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Abstract. Longevity phenomenon is a relevant aspect for insurance
companies which are obliged to quantify the impact of uncertainty of
mortality trend on issued products, in order to manage the risk derived
from it. Recently, significant tools have been developed for transferring
longevity risk to the capital markets, bringing additional capacity, flex-
ibility and transparency to complement existing insurance solutions. In
particular, hedging longevity risk with index-based longevity hedges can
have several advantages. Nevertheless, the difference between the in-
surer’s mortality experience based on annuitant mortality and the hedged
standardized index based on reference population mortality give rise to
the so-called basis risk. The presence of basis risk means that hedge ef-
fectiveness will not be perfect and that, post implementation, the hedged
position will still have some residual risk. The present paper seeks to con-
tribute to that literature by setting out a framework for quantifying the
basis risk. In particular we propose a model that measure the population
basis risk involved in a longevity hedge, in the functional demographic
model setting. Moreover, while most existing models are designed for a
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single population the research objective is to model mortality of two pop-
ulations, in order to align with the hedging purpose. Finally, longevity
hedging strategies are developed by involving mortality-linked securities.

Keywords. Basis risk, Lee Carter model, FDM, q-forward.
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1 Introduction

During the past century in many developed countries remarkable improvements
in human life expectancy have been observed, although future demographic pat-
terns are uncertain and difficult to be predicted accurately. The uncertainty
affecting such trends is referred to as longevity risk, i.e. the risk to which a pen-
sion fund or life insurance company could be exposed as a result of higher-than-
expected payout ratios. Longevity risk is due to the increasing life expectancy
trends among policyholders and pensioners, and it can result in payout levels
that are higher than those a company or fund originally accounts for.

The Global Financial Stability Report of the International Monetary Fund
[12] highlights as typical assumption for pension liability valuations, based on
updated data, are unabled to account for future developments in longevity. In
fact in some countries these valuations consider some future increases exceeding
current life expectancy table but these increases are still much smaller than those
occurred in the past.

This means that pensions need to be paid much longer than expected, raising
the value of plan sponsors’ obligation to their members. Significant underestima-
tions of past longevity improvements have made plan sponsors more aware of the
threat of longevity risk (see [14]). For these reasons the longevity phenomenon
has to be taken into account from insurance companies which are obliged to
quantify the impact of uncertainty of mortality trend on issued products, in
order to manage the risk derived from it.

Longevity risk cannot be managed by pension funds and insurance companies
through diversification as it moves in the same direction for all the policyholders.
On the other hand, traditional reinsurance is not a viable solution due to the
excessive costs and the limited capacity of the reinsurance market. As a con-
sequence, transferring longevity risk to capital markets through securitisation
appears as the more appealing alternative: some plans began to transfer their
longevity risk exposures to the capital market. In this way the longevity has
become a new asset class for different stakeholders like Annuity Providers, Life
Insurance Companies, Pension Buyout Funds, Insurance Linked Securities in-
vestor, and others. The development of this market is still at an early stage but
this kind of investors are very interested in it since they consider longevity as an
attractive investment opportunity primarily because not correlated to non-life,
credit and market risks.
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Recently, significant tools for transferring longevity risk to the capital mar-
kets have been developed, bringing additional capacity, flexibility and trans-
parency to complement existing insurance solutions (see [7]).

The market today presents two main types of mortality-linked contracts: the
first is represented by contracts whose characteristic is to be linked to the actual
mortality experience of the pension plan’s own in this way they allow the pension
plan to create a perfect hedge of longevity risk. Despite this, these contracts
present several disadvantages, first of all their poor liquidity and burden arising
from their close link with the hedgers’ own risk features.

The second type of contract is represented by standardized contracts based
on the mortality experience of a certain national population. In these contracts
the reference mortality rate is determined by a LifeMetrics Index.

As widely shown in literature (for instance in [2], [6] and [16]), hedging
longevity risk with index-based longevity hedges can have several advantages,
but the risk is that of being unable to obtain a perfect hedge of longevity risk due
to the differences in mortality experiences between the exposed population (e.g.,
the population of members of a pension plan or the beneficiaries of an annuity
portfolio) and the hedging population associated with the hedging instrument
(i.e., the population that determines the payoff on the hedge).

The residual risk is called population basis risk. Such risk exists due to, for
example, differing profiles of socioeconomic group, lifestyle and geography (see
[14]). The presence of basis risk does not mean that the hedge is invalidate
but only not perfect, therefore, post implementation, the hedged position will
still have some residual risk. The hedging level obtained has to be evaluated in
comparison with the risk deriving from the initial unhedged position. To this
aim it is fundamental to arrange a model allowing to quantify the basis risk
in order to minimize it through a correct calibration of the hedging instrument
(see [7]). As explained in [14]: ≪having a sound method for measuring basis

risk will encourage pension plans to use standardized longevity securities for

hedging purposes. This will, in turn, stimulate a greater demand, facilitating the

development of the market for standardized longevity securities≫.

Several authors have explored the basis risk between populations associated
with annuity portfolios and life insurance portfolios. [8] found empirical evidence
of a (partial) natural hedge operating between such portfolios, implying that
the basis risk between them is relatively small. [5] provided a calculation of the
risk reduction between hypothetical annuity and life insurance portfolios using
historical mortality experience data: the results suggest significant benefits in
terms of reduction in risk and economic capital. [18] explored the basis risk
associated with longevity swaps in a more qualitative fashion but draws similar
conclusions. [14] developed a stochastic model for measuring population basis
risk. In particular, they consider several variants of the Lee-Carter model [13],
which has been widely used in actuarial science and other areas. They illustrate
the proposed basis risk model with a hedge, formed by JPMorgan’s q-forward
contracts, for a hypothetical pension plan in Canada, for which a Life Metrics
Index is not available.
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The present paper seeks to contribute to that literature by setting out a
framework for quantifying the basis risk. In particular, we propose a model mea-
suring the population basis risk involved in a longevity hedge, in the Functional
Demographic Model (FDM) setting. [11] suggests that the FDM forecast accu-
racy is arguably connected to the model structure, combining functional data
analysis, nonparametric smoothing and robust statistics. The decomposition of
the fitted curve via basis functions represents the advantage, since they capture
the variability of the mortality trend, by separating out the effects of several
orthogonal components. More in detail, while most existing models are designed
for a single population, aim of this contribution is to model mortality of two
populations in order to align with the hedging purpose.

This paper is organised as follows: Section 2 introduces the Functional Demo-
graphic Models and its variant for the basis risk. In Section 3, longevity hedging
strategies involving mortality-linked securities are presented, while Section 4 in-
troduces the key-q-duration and its role in defining the hedging portfolio. The
longevity hedging strategies effectiveness is estimated with regard to pension
annuities by graphical and numerical analyses in Section 5. Finally, concluding
remarks are provided in Section 6.

2 Functional Demographic Models for the basis risk

The Functional Demographic Model (from herein FDM) has been introduced
by [11] for forecasting functional time series. In particular, it is applicable to
mortality and fertility data. The approach is based on the properties of func-
tional data paradigm (see [17]) and nonparametric smoothing to decrease the
randomness in the observed data.

The Functional Demographic Model is a generalization of the Lee Carter
model. Nevertheless, the Lee Carter does not assume smoothness. In the FDM
approach the log death rates are modeled by an underlying smooth function
of the age x and the amount of the noise which varies with x. It allows for
capturing the increasing variance for higher ages generally observed into the data.
Instead the Lee Carter classical version presents a homoskedastic Gaussian error
structure which is denied by the general drop in mortality over time. Likewise
the approach is robust for outlying years due to the wars and epidemics, as
for instance 1918 when the World War I and the Spanish flu pandemic caused
an unusual number of deaths between 15-50 years old. Indeed the procedure
throughout the authors derive the set of the basis functions which explain the
dynamics of the smooth function is a combination of the weighted Principal
Component Analysis and RAPCA algorithm of Hubert [9]. It allows for obtaining
robust principal components.

In the context of mortality, the authors define the functional time series
{xι, yt(xι)}, t = 1, ..., n, ι = 1, ..., p, where yt(x) describes the logarithm of the
observed mortality rate for age x and time t which is expressed as follows:

yt(xι) = ft(xι) + σt(xι)ǫt,ι. (1)
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In the formula (1), ft(x) denotes a smooth function, σt(xι) the noise which
varies with x, with ǫt,ι an iid standard normal random variable. A nonparametric
smoothing is then implemented for estimating ft(x) for x ∈ [x1, xp] from {xι,
yt(xι)} for ι = 1, ..., p, by using the weighted penalized regression splines as in
[10]. A basis function expansion is used for decomposing the fitted curves:

ft(x) = µ(x) +

K
∑

k=1

βt,kφk(x) + ǫt(x), (2)

where µ(x) is a measure of location of ft(x), φk(x) is a set of orthonormal basis
functions and ǫt(x) ≈ N(0, ν(x)).

For the estimation of the formula (2), the orthonormal basis set is obtained
via principal components. For a given K the basis functions we take into account
are those minimize the Mean Integrated Squared Error. The best fit to the
estimated curves is obtained by the basis set.

In particular, the parameters µ(x, 1), µ(x, 2), φk(x, 1),φk(x, 2) are estimated
by performing the aforementioned procedure separately on each single popula-
tions; otherwise the βt,k are obtained considering the matrix that simultaneously
contains the log death rates of both populations.

In order to obtain robust principal components we preserve the two-step
algorithm introduced by Hyndman and Hullah [11] composed by the weighted
principal component and the RAPCA algorithm (as shown in Hubert, et al. [9]).
The central death rates is approximately binomially distributed, so that the
variance of the its logarithm, the observational error variance, is computed via a
Taylor approximation as shown in Hyndman et al. 2007. The coefficients βt,k, for
k = 1, ...,K, are the corresponding principal component scores. The coefficients
βt,k are forecasted for t = n + 1, ..., n + h, by possibly non-stationary ARIMA
models. At this stage, the formula (2) is used to project ft(x) for t = n+1, ..., n+
h. Once obtained ft(x) the yt(x) are derived from the expression (1). As widely
described in Section 1, in longevity hedges the basis risk arises. We propose
a stochastic framework for measuring basis risk, based on the aforementioned
FDM. The insurance company has to manage the longevity risk related to the
population of insured of the in-force portfolio having a specific future trend
of longevity phenomenon, different from one of the population of individuals
associated with the hedging instrument. The main alternatives (as in [14]) are
the following:

– to represent the mortality of two populations using two models not related
to each other;

– to use a stochastic model that projects mortality of two populations simul-
taneously.

In the first case the statistical dependence is ignored, contrary to the second one,
where the dependence between the two populations is taken into account. Here
we propose both of the alternatives, related to the FDM, originally designed to
represent a single population only. In the independent modelling, we estimate
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the smooth function ft(x), age x in year t, for population i, i = 1, 2, ft(x, i),
i = 1, 2, according to the formula below:

ft(x, i) = µ(x, i) +

K
∑

k=1

βt,k(i)φk(x, i) + ǫt(x, i), (3)

where µ(x, i) is a measure of location of ft(x, i) for the i-th population, {φk(x, i)}
is a set of orthonormal basis functions for the i-th population ǫt(x, i) ≈ N(0,
ν(x, i)) is the population-specific error term, and the coefficients βt,k(i) for k =
1, ...,K represents the principal component scores for the i-th population. As
documented in literature (see [14]) the resulting estimates diverge in the log
run. To avoid the problem, a joint FDM model is introduced here. In particular,
let us assume that both populations are jointly driven by a single index. In other
words two driving forces are indeed the same, as follows:

ft(x, 1) = µ(x, 1) +

K
∑

k=1

βt,kφk(x, 1) + ǫt(x, 1), (4)

ft(x, 2) = µ(x, 2) +

K
∑

k=1

βt,kφk(x, 2) + ǫt(x, 2). (5)

Specifically µ(x, 1) and µ(x, 2) respectively represent an age specific parame-
ter indicating the average mortality level at age x of the first and the second
population. Furthermore the principal component score βt,k is common to both
populations, where φk(x, i), i = 1, 2 is the specific set of basis functions for the
i-th population, which represent an age specific parameter indicating the sen-
sitivity of the log death rates to the changes of βt,k, as well as the error term
with i specific for the i-th population. The main attractive features of the above
representation is the parsimony for considering together two trajectories of the
populations under consideration and the convergence of long-term forecast.

3 The hedging strategies

A life annuity provider has to pay the benefits to its annuitants on the basis of the
realized mortality rates. So he is exposed to the risk that realized mortality rates
are smaller than expected. This situation implies an extension of the average
period of the annuity payment and an increase in actuarial liabilities. Therefore,
the annuity provider interested to hedge longevity risk could build an hedging
strategy based on a portfolio of q-forward contracts.

A q-forward is a zero-coupon swap that involves the exchange at the maturity
date of a fixed (at time 0) amount, for a random amount that is proportional
to a mortality index (LifeMetrics Index) for a fixed population (the reference
population) in some future time (the reference year). The fixed payment is pro-
portional to the forward mortality rate for the reference population and is set
so that q-forward value is zero at inception (see [5] for further details on the
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mechanism of q-forwards). Therefore, the annuity provider could play the role
of floating payer (i.e. the q-forward seller) receiving a fixed payment from the
instrument, while an investor could be a q-forward buyer.

An effective hedging strategy could consist in calibrating the portfolio so
that it contains a suitable mixture of q-forwards linked to mortality rates of
different ages and time horizons, in order to maximize the degree of longevity
risk reduction. The annuity provider entering in a portfolio of q-forwards to hedge
the longevity risk has to pay a risk premium to the investor that takes on the
risk. Since investors (fixed-rate payers) require compensation to bear longevity
risk, the forward mortality rate must be lower than the expected mortality rate.
Therefore, the risk premium can be found as the difference between the expected
mortality rate, qe, and the forward mortality rates, qf .

Different pricing models have been proposed in the literature. For example,
the LifeMetrics technical document [5] refers to Sharpe ratio to price the q-
forward. According to this approach the forward mortality rate is determined as
follows:

qf = (1− SR · T · σq)q
e, (6)

where T is the time to maturity, SR is the required annualized Sharpe ratio,
and σq is the standard deviation of changes in the mortality rate.

We are interested in hedging the longevity risk associated with a portfolio of
life annuities consisting of a cohort of one annuitant paying a fixed amount at
the end of each year, through a portfolio of q-forwards. The hedge effectiveness
is analysed by considering the present value of unexpected cash flows of the
insurance portfolio.

Let q(x, t, i) be the probability that an annuitant from population i, survived
to age x, dies between ages x and x+1 in the year (t, t+1). We define as qi the
stochastic vector of death probabilities for the cohort of interest belonging to
population i and E(qi) the best estimate of qi. Let V be the present value (at
time 0) of all cash flows payable to the annuitant until the maximum attainable
age and H be the present value of cash flows generated by the q-forwards in
the hedging portfolio depending on the death probabilities q2. In the case of no
hedge, the present value of unexpected cash flows is equal to:

X = V (q1)− V (E(q1)). (7)

While, in the case of longevity hedge for the annuity provider, the present value
of the unexpected cash flows becomes:

X∗ = V (q1)− V (E(q1))−H(q2). (8)

Note that if the q-forwards reference population is the same of the insurance
portfolio (i.e. q2=q1), basis risk is absent. The hedging strategy is considered
effective if the random variableX∗ is significantly less variable thanX . As in [14],
we use two measures of longevity hedge effectiveness provided by the hedging
strategy. The first one is evaluated by the difference between V aR at a 95%
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confidence level of the random variable X and X∗, respectively. The second one
is the longevity risk reduction index, R:

R = 1− (σ2(X∗))/(σ2(X)), (9)

where σ2(X) and σ2(X∗) are the variances ofX andX∗, respectively. The higher
the value of R the greater the hedge effectiveness. To obtain an optimal hedge
we need a mixture of a number of q-forwards with different terms equal to the
maximum number of years that the annuitants could be alive. However, as the
market of longevity derivatives is far to be complete, trading is limited to a small
number of q-forwards. This problem has been addressed in the papers [3], [6],
[14] and [15]. While [3] propose a hedging strategy based on q-forwards under the
assumption that death rates at different ages are independent of one another,
[15] define a hedging strategy taking into account the property of age depen-
dence. This property arises from the consideration that a shock to a mortality
rate is often accompanied by shocks to the mortality rates at neighboring ages.
Following [15] we aim to find a specified set of q-forwards to hedge the annuity
provider liability. As these liabilities depend on the entire mortality curve, we ex-
plore the property of age dependence in our data, that is potentially important
when only few q-forwards are used to replicate the annuity provider liability.
Before exploring the age dependence through mortality reduction factors, we
firstly determine the key mortality rates, i.e. key points on the mortality curve
well representing the mortality age profile of the population.

4 Key-q duration

4.1 Determining the key mortality rates

Let j be the number of key points and let x1, x2, ..., xj be the ages corresponding
to the key rates on the mortality curve. We consider j consecutive age groups
X1, ..., Xj , to find the key mortality rates for the reference population in the
age range we are interested in. For each age group key rates are determined by
considering the following model (the same model is used in [15]):

ln(mx,t) = µ(x) +

j
∑

h=1

κ
(h)
t I(x ∈ Xh) + ex,t, (10)

subject to the identifiability constraint
∑

t κ
(h)
t = 0 for all h. Where µ(x) is the

mean of ln(mx,t) respect to time t, κ
(h)
t is a time varying stochastic factor for

the age group h, and I is the indicator function. The error term is indicated by
ex,t.

Such a model is consistent with a FDM with only one coefficient βt assuming

φ(x) = φ(h) for x ∈ Xh. Therefore, we can write κ
(h)
t = βtφ

(h). We use the
simplified representation given by equation (10) in order to determine a small
number j of age groups satisfying a fixed value of explanation ratio (ER). The
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explanation ratio explains the proportion of variance in the mortality rates and
it is defined as:

ER = 1−

∑

x,t(ex,t)
2

∑

x,t[ln(mx,t)− µ(x)]2
. (11)

Parameters of the model are fitted by the least squares method. For a fixed j,

parameter κ
(h)
t for the generic age group h is obtained by:

κ
(h)
t = E[ln(mx,t)− µ(x)] for x ∈ Xh, (12)

where E[.] is the expectation operator with respect to x. This method to find
the key age groups could be improved by optimizing the ER value both under
the group width and the starting age of each group.

4.2 Mortality reduction factors analysis and mortality key rate

shifts

Once the key mortality rates are determined, we analyse the age dependence of
mortality rates on the reference population in order to find a suitable function of
mortality shift. To model mortality shift we perform an analysis of the historical
mortality reduction factors in the age range and the calendar years we consider.
Following the notation of [14] we define R(x, t) as the reduction factors at age x
in the year t as:

R(x, t) = 1−
qx,t+1

qx,t
. (13)

In order to analyse the property of age dependence in mortality, we study the
trend of the correlation coefficient, ρ(x, y), of the crude and smoothed reduction
factors:

ρ(x, y) =

∑

t [R(x, t)−R(x)][R(y, t)−R(y)]
√

∑

t [R(x, t)−R(x)]2
√

∑

t [R(y, t)−R(y)]2
, (14)

where R(x) is the average of R(x, t) respect to time t. According to the analysis
of the correlation between reduction factors calculated at different ages, we can
model the mortality shift. In [15] results on sample correlation show that the
dependence between two mortality rates lessen when the age width increases
suggesting the following specification for the shift at age x associated with a
change in the j-th key mortality rate:

sh(x, j, δ(j)) =



























0 if x ≤ xj−1

δ(j)
x−xj

xj−xj−1
if xj−1 < x ≤ xj

δ(j)
xj+1−x

xj+1−xj
if xj < x ≤ xj+1

0 if x ≥ xj+1

(15)

where the change in the j-th key mortality rate is constant and set to: δ(j) =
0.001 (10 basis point). For j = 1 sh(x, 1, δ(1)) is set to δ(1) for x ≤ xj , while for
j = n sh(x, n, δ(n)) is equal to δ(n) for x ≥ xn.
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4.3 Portfolio hedging

We assume that the q-forwards used to hedge the portfolio are based on the key
mortality rates chosen as shown in Section 4.1. Other sets of key mortality rates
can be defined. For instance, if a hedger decides to use two q-forwards only, then
two key mortality rates could be specified. The choice of key mortality rates also
depends on the availability of the associated q-forwards because the strategy
requires q-forwards that are linked to the key mortality rates chosen. Let q and
q̃ be the original and the shifted mortality curves, respectively. Following [15]
we define the key q-duration (KQD) as the portfolio’s price sensitivity to a shift
in a key mortality rate. Then the j-th key q-duration of a security is given by:

KQD = (P (q), j) =
P (q̃)− P (q)

δ(j)
, (16)

where P (q) is the price of the security on the basis of the mortality curve q.
The KQD for a q-forward with 100 monetary unit as notional, can be computed
analytically:

KQD(Fj(q), j) = −100(1 + r)Tj , (17)

where r is the interest rate at which the cash flows are discounted and Fj(q) is
the present value of the payoff from the q-forward with a notional amount of $1,
for example if i is the reference population of the q-forward, we can write:

Fj(q) = 100(1 + r)Tj (qf (xj , tj, i)− q(xj , tj , i)), (18)

where qf is the forward mortality rate and Tj is the time to maturity of the
q-forward. Therefore, net payoff to the hedger at maturity is 100 times the
difference between the fixed (forward) and realized mortality rates. While the
KQD for the pension liabilities are approximated via (16) taking q = E(q) and
δ(j) = 10 basis points.
To construct a good hedging strategy for the life annuities portfolio V and H
should have a similar sensitivity to the mortality curve
bmq. In light of these considerations, the following notional amount of q-forward
linked to the j-th key mortality rate is needed:

w(j) =
KQD(V (q), j)

KQD(Fj(q), j)
. (19)

Note that KQD(V (q), j) and KQD(Fj(q), j) are the key-q durations for the
portfolio liabilities and for the q-forward, respectively (for further details on the
key-q durations calculation we remind to the paper [15]). If q-forwards linked
to population (1) are unavailable, while q-forwards linked to population (2) are
available, the key-q duration of the q-forwards can be calculated as:

KQD(Fj(q1), j) = −100(1 + r)Tj
∂q(xj , tj , 2)

∂q(xj , tj , 1)
, (20)
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where
∂q(xj ,tj ,2)
∂q(xj ,tj ,1)

is the adjustment factor depending on the specified mortality

model. And the formula of notional amount w(j) becomes:

w(j) =
KQD(V (q1), j)

KQD(Fj(q1), j)
=

KQD(V (q1), j)

KQD(Fj(q2), j)

∂q(xj , tj , 1)

∂q(xj , tj , 2)
. (21)

Therefore, to calculate the number of q-forwards to hedge the portfolio we need

to find an expression of the adjustment factor
∂q(xj ,tj ,2)
∂q(xj ,tj ,1)

.

5 Numerical application

In this paper we consider a portfolio of life annuities consisting of a cohort of 1
annuitant aged x=60 at time 0 (set to beginning of year 2008) paying a 1$ at the
end of each year. We are interested in hedging the longevity risk associated with
this portfolio for 40 years, subject to the same mortality as the female Australian
population, through a portfolio of q-forwards.We fix 100 as the maximum age for
the annuitant. The mortality data refer to the period 1958-2007 and to ages 60-
100. Moreover, we suppose that q-forwards are available only for the Australian
total population. We refer to the female and total Australian populations as
populations (1) and (2), respectively.

We report below in Fig. 1 and Fig. 2 the parameter estimation of the inde-
pendent FDM modeling and in Fig. 3 the joint FDM coefficients. The choice of
the FDM setting instead of the Lee Carter scheme used forhedging the basis risk
by [14] in the augmented common factor model (ACF) is furthermore confirmed
by better performances of the former model, as shown in Table 1. The models
are compared in terms of error measures ME, MSE, MPE and MAPE.

Table 1. Error measures - Australian female and total population

Females ME MSE MPE MAPE

FDM 0.00000 0.00106 0.00041 0.01153
ACF 0.00003 0.00001 0.01355 0.05524

Total ME MSE MPE MAPE

FDM 0.00000 0.00067 0.00037 0.01021
ACF 0.00000 0.00005 0.01410 0.03454

Now, we determine the key mortality rates as explained in Section 4.1. The fol-
lowing four age groups provide an ER=0.9659 (an ER=1 indicates a perfect
fit): X1 = [60 − 70);X2 = [70 − 80);X3 = [80 − 90);X4 = [90 − 100]. The cor-
responding key mortality rates are the central value of each age group, i.e. they
are in the following ages: x1 = 65;x2 = 75;x3 = 85;x4 = 95.

Once the key mortality rates are determined, we analyse the age dependence
of mortality rates on the Australian female population in order to find a suitable
function of mortality shift. We show in Fig. 4 the values of R(x, t) calculated
both on the crude and smoothed mortality rates, where the latter are obtained
by applying 1-dimension P-splines functions for graduation.
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Fig. 1. Basis functions of FDM and associated coefficients - Australian female popu-
lation
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Fig. 2. Basis functions of FDM and associated coefficients - Australian total population
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Fig. 3. Joint FDM coefficients - Australian population
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Fig. 4. R(x, t) - Crude and smoothed rates

Further, we calculate the mean respect to time t, Et[R(x, t)], and the volatil-
ity, σ2

x = V ar[R(x, t)], of both crude and smoothed reduction factors. Results
are depicted in Fig. 5.

Then, we study the trend of the correlation coefficient, ρ(x, y), of the crude
and smoothed reduction factors. The values of ρ(x, y) are shown in Fig. 6 and
Fig. 7, the first reporting the correlation coefficient between the key age group
Xi and the key age y = x− j, the second between all the age range x = (60, 100)
and the key age y = xj . The obtained outcomes confirm that the dependence
between two mortality rates lessen when the age width increases. Therefore, we
model the mortality shift as in [15] (see expression (15)). Now, we consider the
four key mortality rates at ages x1 = 65, x2 = 75, x3 = 85 and x4 = 95 for the
cohort of interest, born in 1948, i.e.: q(65, 2013, 1), q(75, 2023, 1), q(85, 2033, 1),
and q(95, 2043, 1). Note that the q-forwards used to hedge the portfolio are
based on these key rates. We set the discount rate to r = 2% and we simulate
10,000 mortality scenarios according to Monte Carlo technique. We suppose that
the forward mortality rates are the same as the corresponding best estimate
mortality rates. This assumption, which implies zero risk premium, would affect
the cost but not the performance of the longevity hedge. We firstly calculate the
key-q duration of both the annuities portfolio and the q-forwards modelling the
mortality projection as in Section 3. The values of key-q durations, as well as
the notional amount w(j), are expressed in Table 2 in the case where the basis
risk is absent.

If the basis risk is present, i.e. the q-forwards reference population is the total
Australian population, the vector of notional amounts becomes: w = (1.5088,
0.9993, 0.5658, 0.3569). We calculate the distributions of the present value of
unexpected cash flows X and X∗ when there is no basis risk and when basis risk
exists (see Fig. 8). We observe from Fig. 8 that the longevity hedge significantly
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Fig. 5. Mean and standard deviation of R(x, t) - Crude and smoothed rates

Table 2. Key-q durations of the Australian female population - No basis risk

j=1 j=2 j=3 j=4

KQD(V (q1), j) -97.5566 -59.4588 -32.4796 -18.3041
KQD(Fj(q1), j) -90.5731 -74.3015 -60.9531 -50.0028
w(j) 1.0771 0.8002 0.5329 0.3661

reduces the dispersion of the unexpected cash flows, even if basis risk exists.

As previously mentioned, the hedge effectiveness provided by the hedging
strategy is measured according to the amount of longevity risk reduction, R
and to the V aR(X) and V aR(X∗) at 95% confidence level. As shown in Table
3, without a longevity hedge the V aR(X) is 0.70. When basis risk is absent,
the longevity hedge can reduce the V aR(X∗) to 0.27 with a value of longevity
risk reduction R = 86.70%, while when it is present the V aR(X∗) is 0.36 and
R = 76.71%.

Table 3. Results of V aR(X) and V aR(X∗) at 95% confidence level and R

q2 = q1 q2 6= q1

(No basis risk) (Basis risk)

V aR(X) 0.70 0.70
V aR(X∗) 0.27 0.36
R 86.70% 76.71%
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Fig. 6. ρ(x, y) for x = Xi and y = x− j. Crude and smoothed rates



36 Mariarosaria Coppola et al.

60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age y=65

age x

rh
o(

x,
y)

crude rates
smoothed rates

60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age y=75

age x

rh
o(

x,
y)

crude rates
smoothed rates

60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age y=85

age x

rh
o(

x,
y)

crude rates
smoothed rates

60 70 80 90 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

age y=95

age x

rh
o(

x,
y)

crude rates
smoothed rates

Fig. 7. ρ(x, y) for x = (60, 100) and y = xj . Crude and smoothed rates



Measuring and hedging the basis risk by Functional Demographic Models 37

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

PV of unexpected cash flows

D
en

si
ty

Unhedged
Hedged with basis risk
Hedged without basis risk

Fig. 8. Simulated distribution of X and X∗

6 Conclusions

The paper deals with the impact of basis risk in longevity hedging strategies.
In order to measure basis risk we propose a mortality model for two popula-
tions in the framework of Functional Demographic Models, combining functional
data analysis, nonparametric smoothing and robust statistics. In particular, the
decomposition of the fitted mortality curve via basis functions represents the
advantage, since they capture the variability of the mortality trend, by separat-
ing out the effects of several orthogonal components. Then hedging strategies
based on a mixture of q-forward are presented together with measures suitable
to evaluate hedging effectiveness. A perfect strategy require many q-forwards
as the maximum numbers of years that the annuitants could be alive. As some
of the required q-forwards may not be available, we evaluate as the property
of age dependency could simplify the hedging problem. Actually we can obtain
a good hedging with only few q-forwards written on specified mortality rates
called key mortality rates. The strategies we consider are obtained constructing
a portfolio of q-forward having a similar sensitivity to mortality curve than the
annuity portfolio where the portfolio sensitivity to mortality curve is measured
via the key-q duration. In order to measure the sensitivity to mortality curve the
key q-duration for annuity portfolio and q-forward under the mortality model
adopted is calculated.
The original nature of the proposed contribution relies in a flexible approach for
quantifying the basis risk in longevity risk hedging. We introduce here a Joint
Functional Demographic Model. In particular, we assume that the population
of portfolio in-force as well as the reference population of the hedging instru-
ment are jointly driven by a single index. The main attractive feature of the
above representation is the parsimony for considering together two trajectories
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of the populations under consideration and the convergence of long-term fore-
cast. The framework is characterized by a strong versatility, being the Functional
Demographic setting a generalization of the Lee-Carter model commonly used
in mortality forecasting it allows to adapt to different demographic scenarios.
Further studies will focus on the comparison between different schemes referable
to the Functional Demographic setting.
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