With
paid reinstatements, every time a claim hits the layer the ceding company has
to reinstate the layer by paying an extra premium which is charged at a pre-
determined rate, pro rata to the claim size.

The premium is in practise expressed as percentage of the premium initially
paid for the layer.

The initial premium P is due at the beginning of the contract and covers the
original layer, that is

LX(D,D +m) = min(max(0, X −D),m).
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The premium for the k-th reinstatement covers the amount

LX(D + km,D + (k + 1)m) = min(max(0, X −D − km),m).

Since the reinstatement is paid pro rata, this premium is a random variable
so defined:

ckP

m
LX(D + (k − 1)m,D + km), (2)

where ck ≥ 0 is the k-th reinstatement percentage. If ck = 0 the k-th reinstate-
ment is free.

The total premium income required for this reinsurance contract is given by

δ(P ) = P

(
1 +

1

m

K−1∑
k=0

ck+1LX(D + km,D + (k + 1)m)

)
. (3)

The simplest case is when all the reinstatements are free and the ceding
company has to pay a fixed premium only at the beginning of the contract.

For simplicity we assume henceforth that there is no aggregate deductible
(i.e. D = 0) and so we consider an XL reinsurance for the layer m xs d in the
aggregate with K reinstatements. It is not difficult to extend the results for any
aggregate deductible.

The aggregate claims S = LX(0, (K + 1)m) paid by the reinsurer for this
reinsurance cover satisfies the identity

S =
K∑

k=0

LX(km, (k + 1)m), (4)

where LX(km, (k + 1)m) denotes the layer m xs km covered by the k-th rein-
statement:

LX(km, (k + 1)m) = min(max(0, X − km),m).

3 Reinsurance premiums

If the reinstatements are paid the total premium income δ(P ) is a random vari-
able correlated to the aggregate claims S and it is not obvious how to calculate
the initial premium P .

According to Sundt [10], under the pure premium principle the initial pre-
mium P should be such that the expected value of the aggregate claims S equals
the expected value of the total premium income δ(P ):

E[S] = E[δ(P )]. (5)

Under the standard deviation principle, Sundt [10] proposed to solve the
following equation for P :
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E[δ(P )] = E[S] + γ
√

V ar(S + P − δ(P )) (6)

where γ is a positive constant.
Walhin and Paris [12] calculated the initial premium P under the Propor-

tional Hazard transform premium principle which belongs to the class of dis-
tortion risk measures defined by Wang [14] by using the concept of distortion
function as introduced in Yaari’s dual theory of choice under risk (see [15]).

A distortion function g is defined as a non-decreasing function g : [0, 1] →
[0, 1] such that g(0) = 0 and g(1) = 1.

The distortion risk measures associated with the distortion function g, for
any non-negative real valued random variable Y with tail function HY , is defined
by

Wg(Y ) =

∫ ∞

0

g(HY (y)) dy. (7)

Common risk measures in actuarial science are premium principles. The PH-
transform premium principle Πρ corresponds to the distortion function (see [13])

g(x) = x
1
ρ , 0 ≤ x ≤ 1, ρ ≥ 1, (8)

and it is defined such as follows

Πρ(Y ) =

∫ ∞

0

(HY (y))
1
ρ dy. (9)

Walhin and Paris [12] proposed that the initial premium P should be the
solution of the following equation:

P = Πρ(S + P − δ(P )). (10)

They solved equation (10) by using a numerical recursion. Mata [8] showed
that it is not necessary to solve (10) numerically.

By applying the same scheme as for pure premiums (5), the initial risk ad-
justed premium must be such that the following equality holds:

Wg(S) = Wg(δ(P )). (11)

The layers LX(km, (k + 1)m), k = 1, 2, . . . ,K + 1, are comonotonic risks.
Hence, by using the property of additivity for comonotonic risks of Wg (see [2,
?]), we find

Wg(S) =

K∑
k=0

Wg(LX(km, (k + 1)m)) (12)

and, by the properties of linearity and additivity of Wg, setting D = 0, from (3)

Wg(δ(P )) = P

(
1 +

1

m

K−1∑
k=0

ck+1Wg(LX(km, (k + 1)m))

)
. (13)



6 Antonella Campana

Therefore, by (11) the initial premium P must satisfy:

P =

∑K
k=0 Wg(LX(km, (k + 1)m))

1 + 1
m

∑K−1
k=0 ck+1 Wg(LX(km, (k + 1)m))

. (14)

4 The discrete case

Let HX(x) = Pr{X > x} be the tail function of the aggregate claims to the
layer defined in (1).

For the aggregate claims S paid by the reinsurer for an XL reinsurance for
the layer m xs d with aggregate limit M = (K + 1)m we find:

HS(x) =

{
HX(x) 0 ≤ x < (K + 1)m
0 x ≥ (K + 1)m

(15)

The tail function of the layer LX(km, (k + 1)m) is given by

HLX(km,(k+1)m)(x) =

{
HX(km+ x) 0 ≤ x < m
0 x ≥ m

(16)

Now let us assume that the layer LX(km, (k + 1)m) satisfies the following
equality in distribution:

LX(km, (k + 1)m)
d
= mBpk+1

, (17)

where Bpk+1
denotes a Bernoulli random variable such that

Pr[Bpk+1
= 1] = pk+1 = 1− Pr[Bpk+1

= 0].

Under this assumption, the random variable S expressed by (4) has the fol-
lowing piecewise constant tail function:

HS(x) =

{∑K
k=0 pk+1I(km ≤ x < (k + 1)m) 0 ≤ x < (K + 1)m

0 x ≥ (K + 1)m
(18)

where I(km ≤ x < (k + 1)m) is the indicator function which equals 1 if km ≤
x < (k + 1)m and 0 otherwise and

pk+1 = Pr{S ≥ (k + 1)m} = Pr{S > km}. (19)

We derive that also the premium for the k-th reinstatement (2) is a two-point
random variable distributed as ck P Bpk

. Therefore the reinsurance premiums
due when the reinsurer’s loss exceeds certain bounds are constant and the total
premium (3) can be written as

δ(P ) = P

(
1 +

K−1∑
k=0

ck+1 Bpk+1

)
. (20)



Risk adjusted premiums for excess of loss reinsurance with reinstatements 7

From (17) it follows that the distortion risk measure associated with the layer
LX(km, (k + 1)m) is given by

Wg(LX(km, (k + 1)m)) = mg(pk+1) (21)

Then, by (14) we obtain

P =
m
∑K

k=0 g(pk+1)

1 +
∑K−1

k=0 ck+1 g(pk+1)
. (22)

We can assume that there are only total losses, i.e. losses hitting the layer
completely. While this assumption is not strictly true, the reinsurance companies
normally assess treaties on this basis, especially in the catastrophe reinsurance
area. It is very nearly the true situation. In order to price reinstatements related
to excess of loss reinsurance, the reinsurance companies often use the rate on
line method, which assumes that there are only total losses (see [11]). If this
assumption causes difficulty, it may be necessary to apply this model to narrow
sub-layers of a given treaty (see [9]).

If there are only total losses, the aggregate claims to the layer has a discrete
distribution and satisfies the following equality in distribution:

S
d
= mN. (23)

Let vk denote the probability Pr{N ≥ k}, k = 0, 1, . . ..
Now the layer LX(km, (k+ 1)m) follows a discrete law with only two jumps

and satisfies this equality in distribution (see (17))

LX(km, (k + 1)m)
d
= mBvk+1

. (24)

and from (19) it follows that vk+1 = pk+1.
Then, the initial premium is given by

P =
m
∑K

k=0 g(vk+1)

1 +
∑K−1

k=0 ck+1 g(vk+1)
. (25)

5 Constructing arithmetic distributions

The evaluation of XL premiums often relies on recursive algorithms or Fast
Fourier Transform methods. In order to implement recursive methods, the easiest
approach is to construct a discrete claim size distribution on multiples of a
convenient unit of measurement h, the span. Such distribution is defined on the
non-negative integers and it is called arithmetic (see [7]).

The method of local moment matching is often used to approximate a given
claim size distribution F by a discrete equidistant one. In this method the prob-
ability mass F (ih) − F ((i − 1)h) of the interval ((i − 1)h, ih] (i = 1, 2, . . .) is
replaced by point masses at the two end-points (i−1)h and ih in order to match
the first p moments of the arithmetic and the true severity distribution. This
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method includes the method of mass dispersal as a special case for p = 1 (see
e.g. [3, 10]).

Let FS = 1−HS be the distribution function of the aggregate claims to the
layer S.

When (18) is satisfied, the distribution of S is arithmetic and the span is m.
If the distribution of S is not arithmetic, we can approximate it with an

arithmetic distribution. Such approximation can also be performed if FS actually
is arithmetic but with a different span. Then we approximate it to obtain a span
which equals m, the limit on the payment of each claim.

Now we apply the method of mass dispersal in order to approximate the
distribution of S by a discrete distribution on the K + 2 points km with k =
0, 1, . . . ,K + 1.

We replace the probability mass FS((k + 1)m) − FS(km) on the interval
(k, (k+1)m] by point masses at the two end-points km and (k+1)m such that
the mean is preserved. For the interval [0,m] we include the left end-point. As
the mean is preserved for each of the discretization intervals, the approximation
also preserves the total mean of S.

Let fk denote the probability Pr{S = km}. The method of mass dispersal
results in the following formulae (see [7], p.608):

f0 = 1− 1

m
E[min(S,m)],

fk =
1

m
(2E[min(S, km)]− E[min(S, (k − 1)m)]− E[min(S, (k + 1)m)]),

with k = 1, 2, . . . ,K.
We derive the following equalities

E[min(S, km]− E[min(S, (k − 1)m)] = E[LX((k − 1)m, km)],

E[min(S, (k + 1)m)]− E[min(S, km)] = E[LX(km, (k + 1)m)].

Therefore we can write:

f0 = 1− 1

m
E[LX(0,m)],

fk =
1

m
(E[LX((k − 1)m, km)]− E[LX(km, (k + 1)m)]),

with k = 1, 2, . . . ,K.
The probability defined in (19) can be expressed as

p1 = 1− f0,

pk+1 = pk − fk, k = 1, 2, . . . ,K.

Therefore, by induction we derive the following formulae:
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pk+1 =
1

m
E[LX(km, (k + 1)m)], k = 0, 1, . . . ,K. (26)

From (26), we have:

E[LX(km, (k + 1)m)] = mpk+1, (27)

If the random variable S is discrete with the tail function given by (18),
formula (27) clearly follows from (17).

6 Numerical examples

In order to give numerical examples, we assume that there are only total losses
so that the tail function of the aggregate claims to the layer S satisfies (23).

The number of claims N follows a Poisson distribution with parameter λ or
alternatively a negative binomial distribution (with the same mean) so defined:

Pr{N = k} =

(
r + k − 1

k

)
pr qk, k = 0, 1, . . . (28)

As it is known, the parameters of the distribution (28) are r (r > 0), p and
q, where p+ q = 1 and 0 < p < 1; the mean and the variance are given by:

E[N ] =
r q

p
, (29)

V ar(N) =
r q

p2
. (30)

The premium principles used to calculate initial premiums by formula (25)
correspond to the following distortion functions (see [14]), where x ∈ [0, 1]:
a) PH-transforms, see (8);
b) Logarithmic functions:

g(x) =

{
log(1+αx)
log(1+α) , α > 0

x α = 0.
(31)

c) Exponential functions:

g(x) =

{
1−e−β x

1−e−β , β > 0

x β = 0.
(32)

d) Quadratic functions:

g(x) = (1 + γ)x− γ x2, 0 ≤ γ ≤ 1. (33)

e) Dual-power transforms:

g(x) = 1− (1− x)δ, δ ≥ 1. (34)
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We choose the parameters of these distortion functions in order to obtain the
same value for the following initial risk adjusted premium

P =
mg(0, 25)

1 + c1 g(0, 25)
(35)

which is derived by (25) when N is a Bernoulli random variable with Pr{N =
1} = 1− Pr{N = 0} = 0, 25, c1 = 1 and m = 1000.

For simplicity we consider only two cases.
The first one is the practical case of equal reinstatements, i.e. ck = c for

k = 1, 2, . . . ,K. In particular, we set c = 1. A common case in reinsurance is for
a catastrophe treaty to have only one automatic reinstatement provision (with
c1 = 1).

In the second case, we set c1 = 1, c2 = 0, 9, c3 = 0, 8, c4 = 0, 7 and c5 = 0, 6.
As shown in [1], in order to obtain local equilibrium for each reinstatement,

the values of ck to apply are different (they tend to decrease when k is increas-
ing) and the corresponding initial premium doesn’t depend on the number of
reinstatements.

Under these assumptions, we calculate the initial risk adjusted premium.
The following tables show numerical results obtained using formula (25) for

different number of reinstatements K, with varying expected number of claims
E[N ] and fixed m = 1000.

As it was to be expected, the initial premium tends to increase monotonically
with the expected number of claims. When the number of reinstatements K
increases and E[N ] is given, the initial premium tends to increase if the rates ck
are decreasing, while it tends to decrease if all the rates ck are equal.

From the tables one can see that the PH-transform assigns the lowest initial
premium to the reinsurance treaty, while the highest premium is given by the
dual-power transform.

We observe that, for a given expected number of claims E[N ], the difference
between numerical results derived under Poisson and negative binomial distribu-
tions depends on the value of q: the smaller the value of q, the negative binomial
probabilities correspond more closely to the Poisson ones.

For example, the numerical results obtained for the Poisson distribution if λ
equals 6 or 9 hold also for the negative binomial distribution if q equals 0.0001
and r takes the values 60000 or 90000, respectively.

If we set an higher value of q, the initial premiums derived under Poisson
distribution are always higher than those obtained under negative binomial dis-
tribution.

7 Concluding remarks

Many problems in actuarial science involve the definition of a mathematical
model that can be used to forecast or predict insurance costs in the short-term
future. The claim size distribution which is often implemented is a discrete dis-
tribution like the observed distribution.
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Table 1. Initial Risk Adjusted premiums: N ∼ Poisson, E[N ] = λ = 6, ck = 1
(k = 1, 2, . . . , 5).

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 993 983 968 949 930
Logarithmic α = 0.880 994 984 970 953 934
Exponential β = 0.662 994 985 972 954 935
Quadratic γ = 0.347 994 986 973 956 936
Dual-Power δ = 1.315 998 991 979 961 939

Table 2. Initial Risk Adjusted premiums: N ∼ Poisson, E[N ] = λ = 9, ck = 1
(k = 1, 2, . . . , 5).

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 999 998 996 991 984
Logarithmic α = 0.880 1000 998 996 992 985
Exponential β = 0.662 1000 999 996 992 986
Quadratic γ = 0.347 1000 999 996 993 987
Dual-Power δ = 1.315 1000 1000 998 996 990

Table 3. Initial Risk Adjusted premiums: N ∼ Poisson, E[N ] = λ = 6, c1 = 1,
c2 = 0.9, c3 = 0.8, c4 = 0.7, c5 = 0.6.

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 993 1016 1044 1072 1099
Logarithmic α = 0.880 994 1018 1047 1077 1104
Exponential β = 0.662 994 1019 1049 1078 1106
Quadratic γ = 0.347 994 1020 1050 1080 1108
Dual-Power δ = 1.315 998 1025 1057 1087 1114

Table 4. Initial Risk Adjusted premiums: N ∼ Poisson, E[N ] = λ = 9, c1 = 1,
c2 = 0.9, c3 = 0.8, c4 = 0.7, c5 = 0.6.

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 999 1033 1076 1125 1177
Logarithmic α = 0.880 1000 1033 1077 1126 1179
Exponential β = 0.662 1000 1033 1077 1127 1180
Quadratic γ = 0.347 1000 1033 1077 1127 1181
Dual-Power δ = 1.315 1000 1034 1079 1131 1187

Table 5. Initial Risk Adjusted premiums: N ∼ NB, E[N ] = 6, r = 4, q = 0.6,
ck = 1 (k = 1, 2, . . . , 5).

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 963 948 934 922 912
Logarithmic α = 0.880 967 953 939 927 916
Exponential β = 0.662 968 954 940 928 917
Quadratic γ = 0.347 970 956 942 930 918
Dual-Power δ = 1.315 980 965 949 934 921
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Table 6. Initial Risk Adjusted premiums: N ∼ NB, E[N ] = 9, r = 6, q = 0.6,
ck = 1 (k = 1, 2, . . . , 5).

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 992 986 979 971 963
Logarithmic α = 0.880 993 987 981 974 966
Exponential β = 0.662 993 988 982 975 967
Quadratic γ = 0.347 994 989 983 976 968
Dual-Power δ = 1.315 997 994 988 981 973

Table 7. Initial Risk Adjusted premiums: N ∼ NB, E[N ] = 6, r = 4, q = 0.6,
c1 = 1, c2 = 0.9, c3 = 0.8, c4 = 0.7, c5 = 0.6.

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 963 979 1004 1034 1066
Logarithmic α = 0.880 967 984 1010 1040 1073
Exponential β = 0.662 968 986 1012 1042 1075
Quadratic γ = 0.347 970 988 1014 1044 1077
Dual-Power δ = 1.315 980 997 1022 1051 1082

Table 8. Initial Risk Adjusted premiums: N ∼ NB, E[N ] = 9, r = 6, q = 0.6,
c1 = 1, c2 = 0.9, c3 = 0.8, c4 = 0.7, c5 = 0.6.

Principle Parameter K = 1 K = 2 K = 3 K = 4 K = 5

PH-transform ρ = 1.200 992 1020 1057 1099 1145
Logarithmic α = 0.880 993 1021 1059 1102 1150
Exponential β = 0.662 993 1022 1060 1103 1151
Quadratic γ = 0.347 994 1023 1061 1105 1153
Dual-Power δ = 1.315 997 1028 1067 1112 1161

In this paper we have considered an excess of loss reinsurance with paid
reinstatements and we have investigated how to calculate the initial premium
under different risk adjusted premium principles when the distribution of ag-
gregate claims to an excess of loss layer is discrete or it is approximated by an
arithmetic distribution by using the method of mass dispersal.

By following this approach we have derived formulae for initial risk adjusted
premiums that can be easily used for pricing reinsurance treaties with paid rein-
statements, like the reinstatements related to catastrophe reinsurance treaties.

The reinsurance companies often assess treaties under the assumption that
there are only total losses (i.e. losses hitting the layer completely). This hap-
pens, for example, when they use the rate on line method to price catastrophe
reinsurance. It is a realistic hypothesis especially in catastrophe reinsurance area.
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By assuming that there are only total losses and the number of claims fol-
lows a Poisson or a negative binomial distributions, we have derived numerical
examples of initial risk adjusted premium under different distortion functions.
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