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Abstract. An approach to stochastic input-output modeling is pro-
posed in which the external demand and the economy can be random.
The economy is allowed to be nonproductive with a certain probability
κ ≥ 0. In this approach, the production plan is set to be feasible if the
probability of satisfying the external demand is at least 1 − α for some
α ∈ (0, 1). Then the modeling is reduced to minimization of cost func-
tions on the set of feasible plans. In the framework of this approach, the
version of the Leontief model which includes both production and import
of commodities is proposed and analyzed. Finally, a simple example of
this model is solved.
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1 The Approach

Traditional input-output models [9, 11] describe an economy – a production sys-
tem consisting of N ≥ 2 branches, each of which produces a single homogeneous
commodity. All the commodities are measured in the same unit, and a part of
them is used inside the economy for the production purposes. That is, a part of
the output of one branch can be used as an input of the other branches. The
related problem consists in finding a production plan x1, . . . , xN ≥ 0 such that
the following conditions are satisfied

xi − yi ≥ di, i = 1, . . . , N, (1)
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where yi is the inner consumption of i-th commodity, whereas di ≥ 0 is the outer
demand of this commodity which has to be satisfied. In the simplest model of
this kind introduced by Wassily Leontief (Nobel Prize in Economy in 1973), each
yi is a linear function of x1, . . . , xN , that is,

yi =

N∑
j=1

cijxj , i = 1, . . . , N, (2)

where cij ≥ 0 is the amount of i-th commodity consumed for producing one
unit of j-th commodity. In column vectors X, Y , and D with entries xi, yi, di,
respectively, (1) and (2) can be combined into the following condition

X − Y = X − CX = (I − C)X ≥ D, (3)

where C = (cij)N×N is the inner consumption matrix and I is the N ×N unit
matrix. The inequality in (3) is understood component-wise. The economy is
said to be productive if the Leontiev matrix

B = (bij)N×N = (I − C)−1

exists and has all entries nonnegative. In this case, the problem in (3) is solved
by setting X = BD, which in components has the form

xi =

N∑
j=1

bijdj , i = 1, . . . , N.

If the series
∞∑
n=0

Cn = I + C + C2 + · · · (4)

converges (component-wise), then it converges to B = (I − C)−1 which has all
entries nonnegative by this fact. The mathematical (necessary and sufficient)
condition for the convergence in (4) is that the spectral radius of C satisfies
r(C) < 1. For more on the mathematical theory of such models see [1, Chapter
9].

In real life, the entries of the matrix C are subject to various random effects.
Thus, more realistic input-output models should consider C as a random matrix.
This had been understood quite a long time ago, see a review and historical re-
marks in [4]. It turns out that the most mathematically advanced works in this
direction are concentrated on deriving information on the probability distribu-
tion of the Leontief matrix, see [5, 12]. A more modest task in this context is to
estimate the coefficients bij , see [6–8, 10] and [11, Chapter 14]. However, for the
very existence of the random Leontief matrix B it is necessary that the economy
be productive with probability one, which one cannot expect in general.

In this article, we propose another approach to analyzing stochastic input-
output models consisting in the following:
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(a) the economy is allowed to be nonproductive with certain probability κ ∈
[0, 1];

(b) a (feasible) production plan is defined as the one for which the outer demand
is satisfied with probability ≥ 1− α for a prescribed α ∈ (0, 1);

(c) optimal production plans are chosen among feasible plans under the condi-
tion of minimizing cost functions given in the model.

Let us now explain this in more detail. According to (a) the economy is produc-
tive with probability 1−κ ≥ 0, and hence, for some nonnegative x1, . . . , xN , the
event

A(x1, . . . , xN ) : xi −
N∑
j=1

cijxj ≥ di, i = 1, . . . , N (5)

can occur with a prescribed positive probability. Note that this makes sense also
for random outer demands d1, . . . , dN . In (b), we propose to define the collection
of feasible production plans as the set of nonnegative x1, . . . , xN such that

P [A(x1, . . . , xN )] := Prob

{
A(x1, . . . , xN )

}
≥ 1− α, (6)

for some fixed α ∈ (0, 1), e.g. α = 0.1. Then (c) means that optimal plans are
chosen to minimize a cost function ϕ(x1, . . . , xN ) on the set of feasible plans
defined in (6). The important advantage of the proposed approach is that one
deals with the matrix C only, and hence avoids complex and tiresome procedure
of getting information on the distribution of the Leontief matrix B. Moreover,
our approach admits the following extensions:

(i) Along with random cij one can also allow di in (5) be random.
(ii) One can also include import of some commodities, especially in the case

where the set of feasible plans defined in (6) is empty for a given α.

Note that considering probabilities as in (6) was suggested already in paper [3].
However, the discussion therein was restricted to constructing feasible produc-
tion plans. In Section 2 below, we use both possibilities (i) and (ii) and propose
an open stochastic input-output model which realizes the approach proposed
above. The presentation is then illustrated by a simple example analyzed in the
concluding part of the paper.

2 The Open Stochastic Leontief Model

2.1 The model

We consider an economy with N ≥ 2 branches, as described in the Introduction,
in which both matrices C and D in (3) can be random. We also assume that the
commodities produced by the economy are available at outer market, and hence
the economy is a part of an open economic system. Let zi ≥ 0, i = 1, . . . , N
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be the amount of i-th imported commodity. Then the balance condition, cf. (3),
takes the form

X − CX + Z ≥ D, (7)

where Z is the corresponding column vector. The fact that (7) is satisfied is a
random event, which can be presented in the form

A(X,Z) =

N⋂
i=1

Ai(X,Z), (8)

where

Ai(X,Z) = {ω : xi −
N∑
j=1

cij(ω)xj + zi − di(ω) ≥ 0}, (9)

with ω being an elementary event, and i = 1, . . . , N .

Definition 1. For a given α ∈ (0, 1), the set Mα of nonnegative vectors X and
Z defined by the condition

P [A(X,Z)] ≥ 1− α (10)

is called the set of feasible plans.

Like in statistical inference, standard values of α can be 0.1, 0.05, 0.01. For the
open model described above, feasible plans always exist. For instance, X = 0
and Z = D is one of such plans. If the probability of nonproductivity satisfies
κ < 1, i.e., if the economy is productive with positive probability, then there
exist feasible plans with xi > 0, for at least some of i = 1, . . . , N . Moreover, Mα

is a convex set. That is, if (X ′, Z ′) ∈Mα and (X ′′, Z ′′) ∈Mα, and also

X = δX ′ + (1− δ)X ′′, Z = δZ ′ + (1− δ)Z ′′,

for some δ ∈ [0, 1], then (X,Z) ∈ Mα. This follows from the fact that the
conditions wich define Ai, see (9), are linear with respect to the components of
X and Z.

For the production vector X, by ϕ(X) we denote the cost of its realization.
Let also ψ(Z) denote the cost of import of commodities involved in (7) – (10).

Definition 2. A feasible plan (X∗, Z∗) is called optimal if, for each (X,Z) ∈
Mα, the following holds

ϕ(X∗) + ψ(Z∗) ≤ ϕ(X) + ψ(Z). (11)

Then the aim of the description of the model which we propose is to find optimal
plans. Its realization consists in finding the probability of the event (8), (9), which
yields the (convex) set Mα, and then in solving the optimization problem (11).
If both ϕ and ψ are convex functions, then one can apply here powerful tools
of convex optimization, see, e.g., [2]. Clearly, this realization crucially depends
on the concrete model and may be quite complex. We illustrate this in a simple
example below.
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2.2 Example

Setup For the sake of simplicity, we take N = 2 and assume that only c12 and
c21 are random, whereas d1 and d2 are deterministic. Next, we suppose that c12
and c21 are independent and uniformly distributed on the intervals [0, a] and
[0, b], respectively. Here a and b are positive parameters. If ab < 1, then the
spectral radius of C satisfies r(C) < 1 and hence the economy is productive
with probability one. Thus, in the sequel we assume that

ab > 1, (12)

which means that the economy in question can be nonproductive with probability

κ = [ab− 1− ln(ab)] /ab > 0.

Then the events as in (9) are

A1(x1, x2, z1, z2) = {ω : c12(ω) ∈ [0, (x1 + z1 − d1)/x2]}, (13)

A2(x1, x2, z1, z2) = {ω : c21(ω) ∈ [0, (x2 + z2 − d2)/x1]}.

Set πi(x1, x2, z1, z2) = P[Ai(x1, x2, z1, z2)], i = 1, 2. Since c12 and c21 are inde-
pendent, condition (10) can be written

π1(x1, x2, z1, z2)π2(x1, x2, z1, z2) ≥ 1− α. (14)

By the very definition in (13)

x1 + z1 ≥ d1, x2 + z2 ≥ d2. (15)

Under these conditions we have

π1(x1, x2, z1, z2) =

{
(x1 + z1 − d1)/ax2, if x1 + z1 − d1 ≤ ax2;

1, if x1z1 − d1 ≥ ax2.
(16)

π2(x1, x2, z1, z2) =

{
(x2 + z2 − d2)/bx1, if x2 + z2 − d2 ≤ bx1;

1, if x2 + z2 − d2 ≥ bx1.

Along with (15) x1, x2, z1, and z2 satisfy one of the following pairs of conditions:

x1 + z1 − d1 ≤ ax2 and x2 + z2 − d2 ≤ bx1 (a) (17)

x1 + z1 − d1 ≤ ax2 and x2 + z2 − d2 > bx1 (b)

x1 + z1 − d1 > ax2 and x2 + z2 − d2 ≤ bx1 (c)

Now we choose the cost functions, which we take also in the simplest form

ϕ(x1, x2) = θ1x1 + θ2x2, ψ(z1, z2) = τ1z1 + τ2z2, (18)
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with nonnegative parameters θi and τi, i = 1, 2. Instead of z1 and z2 it is
convenient to introduce new variables

u1 =
x1 + z1 − d1

ax2
, u2 =

x2 + z2 − d2
bx1

. (19)

In these new variables, the probabilities πi defined in (16) take the form

πi = min{ui, 1}, i = 1, 2. (20)

By (19) we also have

z1 = au1x2 − x1 + d1, z2 = bu2x1 − x2 + d2, (21)

which implies that xi and ui, i = 1, 2, satisfy the following conditions{
au1x2 − x1 + d1 ≥ 0

bu2x1 − x2 + d2 ≥ 0.
(22)

The conditions (14) and (17) imply, see (20), that u1 and u2 ought to satisfy
one of the following triple of constraints

u1 ≤ 1, u2 ≤ 1, u1u2 ≥ 1− α, (a) (23)

1− α ≤ u1 ≤ 1, u2 > 1, (b)

u1 > 1, 1− α ≤ u2 ≤ 1, (c)

The values of u1 and u2 which satisfy (23) will be called feasible. In the new
variables, the total cost function takes the form

f(x1, x2, u1, u2) = ϕ(x1, x2) + ψ(au1x2 − x1 + d1, bu2 − x2 + d2) (24)

= g(x1, x2, u1, u2) + τ1d1 + τ2d2.

g(x1, x2, u1, u2) := −(τ1 − θ1 − bτ2u2)x1 − (τ2 − θ2 − aτ1u1)x2

Then the problem consists in minimizing g on the set of feasible values of xi and
ui, i = 1, 2, defined by the conditions given in (22) and (23).

Import is preferable Suppose now that, for some feasible u1 and u2, the prices
τ1 and τ2 are such that the following holds{

τ1 − bu2τ2 ≤ θ1

τ2 − au1τ1 ≤ θ2.
(25)

In this case, both coefficients at xi in g are nonnegative, which means that its
minimum is attained at the point x1 = x2 = 0, that by (21) yields z1 = d1 and
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z2 = d2. That is, both commodities are to be imported and no production is
planned. If

abu1u2 ≥ 1, (26)

then the set of positive pairs (τ1, τ2) which satisfy (25) is unbounded. That is,
even for very high import prices it is more reasonable to import rather than
produce if the import prices satisfy (25) with some u1 and u2 satisfying (23). A
sufficient condition for (26) to hold is

ab(1− α) ≥ 1, (27)

which readily follows from (23). In the opposite case where

γ := 1− (1− α)ab > 0, (28)

the set of pairs (u1, u2) that satisfy, see (12),

1− α ≤ u1u2 < 1/ab (29)

is non-empty. For such u1 and u2, we set

τ∗1 =
θ1 + bu2θ2
1− abu1u2

, τ∗2 =
θ2 + au1θ1
1− abu1u2

. (30)

Then, for τ1 > τ∗1 and τ2 > τ∗2 , both coefficients in the expression for g in (24)
are negative. Hence, the minimum of g is attained at some positive x1 and x2.
We will consider this case in more detail later.

Intermediate case Now let only one of the inequalities in (25), say the first
one, hold for some feasible u1 and u2. Then the minimum of g is attained at
x2 = 0 and the biggest possible x1 > 0. By the first line in (23) we have x1 ≤ d1;
hence, to minimize g we set x1 = d1. In this case, we have

g = −(τ1 − θ1)d1 + bτ2u2d1 ≥ −(τ1 − θ1)d1 + bτ2(1− α)d1,

where we take the least possible value of u2 which satisfies (23), i.e., we set
u2 = 1 − α. Note that τ1 − (1 − α)bτ2 > θ1 whenever τ1 − u2bτ2 > θ1 holds for
some feasible u2. Then the solution for this case is:

x1 = d1, z1 = 0, x2 = 0, z2 = (1− α)bd1 + d2. (31)

It exists regardless which of the inequalities (27) or (28) holds. The case where
only the second inequality in (25) holds can be considered in the same way.

Production is preferable Let us turn now to the case where (28) holds, and
hence the maximum import prices given in (30) exist. We then assume that
τi ≥ τ∗i , i = 1, 2. The set of feasible values of x1 and x2 is defined by the system
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of linear constraints given in (22). For fixed values of u1 and u2, g is a linear
function of x1 and x2; hence, its least value is attained at the corner point

x1 = x∗1 =
d1 + au1d2
1− abu1u2

, x2 = x∗2 =
d2 + bu2d1
1− abu1u2

, (32)

which corresponds to the equalities in (22). By (21) this yields

z1 = z2 = 0, (33)

that is, no import is planned. In this case, it is more convenient to minimize the
total cost function f , which now depends only on x1 and x2, see (18) and (24),

f(x1, x2, 0, 0) = θ1x1 + θ2x2,

with x1 and x2 given in (32) with u1 and u2 in the set defined in (29). That is,
on the set just mentioned we have to minimize the function

h(u1, u2) = θ1x
∗
1 + θ2x

∗
2 =

θ1d1 + θ2d2 + aθ1d2u1 + bd1θ2u2
1− abu1u2

. (34)

By direct calculations we get that

∂h(u1, u2)

∂u1
> 0,

∂h(u1, u2)

∂u2
> 0,

which means that the minimum of h is attained on the boundary u1u2 = 1− α,
u1 ≤ 1, u2 ≤ 1. Then we set

u1 = ξ, u2 = (1− α)/ξ,

and consider, cf. (34) and (28),

w(ξ) = h(ξ, (1− α)/ξ) (35)

=
1

γ
(θ1d1 + θ2d2) +

aθ1d2
γ

ξ +
(1− α)bd1θ2

γξ
,

with ξ taking values in [1 − α, 1]. Thus, we have to minimize w on the latter
interval. By (35) we have

w′(ξ) =
bd1θ2
γ

(
θ1
θ2
· ad2
bd1
− 1− α

ξ2

)
.

Suppose that the following holds

(1− α)bd1
ad2

<
θ1
θ2

<
bd1

(1− α)ad2
.

Then w′ changes its sign, and hence w attains its minimum, at some ξ∗ ∈ (1 −
α, 1). For

θ1
θ2
≤ (1− α)bd1

ad2
,
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w′(ξ) ≤ 0 for all ξ ∈ [1 − α, 1]; hence, the minimum of w is attained at ξ∗ = 1.
Finally, for

θ1
θ2
≥ bd1

(1− α)ad2
,

w′(ξ) ≥ 0 for all ξ ∈ [1− α, 1], and the minimum of w is attained at ξ∗ = 1− α.
In all these situations, the optimal solution is obtained from (32)

x∗1 =
d1
γ

+
ad2ξ∗
γ

, x∗2 =
d2
γ

+
(1− α)bd1

γξ∗
, (36)

with the corresponding value of ξ∗.

Concluding remarks The intervals characterizing the probability distributions
of c12 and c21 were chosen for simplicity of calculations to be [0, a] and [0, b],
respectively. A more realistic version would be [a−, a+] and [b−, b+] for some
0 < a− < a+ and 0 < b− < b+. In that case, one allows the coefficients to
randomly oscillate in the mentioned intervals. Another choices were discussed in
papers [3] and [5]. The choice of the objective functions in (18) was also dictated
by our wish to make the calculations simple and transparent. Note that this
choice is pretty reasonable and that the functions are convex.

The parametr γ introduced in (28) reflects the very essence of our approach.
Namely, typically ab exceeds 1, cf. (12), but not too much. Then the ‘numerical
effect’ of passing to the condition in (10) is just multiplying ab by 1 − α, and
making thereby the economy productive with probability 1− α if (28) holds. If
(27) holds, then the economy is still nonproductive, and the solution x1 = x2 = 0
is the only feasible one in this case. The conditions on the import prices in (25)
mean that the costs of production, i.e., the left-hand sides of the inequalities,
would be higher, and hence the import is preferable. In the intermediate case,
the imported amount z2 is used to satisfy the demand and as an input of the
first branch, see (31). The fact that we have no solutions where both xi and zi
are positive for some i = 1, 2, cf. (31) and (33), is related to the linearity of the
objective functions chosen in (18). The case where the production is preferable
can be realized only if γ is positive. If, however, it is small, the economy is ‘nearly
nonproductive’, and hence the optimal plans given in (36) are much bigger than
those corresponding to γ = 1.
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