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Abstract. In this paper we define and compare different versions of
robust, in the sense of Robust Optimization, and non robust portfolio
selection models alternatively based on the use of different risk measures.
This with the aim to take account of investors’ asymmetric preferences
in profits and losses together with the goal of having solutions less de-
pendent on the parameter uncertainty. The empirical implementation
considers the time series of the monthly prices of some representatives
benchmarks in a time period characterized by a very particular set of fi-
nancial events and therefore an ideal time to test the different portfolios
strategies related to the alternative models. We show that the robust
CVaR approach is preferable compared with the others and with the
risk-free portfolio. The results can have very interesting applications in
the field of the asset management industry.
Keywords. Coherent risk measures, Conditional Value at Risk, robust
optimization, benchmarks.
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1 Introduction

The leading example of the classical portfolio selection models is the famous
and Nobel-awarded Markowitz’s model [27], [28], [29] based on a bi–criteria
optimization scheme whose goal is to form a portfolio in which expected return is
maximized while the portfolio return variance or standard deviation (volatility)
is minimized.
Actually, models that maintain the same bi–criteria scheme and that differ each
other for the chosen risk measure are largely implemented for their conceptual
simplicity and useful applications. Recently, however, three relevant problems
have been observed [30], [31], [33]:
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1. a large literature [18] evidenced that the return probability distribution is
not necessarily symmetric: it can present asymmetries on the right or on the
left in relation to specific asset classes (i.e. derivatives, hedge funds, small
cap etc.);

2. empirical evidence [37] generally shows that unexpected losses are perceive
more negatively than the benefits derived from unforeseen positive results;
then, positive and negative deviations of portfolio returns from their means
play an asymmetric role in investors utility that must be adequately consid-
ered [25], [26];

3. optimal solutions heavily depend on the levels and perturbations of the model
parameters (moments) that are not known with certainty [20].

As to the first and second point, financial practice and related theory has shown
increasing interest towards downside risk and quantile based measures, such as
the Value at Risk (VaR). The success of VaR as a synthetic risk measure is due
to its wide applicability (although under strong validity conditions within the
trading and investment operations) as well as to its use in relation to the provi-
sions known as Basel II. In any case, VaR has become a common way to evaluate
the aggregate risk but, if it is studied in the framework of coherent risk measures
[2], [3], it lacks reasonable properties, like sub–additivity and convexity, in the
case of general loss distributions. Actually, this drawback entails inconsistency
with the well known accepted principle of diversification as well as difficulties
from the point of view of numerical tractability.
To overcome these problems, recent literature on portfolio selection focused on
coherent risk measures and in particular on Conditional Value at Risk (CVaR or
Tail–VaR); some authors [32], [34], [35] consider that this particular risk measure
is the right objective to be minimized.
Although in literature it is possible to find different definition for this risk mea-
sure, in this paper we will refer to that given by Rockafellar and Uryasev in
2002 according to which the CVaR is the mean of the α−tail distribution of the
portfolio loss function and it quantifies the (extremes) tail losses of the return
distribution. In this sense it is also called expected shortfall.
Rockafellar and Uryasev [34], [35] and also Pflug [32] proved that the CVaR is
a coherent risk measure in general (referring to any returns probability distri-
bution), taking into account the tail risk; furthermore this formulation makes it
possible to minimize CVaR using the classical methods of Linear Programming
(LP).
Another interesting aspect related to the previous CVaR definition is that by
solving a simple convex optimization problem in one dimension it is possible to
obtain simultaneously the CV aRα and the V aRα of a portfolio. This result is
particularly important because it allows us to calculate the CVaR of a financial
position without knowing in advance the value of the VaR.
The third weakness point of classical portfolio selection models is the unpleasant
circumstance that optimal solutions heavily depend on financial parameters per-
turbations, particularly on the expected returns vector of the considered assets
[31], [15], [24]. When the financial parameters values are affected by uncertainty,
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they can be known only more or less approximately according to the particular
market context and according to the used estimation procedure; clearly, this
heavy dependence of the optimal solutions on parameters perturbations gener-
ates results for practical purposes that are not realistic.
In recent years, this feature has been dealt with through a new methodology in-
troduced in the optimization literature under the name of Robust Optimization
[4], [6], [7], [8], [9], [10], [5], [22], [23].
In the following, we will adopt this approach applying Robust Optimization to
portfolio selection models that differ each other for the symmetric or asymmet-
ric measures of risk used. In particular, i) we will minimize the risk for a given
(minimum) portfolio return (we will indicate this problem as a direct model)
and ii) we will maximize the portfolio return for a given (maximum) risk level
(we will indicate this problem as an inverse model) both in a standard (non ro-
bust, in the sense of Robust Optimization) way, using punctual fixed values for
the (uncertain) model parameters, and then following the Robust Optimization
approach.
We will call the models obtained by the Robust Optimization reformulation as
robust counterpart of the original (non robust) models and, respectively, as ro-
bust direct models and robust inverse models. In all cases uncertainty will be
considered in the expected return vector of each financial asset and, referring
to such uncertainty, we will obtain the robust solution for any of the portfolio
selection model.
Note that, in general, the reformulation of the problems obtained following the
Robust Optimization principles will be not linear even in the situation in which
the original problem is linear [8], [23], [20] then requiring more sophisticated
and time demanding solution techniques. An important feature of our analysis
is that we are able to avoid this problem through the use of the Soyster’s ap-
proach within the Robust Optimization [38] obtaining a robust reformulation of
the portfolio selection problems for which standard minimization procedures are
available.
The paper is structured as follows: in Section 2 we will introduce Robust Opti-
mization, analyzing how risk and uncertainty emerging from parameters variabil-
ity can be handled when the unknown parameters belong, with some confidence
level, to certain intervals or variation ranges. In Section 3 we will discuss the
possible geometries of the uncertainty set, closely related to the possibility to
computationally solve the robust reformulation of the models.
In Section 4 we will illustrate the original (non robust) and the robust portfo-
lio selection models to which we will refer in the implementation. In particular,
in Section 5 we will implement, following the Robust Optimization schemes,
six portfolio selection models obtained alternatively considering three different
(symmetric and asymmetric) risk measures, such as Volatility (Vol), VaR and
CVaR, as the objective function to be minimized (robust direct models) or as a
constraint in the maximization problem of the portfolio’s return ( robust inverse
models). With the aim to best evaluate and compare the advantages of using
the Robust Optimization approach in portfolio selection, in the same section we
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will also implement the non robust counterparts of the previous models, such as
the previous quoted original models.
The comparison will be done through an out of the sample analysis of the results
obtained by the ex-ante implementation of each model in selecting portfolios from
a set of ten benchmarks from January 2007 to September 2009; note that this
period of time has been characterized by a number of very particular financial
events and therefore it is unquestionably an ideal time period to test the differ-
ent portfolio strategies obtained by the different models.
As we shall see, the strategies obtained by means of the Robust Optimization
approach have a definitely better performance and, among the robust models,
the CVaR model dominates the other competitors because of its coherent nature.

2 Robust optimization models

In the real world, it is very difficult to find examples of systems that do not
include some level of uncertainty about the values to assign to some or all of
their parameters or about the actual design of some of their components. On the
contrary, the optimization models are almost all formulated in a deterministic
way assuming that the values to assign to the parameters are exactly known
[42], [5].

It is true that in a number of cases not much is lost by assuming that these
uncertain quantities are actually known, either because the level of uncertainty
is low or because they play a less significant role in the process that must be
analyzed or controlled.

But most frequently the uncertain parameters values play a central role in
the analysis of the decision making process: an example can be the value to
assign to the expected return of a financial asset at a future time T ; in such a
context the peculiarity of these parameters cannot be ignored without the risk
of invalidating the possible implications of the analysis [39], [40], [30].

Some risk management models that consider uncertain parameters values
based on the portfolio VaR or CVaR minimization belong to the Stochastic Pro-
gramming (PS) problems [41], [34], [35], [36], [43]1. However it was noted [6], [8],
[14] that, generally, using a Stochastic Programming approach, constrains can
be violated with a given probability; as a consequence, in a model of Stochastic
Programming which faces data uncertainty, the variables do not necessarily sat-
isfy the original constraints, but only a relaxed version of them. So it is generally
accepted that a Stochastic Programming approach can mainly treat only the so
called soft constraints.

Robust Optimization can overcome this problems assuming that the uncer-
tain parameters are known to belong to particular value intervals or it is possible
to suppose that, with a certain confidence level, the values can span particular
variation ranges. So, the goal becomes to find a solution (called robust solution)

1 As it is well known, every Stochastic Programming model can be viewed as an exten-
sion of a deterministic (linear or nonlinear) model where the uncertain parameters
are given a probabilistic representation.
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which is feasible for all possible data realizations (therefore it can satisfy hard
constrains) and optimal in some respect.

In this section, we will take exclusive interest in the identification of robust
solutions, in the sense of Robust Optimization, for Convex Programming mod-
els with uncertainty in the parameters; this choice is strictly functional to the
applications that will be illustrated in Section 5.

Referring to the papers of Ben Tal and Nemirovski [6], [8], consider the
following Convex Programming problem

min
x

{f(x, c), Ax ≥ b}, (1)

in which x and c ∈ RN , A ∈ Rn×N , and b ∈ Rn. The parameter c of the
objective function f(x, c) and the data A,b are not known exactly; what is
known is a domain I in the space of data, an uncertainty set, which for sure
contains the actual data and, in spite of this uncertainty, the decision vector x
must satisfy for sure (whether it is possible to know them or not) the actual
constraints.

We will call non robust (original) model the problem that consider as cer-
tain fixed values the uncertain parameters. On the contrary, we will call robust
counterpart of the non robust (original) model or, more easily, robust model the
model that try to consider such an uncertainty.

The only way to meet the requirements is to restrict ourselves to robust
feasible candidate solutions, i.e. those which satisfy all possible realizations of
the uncertain constraints. The admissible region is given therefore by

{x|Ax ≥ b ∀[A,b] : ∃c : (c, A,b) ∈ I}. (2)

With the aim to choose the best among the feasible solutions, it is necessary
to decide how to “aggregate” the different realizations of the objective into a
single quality characteristic; in order to be methodologically consistent, a robust
rule of min–max type is adopted in virtue of which it is minimized the maximum
(worst case) on all the possible realizations of the objective function f(x, c)2; as
a consequence, we have taken the following objective function

t = sup{f(x, c)|∃[A,b] : (c, A,b) ∈ I}. (3)

In this way it is possible to associate to the original convex uncertain problem
(1), or more precisely to the family of all certain convex models whose data
belong to the uncertainty set I, its robust counterpart, in which the search for
the smallest possible value of t takes the following form:

min
t,x

{t : t ≥ f(x, c), Ax ≥ b ∀(c, A,b) ∈ I}, (4)

where the component x∗ of the solution vector (x∗, t∗) is called robust solution
of the optimization model.

2 There exist different methods to approach this problem that are widely implemented
and compared in many engineering applications [1].
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3 The geometry of the uncertainty set

The robust counterpart of the original model has actually the structure of
an usual deterministic optimization problem but, having a continuum of con-
straints deriving from assessing the parameters values within their chosen vari-
ation range, it appears as a semi–infinite problem and, as such, it could seem
computationally intractable.

The possibility to computationally solve it, as we shall illustrate, is closely
and directly related to the geometry of the uncertainty set. In other words, if the
goal is to find the best among the different feasible points of the robust counter-
part, it is fundamental to specify the geometry of the uncertainty set I, because
the structure of the robust counterpart of the original convex problem and the
related possibility to computationally solve it will depend on this geometry.

Ben Tal and Nemirovski showed [6], [10] that this issue exclusively depends
on the mathematical description of the uncertainty set I.

Theorem 1 (Nature of the robust counterpart of a LP problem). Con-
sider the following LP problem in which x ∈ RN and the data c, A, b are not
known exactly

min
x

{f(x, c) : Ax ≥ b, (c, A, b) ∈ I ⊂ RN ×Rn×N ×Rn} (5)

and its robust counterpart

min
t,x

{t : t ≥ f(x, c), Ax ≥ b ∀(c, A, b) ∈ I}. (6)

Assume that the uncertainty set I is given as the affine image of a bounded set
Z = {ζ} ⊂ RM and that Z is given either by

1. a system of linear inequality constraints Pζ ≤ p, or
2. a system of Conic Quadratic inequalities ∥Pjζ − pj∥2 ≤ eTj ζ − dj in which

j = 1, . . . , L and ej ∈ RL, or

3. a system of Linear Matrix Inequalities P0 +
∑dimζ

j=1 Pjζj ≥ 0.

In the cases 1. and 2. assume that the system of constraints that defines the
uncertainty set I is strictly feasible.
Then the robust counterpart of the original Linear Programming problem is re-
spectively equivalent to

– a Linear Programming problem,
– a Conic Quadratic Programming Problem (SOCP)
– a Semi–Definite Programming problem3.

The question is really very delicate. As noted by Ben Tal and Nemirovski [9],
[10], [11] the computational tractability of the uncertainty set I is a theoretical
property which is not exactly equivalent to the efficient solvability in practice,

3 For the Proof of the quoted Theorem, please see [6], [10].
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mainly for the large size of some real world convex problem as those used for
portfolio selection.

In order to come up with a solution, it is highly desirable to ensure a simple
analytical structure of the robust counterpart of the original problem, and this
in turn requires the uncertainty set to be relatively simple. But when restricting
ourselves to too simple geometries of the uncertainty set we certainly loose in
flexibility of the approach.

So it is very important to find a valuable trade–off between a more realistic
description of the problem, involving a complex structure of the uncertainty set
I, and an its simple geometry, which entails less calculations and faster solutions
particularly important in financial applications.

The Soyster’s approach [38] can give a solution to the semi–infinite nature
of the optimization problem providing a computationally fast solution.

The author, that was one of the first to discuss about hard uncertain con-
straints in Linear Programming models, considered a problem in which the N
columns (ai) of the matrix An×N are known to belong to given convex sets Ci.

In particular, the Linear Programming model considered by Soyster was the
following

max
x

{f(x, c), Ax ≥ b,x ≥ 0}, (7)

where c and x ∈ RN , b ∈ Rn and A = (a1, . . . ,ai, . . . ,aN ), with ai ∈ Rn.
If the vectors ai are the estimates of the true parameters related to the

variables, it is supposed that the true vector related to the i− th parameter lies
in the following hypersphere with center a′i and radius si, so

Ci = {a ∈ Rn : |a− a′i| ≤ si}, (8)

where si measures the amount of uncertainty associated with a′i
4. Therefore,

the original deterministic problem can be replaced by the following

sup
x

{f(x, c), x1C1 + . . .+ xNCN ⊆ C(b),x ≥ 0}, (9)

in which there areN convex and non–empty sets Ci and a convex and non–empty
set C(b) = {y ∈ Rn : y ≤ b ∈ Rn}.

In his paper Soyster proved that the previous problem can be solved via the
following associated problem

max
x

{f(x, c), A∗x ≤ b,x ≥ 0}, (10)

where a∗ji (general element of the matrix A∗) is a number given by supai∈Ci
aji;

the optimal solutions of the two problems are in fact the same.
But when the sets Ci are hyperspheres, using the canonical vectors ej , we

can write that

4 Obviously, si = 0 if the i− th vector is exactly known.
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sup
a∈Ci

ej · a = a′ji + si, ∀j, (11)

so the vectors of the matrix A∗ with general elements a∗ji will be a
∗
i = a′i+ si ·1,

where 1 = (1, ..., 1)T .
Hence, the optimal solution of the problem (9) can be determined by solving

the easier one

max
x

{f(x, c), x1(a
′
1 + s1 · 1) + . . .+ xN (a′N + sN · 1) ≤ b,x ≥ 0}. (12)

According to this point of view, the constraints of problem (4) are completely
equivalent to a system of linear constraints. So, the semi–infinite robust coun-
terpart (4) of the original optimization problem (1), via the Soyster’s approach
coherently with Theorem 1 becomes a convex problem and, as a consequence, it
can be easily and quickly solved.

As it was noted [4], [8], [12], [13], if the Soyster’s approach is considered
from a financial point of view, it appears very conservative assuming that each
element of the constraint matrix of the problem is the worst it could be while,
in general, and particularly if we consider the assets returns, the coefficients are
not on their worst values at the same time.

Ben Tal and Nemirovsky [10] proposed a less conservative definition of the
uncertainty set (see also [6], [7], [20]) showing that for their ellipsoidal uncertainty
set the robust counterpart of a linear, quadratic or, in general, convex problem
is an optimization model solvable via the interior points method.

But under the hypothesis that the uncertainty sets have such a geometry,
the robust counterpart of a problem of any original nature, even if it is very
simple as a linear programming problem, becames a non linear model with huge
computational difficulty. Moreover, excluding the case of a linear programming
problem, when the uncertain coefficients follow special probability distribution,
no certainty exists that the obtained robust solution is feasible [14], [12], [13].

So, Soyster’s approach, although introduced almost forty years ago, seems
still to be the best choice to obtain a realistic (even if rather prudential) and
easily solvable description of the problem linked with a sufficiently simple geom-
etry of the uncertainty set.

4 Robust CVaR, VaR and Vol optimization models

In this paper we want to implement, in the sense of Robust Optimization, the
CVaR, the VaR and the Volatility (Vol) minimization model (direct models) and
the portfolio return maximization models that used the previous measures as a
risk constraint (inverse models).

We start from the following general form of the (original) non robust direct
model
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min
x

{f(x), rTx ≥ g,1Tx = 1}, (13)

and the non robust inverse model

max
x

{rTx, f(x) ≤ R,1Tx = 1}, (14)

where x ∈ RN is the vector of the portfolio weights, f(x) represents the risk
measure considered, g is a scalar that quantifies the minimum return required
to the optimum portfolio, R is a suitable risk threshold and r ∈ RN is the assets
expected return vector. Note that r is assumed known in these models.

Instead, assuming uncertainty in vector r5, we obtain, as it was discussed in
Section 2, the following general form of the robust direct model

min
x

{f(x),min
r∈I

{rTx ≥ g},1Tx = 1}, (15)

and the robust inverse model

max
x

{min
r∈I

{rTx}, f(x) ≤ R,1Tx = 1}, (16)

where the constraint r ∈ I indicates that the expected assets returns are not fixed
values but levels that can vary within particular variation intervals described by
the uncertainty set I.

Then, if we assume that the parameters in the vector r are known to belong
within particular ranges described by the confidence intervals of the parameters
estimates, in accordance to the Soyster’s approach it is possible to define the
uncertainty set as I = {r|r′ − s ≤ r ≤ r′ + s}, where r′ is the vector containing
the estimates of the assets expected return while s is the vector collecting the
standard deviation of such estimates. As a consequence, the robust semi–infinite
counterparts of the considered models became computationally tractable because
it is also possible to show [22], [23], [33] that we have

min
r∈I

rTx = r
′Tx− sT |x|. (17)

Introducing a new variablem to replace |x| and adding the constraintsm ≥ x
and m ≥ −x, it is possible to obtain the following general form of the robust
direct model

min
x

{f(x), r
′Tx− sTm ≥ g,m ≥ x,m ≥ −x,1Tx = 1} (18)

and the robust inverse model

5 Note that the expected asset return is a very difficult parameter to evaluate; more-
over, its impact on the portfolio optimal allocation x∗ is very high. A number of
models in which uncertainty is referred both to this parameter and to other compo-
nents of the portfolio selection model can be found in [23].



10 Riccardo Cesari and Anna Grazia Quaranta

max
x

{r
′Tx− sTm, f(x) ≤ R,m ≥ x,m ≥ −x,1Tx = 1}6. (19)

Now, using different risk measures, we obtain the following three robust direct
models:

mina,x{CV aRα(−rTx) = a+ 1
1−αE(−rTx− a)+, r

′Tx− sTm ≥ g,

m ≥ x,m ≥ −x,1Tx = 1}
(20)

minx{V aRα(−rTx) = Pr(−rTx ≤ β) ≤ α, r
′Tx− sTm ≥ g,

m ≥ x,m ≥ −x,1Tx = 1} (21)

min
x

{V ol =
√
(xTΣx), r

′Tx− sTm ≥ g,m ≥ x,m ≥ −x,1Tx = 1}, (22)

where α is the threshold chosen to individuate the VaR, −rTx is the portfolio loss
function obtained via historical simulation and typically defined as the negative
of the portfolio return function, a is the value of the VaR in the optimal solution,
a+ = max{a, 0} and Σ = [σij ], with i, j = 1, ..., N, (symmetric) positive definite
matrix of N ×N dimension is the variance-covariance matrix of the (historical)
returns of the assets7. We have also the following three robust inverse models:

maxx{r
′Tx− sTm, CV aRα(−rTx) = a+ 1

1−αE((−rTx− a)+) ≤ R,

m ≥ x,m ≥ −x,1Tx = 1}
(23)

maxx{r
′Tx− sTm, V aRα(−rTx) = [(Pr(−rTx ≤ β)) ≤ α] ≤ R,

m ≥ x,m ≥ −x,1Tx = 1} (24)

max
x

{r
′Tx− sTm, V ol =

√
(xTΣx) ≤ R,m ≥ x,m ≥ −x,1Tx = 1}. (25)

It is possible to quickly obtain the solutions of all these models with very low
computational costs.

In Section 5 we will implement these six robust models and their non robust
counterpart obtained from (13) and (14) and using for f(x) the same expressions
of the CVaR, the VaR and the Vol from (20) to (25).

6 Note that we not exclude here the possibility of short selling because we prefer to
illustrate the more general structure of the robust counterparts. On the contrary, in
the implementation of the models given in Section 5 we will include the constraint
x ≥ 0.

7 As it is well known, in such a matrix, the N variances of the (historical) returns

referred to the N considered assets are in the main diagonal while the N(N−1)
2

covariances are the elements of the matrix (triangular) upper part and, for symmetry,
of its lower part.
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5 Computational results

In this section we illustrate the results obtained implementing Non Robust and
Robust Optimization in order

1. to minimize the CVaR, the VaR and the Vol of a portfolio composed by ten
representative benchmarks in relation to an established minimum portfolio
return threshold (direct models) and

2. to maximize the expected return of the portfolios composed by the same ten
assets satisfying a risk constraint that considers the previous risk measure
having values lower than those of a fixed risk threshold (inverse model).

The aim is to individuate an optimal selection strategy for dynamic portfolio
rebalancing. In particular, we implement the robust models from (20) to (25)
and their non robust counterpart making some comparisons that can help to
evaluate both the Robust Optimization advantages in the asset management
field and the benefits deriving from the alternative different risk measures.

Note that uncertainty is referred to the vector r containing the considered
assets expected return; it is surely the more difficult parameter to evaluate and
it has a very high impact on the optimal solutions.

In the optimization problems referred to the CVaR we follow Rockafellar and
Uryasev [34]; in the VaR optimization problems the risk measure is modelled
as suggested by Gaivoronski and Pflug [21] while the variance, and then the
volatility, is obtained by the usual historical estimation procedure.

In the empirical implementation we considered the time series from January
2007 to September 2009 of the monthly prices of some representatives bench-
marks. In particular we used the Dow Jones Euro Stoxx 50, SP 500, Topix, MSCI
Pacific ex Japan, MSCI Emerging Markets, FTSE Epra–Nairet Dev. Europe, JP
Morgan EGBI, Barclays G7 Global Bonds, JP Morgan Emerging Bonds and JP
Morgan Euro Cash 3m.
Note that the considered period of time has been characterized by a sequence of
very relevant financial events; we want to remember the different market regimes,
with a significative stock markets increase in the first and in the last six month
period and, on the contrary, the huge stock exchange collapses (Real Estate and
Credit crisis respectively in 2007 and 2008) and volatilities that reached record
levels at the end of 2008.

It is an unquestionably ideal time period to conduct a back-test of the port-
folio strategies obtained by the different models and to compare the predictive
efficiency of the considered risk measures.

The market costs related to each transaction required by portfolio rebalancing
have been considered as a fixed fee of 4/1000.

Using GAMS8 we wrote (i) a code for the minimization of the risk mea-
sures (direct models) using as minimum threshold (g) of the monthly portfolio
return the value at the beginning of every month of the 1−month Libor rate
as the closest approximation of a riskless asset in the market; (ii) a code for

8 General Algebraic Modelling System, Gams.Ide Gams Rev. 135 Vis. 21.1 135 [16]
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the maximization of the portfolio return (inverse models) using as maximum
risk threshold (R) a value equal to 3% in term of volatility and its gaussian
equivalent for VaR and CVaR.

The confidence level chosen for the quantification of the CVaR and VaR has
been fixed at 99%.

Because of their random nature and their crucial role within the models, spe-
cial attention has been paid to an efficient evaluation of the values r′ estimated
for the period from January 2007 to September 2009 using the monthly data of
the considered benchmarks and a Multivariate Vector Autoregressive Model with
lagged endogenous variables and, as exogenous, the exchange rates dollar/euro
and yen/euro9. In particular, a fixed historical window of the last four years of
monthly data was used each month obtaining, at every recursion, the 1 month
ahead prediction of the monthly return of each benchmark.

The lower and upper limits r′ ± s of the uncertainty set were obtained as
the extremes values of a 60% confidence intervals. It may be interesting to note
that the actual (true) returns of each considered benchmarks, calculated at time
(t + 1) always lie within the confidence intervals estimated at time t 10; this
circumstance is particularly important for the construction and implementation
of the robust counterparts of the portfolio selection models. At the end of month
t, considering the predictions and the confidence intervals for (t+1), the portfolio
is optimized (out-of-sample results) according to the various models. The new
portfolios xt+1|t, rebalanced and then taking into account transaction costs, will
produce gains or losses at the end of month (t+1); the process is rolled over for
month (t+ 2) and so on.

In Table 1 and in Fig. 1 to Fig. 5 we summarize the results obtained in this
implementation. Given that direct and inverse models gave very similar results,
in Table 1 we report only those achieved by the inverse models that are easier
to translate in financial products with a given risk profile [18].

The results show that:

– in the three years from 2007 to 2009 the risk–free portfolio obtained by
a roll-over on the Libor rate reached a return of 9.46%. Such a value has
been overcome only by the net return of the robust CVaR model (15.44%).
Actually, both the robust and the non robust CVaR models are those re-
lated to the higher turnover index and therefore are more penalized by the
transaction costs incidence. In any case, they are able to reach the higher
returns.

– as it can be noted if Fig. 1, the non robust portfolios registered negative
performances for many months. Moreover the performance of the non robust
CVaR model has been generally better than those of the other two models;
the CVaR return was 0.32%. The robust CVaR model, net of transaction
costs, obtains the highest total return (15.44%);

9 To this purpose, we used SAS 8.2.
10 The variance–covariance matrixes of the historical returns have been calculated each

month and are available upon request
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Table 1. Ex–post comparisons of portfolios selected by different inverse models (Long–
only: x ≥ 0).

Models Non–Robust Robust

VaR -20.58 -1.85
Portfolio’s CVaR 0.32 15.44
Returns Vol -4.07 7.51

Risk–free 9.46 9.46

VaR 9.93 5.62
Volatility of the CVaR 8.32 6.97
Portfolio’s Vol 5.64 3.55
Returns Risk–free 0.44 0.44

VaR -36.30 -12.97
VaR of the CVaR -18.91 -9.54
Portfolio’s Vol -17.96 -5.92
Returns Risk–free 0.13 0.13

VaR -46.53 -13.96
CVaR of the CVaR -22.81 -9.91
Portfolio’s Vol -22.81 -6.10
Returns Risk–free 0.13 0.13

VaR -2.81 -0.17
Asymmetry of the CVaR -0.01 0.43
Portfolio’s Vol -1.73 0.66
Returns Risk–free -0.93 -0.93

VaR 12.06 0.47
Kurtosis of the CVaR 1.36 -0.45
Portfolio’s Vol 7.36 1.54
Returns Risk–free -0.84 -0.84

– the ex–post volatilities of the actual returns of the robust models are lower
than those of the corresponding non robust models; the higher value is that
of the CVaR model (6.97%) showing that the volatility is not always a good
risk measure;

– the robust CVaR and Vol models have positive asymmetry’s values11 of the
ex–post returns (respectively, 0.43 and 0.66). This means that the portfolio’s
management has been effective in positively deforming the probability dis-
tributions and then in moving the probability towards the right–hand side;
on the contrary, all the other models have a negative asymmetry;

– the (excess) kurtosis 12 of the returns of the non robust models is always
positive with upper value registered by the VaR model (12.06) and lower
value by the CVaR model (1.36); in the robust approach, the kurtosis of the

11 The asymmetry is calculated as third moment, centered with respect to the mean,
divided by the third power of the standard deviation.

12 The excess kurtosis is calculated as the distance from 3 (the normal kurtosis) of
the forth moment, centered with respect to the mean, divided by the squared of the
variance.
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Non Robust Models
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Fig. 1. Comparisons among portfolio performance indexes obtained by different Non
Robust (on the left) and Robust (on the right) models.

CVaR model is negative (−0.45), indicating a value under the normal one.
This means that for the CVaR the frequency of the extreme events (in the
“wrong” tail) is, ex–post, lower with respect to that of normal type. In the
robust approach, the higher value is that of the Vol model (1.54) that, in any
case, is almost five time lower than that of the non robust case13 suggesting
non rejection;

– the robust and non robust CVaR approaches, always provided a number and
an amount of losses lower than those obtained by the robust and non robust
models that use the VaR or the Vol as risk measure (Fig. 2);

– the ex–post analysis also shows that the CVaR model, especially in its robust
version, always obeys the risk constraint imposed in the portfolio optimiza-
tion (Fig. 3). The same is not true for the VaR (Fig. 4) and for the Vol (Fig.
5) models in relation to which it is possible to note, especially in relation to
their non robust version, a frequent ex–post violation of the maximum risk
threshold ex–ante imposed.

13 An asyntotic inferential test of normality [19] has been conducted. This test, with
a confidence level of 95% allows to reject for the Vol model the null hypothesis of
normality of the returns. For the VaR and CVaR models the marginal significativity
was, respectively, of 56% and of 50.9%,
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Non Robust Models
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Fig. 2. Comparisons among the actual portfolio monthly returns obtained by different
Non Robust (on the left) and Robust (on the right) models.

Non Robust CVaR Model
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Fig. 3. Back–test: CVaR threshold and returns obtained by the Not Robust (on the
left) and Robust (on the right) CVaR model.

6 Conclusions

In this paper we implemented in the sense of Robust Optimization a particu-
lar portfolio selection approach that is able to consider the uncertain values as-
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Non Robust VaR Model
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Robust VaR Model
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Fig. 4. Back–test: VaR threshold and returns obtained by the Not Robust (on the left)
and Robust (on the right) VaR model.

Non Robust Vol Model

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

1
/1

/0
7

1
/4

/0
7

1
/7

/0
7

1
/1

0
/0

7

1
/1

/0
8

1
/4

/0
8

1
/7

/0
8

1
/1

0
/0

8

1
/1

/0
9

1
/4

/0
9

1
/7

/0
9

Month

Vol threshold Vol Return

Robust Vol Model

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

1
/1

/0
7

1
/4

/0
7

1
/7

/0
7

1
/1

0
/0

7

1
/1

/0
8

1
/4

/0
8

1
/7

/0
8

1
/1

0
/0

8

1
/1

/0
9

1
/4

/0
9

1
/7

/0
9

Month

Vol threshold Vol Return

Fig. 5. Back–test: Vol threshold and returns obtained by the Not Robust (on the left)
and Robust (on the right) Vol model.

sumed by the parameters within the optimization processes and, simultaneously,
the asymmetry in the financial assets returns distributions and the asymmetric
effects played on the investor utility function by profits and losses.
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The second and the third feature have been considerated evaluating the char-
acteristics and the performance of three different risk measures, such as the
CVaR, the VaR and the Vol, while the uncertainty about the parameters value
within the different models has been dealt with the consideration of a robust ap-
proach in the sense of the optimization of worst cases accordingly to the schemes
of Robust Optimization together with the Soyster’s approach about modelling
the uncertainty set.

The implementation on some benchmark data in the period between January
2007 and September 2009 allows to verify how the defined robust models are to
be preferred to their traditional non robust counterparts and, in particular, to
what extent the robust CVaR model is able to give the best results in terms of
return, asymmetry, kurtosis and risk level in the ex post comparison.

The robust CVaR approach to portfolio selection turned out to be highly
better than all the competing non robust and robust models and also with re-
spect to the risk–free portfolio obtained as a continuum investment in a current
account; this result could surely have very interesting applications in financial
engineering and asset management industry.
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