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Abstract. Classical interest-rate models are formulated to satisfy by
construction no-arbitrage relationships, which allow to hedge forward-
rate agreements in terms of zero-coupon bonds. In practice, these no-
arbitrage relationships might not hold, as market players realized after
summer 2007 when the recent crisis began. In the literature proposals to
accommodate these facts can be found. Yet, the calibration of such mod-
els would typically require market quotes for all yield curves. At present,
this is not possible since most of the quotes are missing or extremely
illiquid. Here, thanks to a suitable extension of the HJM framework,
we propose a parsimonious model based on observed rates that deduces
the dynamics of the money-market yield curves from a single family of
Markov processes. Initial yield curves are recovered by means of a boot-
strapping algorithm based on forward rate spreads. Then, we detail a
stochastic-volatility specification of the model.
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1 Introduction

Classical interest-rate models were formulated to satisfy by construction no-
arbitrage relationships, which allow to hedge forward-rate agreements in terms
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of zero-coupon bonds. As a direct consequence, these models predict that for-
ward rates of different tenors are related to each other by strong constraints.
In practice, these no-arbitrage relationships might not hold. An example is pro-
vided by basis-swap spread quotes, which are significantly non-zero, while they
should be equal to zero if such constraints held.

This is what happened starting from summer 2007, with the raising of the
credit crunch, where market quotes of forward rates and zero-coupon bonds
began to violate the usual no-arbitrage relationships in a macroscopic way, under
both the pressure of a liquidity crisis, which reduced the credit lines, and the
possibility of a systemic break-down suggesting that counterparty risk could not
be considered negligible any more. The resulting picture, as suggested by [18],
describes a money market where each forward rate seems to act as a different
underlying asset. On the other hand, there are empirical studies on the nature of
Libor rates’ dynamics which analyse both the effect of credit and liquidity risks.

In a European Central Bank working paper (see [12]), the authors compare
the spread of the Euribor over the general collateral repo-rate to the spread of
banking-sector credit default swaps of the same tenor during the crisis period.
They found that there is evidence of a large, persistent and time varying com-
ponent of the Euribor-Eurepo spread that cannot be explained by counterparty
credit risk.

As an example we could compare (see [23]) the historical series of Euribor-
Eurepo spread for a rate tenor of one year and of a synthetic index composed by
senior one-year CDS spread of a basket of twelve European banks representative
of the Libor panel. Surely the two series have some common qualitative charac-
teristics. Yet, we find a sharp rise in the Euribor-Eurepo spread in September
2008. This peak is only found three-four months later in the CDS spread series,
confirming that a liquidity crisis needs time to evolve as credit crisis. Hence,
counterparty risk is only one of the Libor dynamics driving factors, as discussed
in [17].

In the recent literature, some authors try to build fully consistent dynamical
models for multiple yield curves. For instance, we can mention [14] and [21,
22], which adopt a market model view, and [10] which extend the HIM model
by introducing different (correlated) HIM models, one for each yield curve. In
general, these authors describe the multiple yield-curve dynamics in term of
replicated single-curve models, leaving to the calibration procedure the problem
to fix all the correlation parameters.

The hypothesis of introducing different underlying assets may lead to over-
parametrization issues that affect the calibration procedure. Indeed, the presence
of swap and basis-swap quotes on many different yield curves is not sufficient, as
the market quotes swaption premia only on few yield curve. For instance, even
if the Euro market quotes one-, three-, six- and twelve-month swap contracts,
liquidly traded swaptions are only those indexed to the three-month (maturity
one-year) and the six-month (maturities from two to thirty years) Euribor rates.
Swaptions referring to other Euribor tenors or to Eonia are not actively quoted. A
similar line of reasoning holds also for caps/floors and other interest-rate options.
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A review of interest-rate derivatives regularly quoted by the Euro money market
can be found in [26].

Thus, a different approach is followed in [23], where the authors construct a
parsimonious extension of the HJM framework where a unique family of Markov
processes is able to drive all yield curves’ dynamics. In particular, an uncertain
parameter model specification is presentd and calibrated to cap and floors to
price multi-curve derivatives. Here, we consider a more ambitious model spec-
ification: a multi-curve stochastic-volatility parsimonious HJM model. Model
calibration to the whole volatility cube of swaptions’ quotes is discussed in [24].

The structure of the paper is the following: in Section 2 we review the funda-
mental money-market concepts that underlie the construction of a multi-curve
framework; in Section 3 we describe the parsimonious HJM framework able to
handle many yield curves; in Section 4, we detail the stochastic volatility version
of the model; finally, Section 5 reviews our contributions and hints for further
developments.

2 Discounting and forwarding with multiple yield curves

In order to motivate our modelling choices, it is useful to summarize the changes
that occurred because of the credit crunch and the crucial issues a multi-curve
framework should face. In this section we start by assuming the existence of a
risk-neutral measure, and discussing why, for practical purposes, the risk-free
yield curve is often approximated with the one derived from overnight rate in-
dexed quotes, such as Overnight Indexed Swaps (OIS). Finally, we introduce
Libor (risky) rates. Then, in the next Section, we continue by introducing the
model dynamics, and we derive the relevant dynamical features of the model.

2.1 Risk-free rates and market rates

First of all we assume that the market is arbitrage free, hence postulating the
existence of a risk-neutral measure. Under this measure every (risk-free) tradable
asset instantaneously increases its value at the risk-free rate ;. Furthermore, we
introduce (risk-free) zero-coupon bond prices and instantaneous forward rates

—/tT rudu] ) (1)

fo(T) = E{ [rr],

where the first expectation is taken under risk-neutral measure, and the last
expectation is taken under a measure whose numeraire is P;(T) (hereafter simply
T-forward measure).

As usual, we wish to link our risk-free rates to market quotes. In classical
single-curve interest-rate models, zero-coupon bond prices observed at time ¢t = 0
form a term structure

Pt(T) = Et

T Py(T),
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which can be made consistent with a selection of quotes (deposits, futures and
interest-rate swaps). However, since the beginning of the crisis, many of them
have been carrying a relevant amount of credit and/or liquidity risk and can-
not be considered as belonging to the risk-neutral economy. Thus, the subset of
the instruments to bootstrap the risk-free term structure from has to be care-
fully chosen, see, for instance, [26] and references therein. A closer look at the
Euro money market makes clear that quoted instruments are indexed on three
reference indices!:

— Eonia is an effective rate calculated from the weighted average of all overnight
unsecured lending transactions undertaken in the interbank market;

— Euribor(s) are offered rates at which Euro interbank term deposits of differ-
ent maturities are traded by one prime bank to another one;

— Eurepo(s) are offered rates at which Euro interbank secured money market
transactions are traded.

Fonia and Euribor rates are unsecured, so that they incorporate the default
risk of the counterparty of the transaction, while Eurepo rates are secured and
free of credit risk. Thus, Eurepo rates could seem the natural proxy for risk-
free rates?. The main issue with Eurepo is that the longest quoted instrument
has a maturity of one year. Longer maturities Euro money market deals are
only indexed on Euribor and Eonia indices. In particular, we find Eonia swap
contracts up to thirty years. Because of the plurality of available Eonia swaps
and of the reduced credit/liquidity exposure on overnight deposits, to many
extent Eonia based quotes are the best available proxy for Euro market risk-free
rates. This point has been stressed by many authors, and we refer to [14] for
more detailed arguments. Our modelling choices, however, will not be bound to
a specific choice/identification for the risk-free curve.

We can now consider the Libor rates. It is a common habit to refer to unse-
cured deposit rates over the period [S,T] as Libor rates L(S,T). In this paper
we follow this nomenclature and we reserve the term Euribor for the index used
as reference rate for deposits in the Euro area. As usual we associate to Libor
rates the corresponding forward rates F; (T, z) defined as

F(T,z):= E'[L(T —2,T)] . (2)

Forward rates Fy(T,z) are by construction martingales under the T-forward
measure and each of them represents the par rate seen at t for a swaplet accru-
ing over [T — x,T] and paying at T a fixed rate in exchange for L(T — z,T).
Libor rate L(T — x,T) fixes, according to market conventions, with a settlement
lag 6 > 0, such that the corresponding forward undergoes the fixing condition
F,_, §(T,x) = L(T—z,T). In the remainder of the paper, for sake of simplicity,
! See Eonia, Euribor and Eurepo pages of European Banking Federation site at
http://www.euribor-ebf.eu.
2 See for instance [12] where the Euribor-Eurepo spread is used as an indicator of
credit risk.
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we will assume 6 = 0, the extension to the case of non zero settlement lags being
straightforward.
It is useful for later use to introduce also the risk-free linearly compounding

forward rates
T
E(T,z) := é <exp{ ; ft(u)du} - 1) . (3)

Notice that we consider overnight deposits as being almost risk-free, while the
longer the tenor, the greater will be the credit charge on unsecured deposit rates.
By pushing this analogy further we can interpret Libor rates as microscopic rates
at the same level of the short-rate, and model, in the HJM spirit, Libor forwards
F(T,x) and risk-free instantaneous forward rates f;(T).

Let us stress that even if we could formally define Libors for any possible
value of z, in practice only a finite set of tenors are liquidly traded and used
as underlying of derivative contracts. For instance, the Euro currency option
market is mainly based on one-, three-, six-, and twelve-month Libors.

We conclude this Section by describing how to bootstrap the initial yield
curves, which we embed within the dynamical framework proposed in the next
Section.

2.2 Bootstrapping the initial yield curves

In our multiple curve framework we have one risk-free discounting curve and
many forwarding curves, one for each quoted Libor rate tenor:

T Py(T), T~ Fo(T,x), x € {Im,3m, 6m, 12m}

The problem of bootstrapping different curves corresponding to rates of differ-
ent tenors has been addressed for example in [1] where the authors solve the
problem in terms of different yield-curves coherent with market quotes of basic
derivatives. By following [26] we review here an independent approach to boot-
strap the term structures, which focuses on the spread between forward rates of
different tenor, see equation (2). We bootstrap the yield curves by interpolating
on such spreads. In particular our aim is to produce smooth curves of forward
rates and basis spreads.

As a practical case, let us focus on the Euro area market, describing the set
of available instruments and sketching the calibration procedure.
Let us start by listing the market instruments we are about to use, which we
group according to the tenor of the interbank rate to which they are indexed to:

— Overnight Indexation: Fonia fixing, OIS from one to thirty years;

— 1m Indexation: Euribor one-month fixing, swaps from one to thirty years
paying an annual fix rate in exchange for the Euribor 1m rate (some of these
swaps may be substituted with one-vs-three-months basis-swaps);
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— 3m Indexation: Euribor three-months fixing, Short Futures, FRA rates up
to one year, swaps from one to thirty years paying an annual fix rate in
exchange for the Euribor 3m rate (some of these swaps may be substituted
with at-the-money cap strikes or with three-vs-six-months basis-swaps);

— 6m Indexation: Euribor six-months fixing, FRA rates up to one year and
a half, swaps from one to thirty years paying an annual fix rate in exchange
for the Euribor 6m rate (some of these swaps may be substituted with at-
the-money cap strikes);

— 12m Indexation: Euribor twelve-months fixing, FRA rates up to two years,
six-vs-twelve-months basis-swaps from two to thirty years.

Notice that the payoffs of these instruments must be calculated without re-
sorting to the usual non-arbitrage relationships. In particular for FRA, IRS and
Basis Swaps we get relevant modifications, see also [21] and [26].

We continue by considering the risk-free discounting curve. Since the quotes
for Eonia and OIS depend only on this curve, we can bootstrap it by means
of the usual techniques, for instance we choose to employ the monotone cubic
interpolation based on Hermite polynomials (see [15] and [1] for a review of
bootstrapping techniques).

Once the discounting curve is known, we derive from it a curve of 1d forward
rates obtained from equation (3). Then, starting from this curve, we obtain the
forwarding curves corresponding to the different rate tenors.

We start from the six-months tenor, which corresponds in the Euro area to
the family of most liquid instruments. We take the following steps:

1. we define the rate difference ygm /1a4(t) := Fo(t,6m) — Eo(t, 1d);

2. we bootstrap the curve of the y’s to match the six-months-tenor market
quotes by using as interpolation scheme the monotone cubic interpolation
based on Hermite polynomials;

3. we get the curve of the six-months F’s by inverting the definition of the y’s.

Notice that we choose to bootstrap the rate differences y, instead of directly
acting on the rates F, so that the interpolation scheme can produce a smoother
basis between the six-months and the 1d forward rates.

Once we know the six-months curve, we can proceed in a similar way (interpo-
lation on rate differences) to obtain the curves corresponding to the other tenors.
We define the spreads y, /z(t) := Fo(t,z) — Fo(t,z), where z,Z € {1m,3m, 6m,
12m}, and we consider the liquidity of the underlying instruments to select which
rate difference we want to bootstrap, and

4. we obtain the three-months curve using as starting point the six-months
curve, since the market quotes the three-vs-six-months basis-swaps;

5. we obtain the one-month curve using as starting point the three-months
curve, since the market quotes the one-vs-three-months basis-swaps;

6. we obtain the twelve-months curve using as reference the six-months curve,
since the market quotes the six-vs-twelve-months basis-swaps.

The results of this procedure are shown in Fig. 1.
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Fig. 1. Curve bootstrap in a multi-curve framework with monotone cubic interpolation
based on Hermite polynomials. Market data observed on 14 June 2010

3 The parsimonious HJM framework

Our goal is to extend the classical framework by [16] to include curves associated
to different tenors by modelling forward Libor rates by means of a common family
of (Markov) processes. Here, we follows [23]. In the literature other authors
proposed generalizations of the HIM framework, see for instance [8], [2], [5], [3],
or [9]. In particular, recent papers [14], [10] extended the HIM framework to
incorporate multiple yield-curves and to deal with foreign currencies.

Our approach differs from the previous ones mainly on two relevant points.
First, we model only observed rates as in Libor market model approaches, avoid-
ing the introduction of quantities such as “forecasting curve bonds” or “fore-
casting curve instantaneous rates”. Second, we consider a common family of
processes for all the yield curves of a given currency, so that we are able to build
parsimonious yet flexible models.

3.1 HJIM generalized dynamics

As a consequence of the discussion of previous sections, and in order to keep the
model as simple as possible, let us summarize the basic requirements the model
must fulfill:

i) existence of a risk free curve, with instantaneous forward rates f:(T);
ii) existence of Libor rates, typical underlying of traded derivatives, with asso-
ciated forwards Fy(T, x);
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iii) no arbitrage dynamics of the f;(T') and the Fy(T,z) (both being T-forward
measure martingales);

iv) possibility of writing both the f;(T") and the F; (T, z) as function of a common
family of Markov processes.

While the first two requisites are related to the set of financial quantities we are
about to model, the last two are conditions we impose on their dynamics, and
will be granted by a befitting choice of model volatilities.

According to requirements i) and ii) we model risk-free forward instantaneous
rates f+(T') and (risky) forward Libor rates F;(T,z), for which we choose, under
the T—forward measure, the following SDE3.

dfy(T) = o7 (T) - AW, (4)

dF,(T, )
k(T,z)+ F(T, z)

= $¥(T,z) - dW,

with
T

oi(T) =0 (T;T,0), Xu(T,x) ::/ or(u; T, x)du ,
T—x
where we introduced the family of volatility (row) vector stochastic processes
ot(u; T, z), the (row) vector of independent Brownian motions W;, and the set
of determinstic shifts k(T ), such that k(T,z) =~ 1/z if z =~ 0.

Under this parametrization the risk free curve dynamics is the very same as
in an ordinary HJM framework, where instantaneous forward rates have non-
shifted evolutions, while linearly compounding forward rates Ey(T,x), which
can be identified with the forwards of single-period OIS rates, have a shifted
dynamics, the shifts being equal to the inverse of the tenor

dE,(T,x) [ [T .
m*(ﬁft@du)'dm

This is of fundamental importance, as discussed in [22], to ensure that differen-
tiating on both side the compounding relationship

1+ z2E(T,2))(1 + 2’ E(T + 2',2")) = (1 + (x + 2" )Ey(T + 2’z + o)),

the dynamics of all simple rates is of the same type for all z,z’,T > 0.

Moreover, we would like to ensure both a formal and substantial analogy
between the dynamics of the simple risk free forward rates E;(T,z) and of the
simple risky forward rates F;(T, x), and we believe that, when small tenors are
chosen (e.g. x = 1 day), the two rates should behave essentially the same way.
This is the reason why we identified the volatility of risk free instantaneous
forward rates with o4(T;T,0), and required the shifts to satisfy the boundary
condition for small tenors.

3 See the appendix for vector and matrix notation.
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In literature, direct modelling of shifted forward rates is also considered in
[11] (see also references therein), and in [25].
By means of the change of numeraire technique we have that

t

T
aw ™ = aw™ —d <W<’“">, log P(T)> = dw"™ + < / i (u;u, O)du> dt
t

where W) and W™ are standard Brownian motions under T'—forward and
risk-neutral measure, respectively. It is then straightforward to write the dy-
namics of forward Libor rates and instantaneous risk-free rates under the risk
neutral measure as

dFy (T, z) = 3T, x) - [(/Tgt(u; u, O)du) dt + dW,

k(T,z) + F(T,x)
T
(/ ot(u;u,O)du> dt + dW
t

W; being a risk-neutral measure multidimensional standard Brownian motion.

(5)

dfy(T) = o7 (T) -

)

3.2 Constraints on the volatility process

Let us analyse more in detail the dynamics of the shifted forward Libors under
risk-neutral measure. By integrating the SDE over the time period [0,t] we get

(T, x)+ F(T,x)\
8 (k(T, D+ RolT, x)) =

/OtE;‘ (T, z) -

To ensure the tractability and a Markovian specification of the model, we
extend the single-curve HIM approach of [7], [4], [6], and [27] by setting

ou(w; T, z) == hy - q(u; T, 2)g(t, u)

g(t,u) == exp {— /tuk(y)dy}

q(u;u,0) =1,

T
dWs — %ES(T, x)ds + </ o (u;u,())du) ds] .

where h is a matrix adapted process, ¢ is a diagonal matrix deterministic func-
tion (i.e. ¢ = ¢'1;=;) and X is a deterministic array function. The condition on
q when T' = u ensures that the standard HJM for risk free rates fulfills the usual
Ritchen-Sankarasubramanian’s separability condition. By plugging the expres-
sion for the volatility into equation (5), it is possible to work out the expression
ending up with the representation

k(T,$)+Ft(T,I) .
In (k(T, x) + Fo(T, :v)> - (6)

G'(t, T —z,T;T,x) - (Xt—i—Y}- (Go(t,t,T) - %G(f,T—ZC,T;T,JJ))) ,
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where we have defined the stochastic process X,

N t t
XZ = Z/ g’i(sa t) <hrk.,sdwk,s + (h:hs)lk </ gk(sa y)dy> dS) 57; = 15 sy N
k=10 s
and the auxiliary matrix process Y;
t
Yk = / gi(s,)(hihs)iwgr(s,t)ds i, k=1,...,N
0

with X} = 0 and Yg* = 0, as well as the vectorial deterministic functions

T

Go(t.To,T1) = [ a(t.w)dy
To
T
G(t,To, T1; T, x) ::/ q(y; T, x)g(t, y)dy .
To

3.3 Dynamics of state variables

Equation (6) is the analogous of standard HJM reconstruction formula and is
the main result of our paper. Let us notice that it returns a reconstruction
formula for forward Libor rates, while standard HJM one is based on bonds.
This important feature is consistent with the requirement of a model capable to
directly describe market relevant quantities.

Thanks to our assumption we are fully able to describe instantaneous risk-
free forward rates and forward Libor rates once we know the state variables
{X:,Y:}, which satisfy, under the risk neutral measure, the following coupled
(S)DE

N
dX; =" (V¥ = Xi(t)X[) dt + hi - dW,
k=1
AYF = [(hhe)ik — (N(t) + M (8) Y] dt.
Let us notice that forward Libor diffusion pre-factors* G(t,T — x,T; T, x)

depend on the g(u; T, ). This flexibility is a desirable feature, as it allows for a
locally tuned dynamics for forward Libor rates, as we show in the next section.

4 A multi-curve stochastic-volatility parsimonious HJM
model

In this section we describe a particular stochastic-volatility model, within the
multiple-curve parsimonious HJM framework, and we calibrate it to the swaption

4 Actually, starting from (6), and switching to the terminal QT measure, we have

dFy(T,z) = [x(T,z) + F (T, 2)|G*(t, T — z,T; T, x) - hi - dWy.
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volatility cube. We consider a relatively simple specification to limit the number
of parameters. In order to deal with swaption smile we can add a stochastic
volatility process to our model by extending the filtration to include also the
information generated by the volatility process. A popular choice for standard
HJM framework is to model the matrix process h; by means of a square-root
process (see for instance [29] and reference therein).

4.1 Brownian motion settings

We consider N Markov driving factors (X?) to model the yield curves, and we
add one more factor to model the volatility process h;. In particular, in the
following numerical section we fix N = 2. The driving factors are specified in
term of a vector of standard Brownian motions {W° W', ... W~} under risk
neutral measure. Such driving factors are correlated by means of a correlation
matrix p, which can be decomposed in term of a (lower) triangular matrix R
such that p = RR*. We define a (1 + N)-dimensional correlated (risk neutral
measure) Brownian motion {Z°, Z% ... ZVN} by

N
Z'=> RIW/

j=1
such that o -
d(Z",Z7 ) = p¥dt.
4.2 Dynamics of forward Libor rates
Under T-forward measure we have from equation (4)
dF\(T,x) = (k(T,z) + Fy(T,x)) X7 (T, x) - dWy, (7)

where we now define the rate shift as

.
K(T,x) = “—,
X

with v a deterministic constant. Notice that for small tenors, namely for z ~ 0
with have k(T z) ~ 1/z.

The forward-rate diffusion term X' can be expanded if we choose a form for
the volatility process. In particular, we consider a square-root stochastic process

given by
ht = V ‘/t 6’R,

where ¢ is a deterministic constant diagonal matrix, and V; satisfies under risk-
neutral measure

dVy = k(0 — Vi)dt +e\/V, dZ) , Vo=, (8)
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where v, 5,6, and € are positive constants, and Z := (RW;)°. Furthermore, we
define the g and g as given by

Gt T)=e T Gii(uT z)=e"1,_;, 1<ij<N,

where A and 7 are deterministic constant vectors.
Hence, the forward-rate diffusion term can be written as

AT, x) - dW,; = \/VtZe"mGltT T)6" dZ}

where we explicitly write the vector components. Furthermore, we can explicitly
calculate the G term, and we get

Go(t, To, T1) = ~ (9(t, To) — g(t, T1))

>| =

4.3 Dynamics of swap rates

Our framework allows us to derive an (approximated) expression for swap rates
dynamics based on freezing techniques

Let us consider a swap with a z-tenor floating leg and a Z-tenor fixed one
paying at times {Tp11,...,Tp} and {Tg41,..., T3}, respectively. The swap par
rate equating the two legs is

S asr TR PH(T) Fe(T, )
ZZ:&-H 7_’kpt(Tk)

where the quantities with a bar refer to the fix leg. We introduce the weights w
as

S (x,z) =

i} TP (Tk)
ka1 TP(Th)

and perform the usual freezing technique w,‘;f’t (z,z) ~ wa’O(:C, T) to obtain the
(approximated) dynamics of swap rates in swap measure, as shown in [28] or in
[13].

wat( ,T) =

dSpt (x, z 5
~\/V(t) Z Ze”wé 2)Go(t,Tj-1,T;)6" dZ}  (9)

Sab(z, z) —l—w“b (z, %) Pt

where we define .
Y imarr Po(Ty)e 7™

Z?:a-i-l 7_'lPO(Tl)

z/J“b(x, z) =

and
Po(Tj)(e™ 77 + 7 Fo (T, x))

S Po(T) (™™ + By (T, 7))

5,(x) =
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The volatility process entering the above dynamics must be expressed under
swap measure, and it is given by

dVy = k(020 — V;) dt + e/ V; dZ7?, (10)
where we define
- b N )
RiP =m0 mP(T) Y Gyt T pro
t 1=a+1 i=1

and
07° .= kK1,
with the swap annuity (used as numeraire under swap measure) given by
b
Af = N AP(T).
l=a+1

With this choice we get shifted Heston dynamics for market rates, so that we
can calculate option pricing with usual Fourier transform techniques as presented
n [20]. See also [2] for direct an application on interest-rate derivatives. Once
we are able to compute option pricing, we can calibrate our model to market
quotes as in [24]. We report in Fig. 2 an example of calibration on at-the-money
swaptions’ volatilities for various expiries and tenors.
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Fig. 2. Left panel: at-the-money swaption volatilities. On the horizontal axis swap-
tions’ expiries, on the vertical axis swaptions’ volatilities. The curves correspond to
swaptions with tenor of 1y, 2y 5y and 10y. The dots are market quotes. Right panel:
swaption volatility smile. On the horizontal axis differences between swaptions’ strike
rate and underlying forward swap-rate, on the vertical axis differences between swap-
tions’ volatilities and corresponding swaptions’ at-the-money volatilities. The curves
correspond to swaptions with expiry of 5y, 10y and 20y and tenor of 5y. The dots are
market quotes. Market data observed on 4 April 2012. See [24]
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5 Conclusions and further developments

Interest-rate modelling requires a framework able to incorporate many initial
yield curves, one for each Libor rate tenor plus one for discounting. Classical
models may be extended in many ways, but, unfortunately, the market is too
young to quote options on all tenors: only limited number of quotes are available
and they are concentrated only in few tenors. Thus, a model, which allows a
minimal extension of classical frameworks and, at the same time, allows for
more complex dynamics when quotes will be available, is a relevant tool for
both quants and practitioners.

In this paper we presented a methodology which allows to bootstrap market
quotes of plain-vanilla interest rate instruments in order to obtain a set of initial
forwarding term structures, one for each rate tenor, and we illustrated how this
approach works in practice. Then, we introduced an extension of the HJM model
which is able to describe the dynamics of the discounting yield curve and of
market Libor rates of any tenor starting from a single family of Markov processes.
Furthermore, we discussed a stochastic-volatility version of the model, and we
derived the dynamics of market rates along with some calibration examples.

Our next step will be the study of more complex specifications of forward-
rate volatilities to better incorporate basis dynamics, as soon as the market will
start to quote swaption volatilities on more tenors.

Appendix: vector and matrix notation

When we consider a vector quantity v, we think it as a matrix with only one
row, if a “column” vector is needed we use the transposition operator, namely
v*. Further, we introduce also the vector whose entries are all of ones and we
name it 1.

Let us consider two matrix quantities a and b, whose elements are respectively
a;; and b;; with 1 < ¢ <nand 1 < j < m. We define element-wise multiplication
as the matrix ab with elements:

(ab)ij = a;jbi;

and, in the same fashion, also multiplication by a vector v, whose elements are
v; with 1 <4 <n, or a scalar k as

(va)ij == viasj , (Ka)ij == Kai; ,

while index contraction as the matrix a* - b with elements:

(CL* . b)jk = Zaijbik .
i=1
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