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Abstract. Benôıt Mandelbrot, the father of Fractal Geometry, devel-
oped a multifractal model for describing price changes. Despite the com-
monly used models such as the Brownian motion, the Mutifractal Model
of Asset Return (MMAR) takes into account scale-consistency, long-
range dependence and heavy tails, thus having a great flexibility in de-
picting the real-market peculiarities. In section 2 a review of the math-
ematics involved into multifractals is presented; Section 3 shows how to
extend multifractality to stochastic processes. Contributions in Section 4
are new in the literature and extend Mandelbrot’s results to canonical
multifractal measures. Proof of Theorem 5 is unpublished and highlights
which are the drivers of heavy tails in the process, thus possibly creating
a bridge between multifractal formalism and jump processes.
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1 Introduction

Benôıt Mandelbrot, the inventor of Fractal Geometry, introduced in [7] the con-
cept of Multifracta Measures. More than ten years later, he extended the concept
of measure towards stochastic processes: With Laurent Calvet and Adlai Fisher,
they developed a solid theory on multifractal processes, thoroughly discussing its
implication if applied to financial log-returns. They built a self-similar stochastic
process, based on a distortion of physical time, exhibiting long-range dependence
and heavy tails as, thus able to depict effectively price changes. Despite Browian
motion (which can be considered as a particular subcase), it is able to capture
many peculiarities of real-market data.
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Subsequently, an article of Mandelbrot appeared in [14] discussing mathe-
matical properties of a particular multifractal process (the binomial cascade)
and of the related scaling function. My contribution to this subject is extending
Mandelbrot’s analysis to general multifractal processes. As a matter of fact, the
properties of the so-called scaling function τ(q) of a generic multifractal measure
appear to be much more interesting than the ones of a binomial cascade. It will
be shown that the asymptotic behaviour of τ(q) is related to the maximum value
of the random generators. Since the explanation given for the presence of, and
the subsequent capability to generate, heavy tails in the process is quite vague,
a possible connection with processes with jumps seems to exist. A very brief jus-
tification on where the Multifractal Model of Asset Returns (MMAR) departs
form the most commonly used models in finance is presented in the following.1

The MMAR appeared for the first time in the three paper series [1], [2],
and [3], introducing the concept of multifractality to economics. This model
attempts to describe price changes, accounting for several features of financial
data: Long memory, fat tails and scale invariance. The authors especially criti-
cized the GARCH-type representations, the latter assuming that the conditional
distribution of the return (in respect to the information available until today)
has a finite, time-varying second moment.

Given a filtered probability space (Ω,F , (Ft)t≥0 ,P) and the stochastic pro-
cess representing log-returns (X(t))t≥0 adapted to the filtration, defining ht :=

V (Xt | Ft−1), it follows ht = f (ht−j , εt−j), where εt | Ft−1
d∼ N (0, 1) and t ≥ j

for all j. Moreover, f is assumed to be a mere affine function of its arguments.
Note that such a model directly addresses volatility clustering in the data, cre-
ating heavy tails. However, neither long-range dependence nor scale invariance
can be described with it. Furthermore, being scale invariance the equivalence
between representations of the model at different time-scales, the absence of an
invariance under scaling in GARCH models implies that, in empirical works, the
researcher adds an additional restriction to the model when choosing the time-
scale of the data. Moreover, as well-summarised in [13], (Brownian) diffusion
processes with nonlinear dependence of the local volatility, as in the MMAR,
can generate heavy tails and skewness.

As a matter of fact, the MMAR generate heavy tails and a divergent variance
directly in the directing process of log-returns. Persistence in volatility is given
by the use of a random trading time, generated as the cumulative distribution
function of a random multifractal measure. In Section 3 an in-depth formulation
of multifractal process is provided.

Hereunder, a short review on multifractal measures is presented (for a more
extensive in-depth analysis, see [5] and [7]).

1 Note that in the in this work, the following symbols are used:
d∼ when two random

variables have the same distribution,
d→ for convergence in distribution, and, given

two functions f and g, f ∼ g for the equivalence class of all functions g which are
equal to f in the limit (asymptotic).
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2 A review on multifractal measures

In the following, I start with introducing the most trivial multifractal measure,
namely the (Bernoulli) binomial measure on the compact interval [0, 1] ⊂ R.
Then, the measure will be extended as in [7] in order to construct a canonical
multifractal measures.

The recursive construction of the binomial measure involves an initiator and a
generator. The initiator is the interval [0, 1] itself on which a unit of (probability)
mass is uniformly spread. This interval will recursively split into halves, leading
to, at the k-th stage, dyadic intervals of length 2−k. The generator consists in a
single parameter 0 < u0 < 1 and u0 6= 1

2 , named multiplier, which at each stage
is spread over the halves of every dyadic interval, with unequal deterministic
proportions.

Let u0 be a multiplier and be u1 its ones’ complement. At stage k = 0, a
uniform probability measure on [0, 1] is defined as

f0(t) := µ0([0, 1]) = 1.

At the step k = 1, the measure µ1 uniformly spread mass equal to u0 on the
first-half subinterval and mass equal to u1 on the other one, that is

f1(t) :=

{
µ1

([
0, 12
])

= u0 if t ∈
[
0, 12
)

µ1

([
1
2 , 1
])

= u1 if t ∈
[
1
2 , 1
]
.

Here, is trivial to see that the mass is preserved. In fact

µ1

([
0,

1

2

])
+ µ1

([
1

2
, 1

])
= u0 + u1 = 1.

In step k = 2, the set
[
0, 12
)

is split into two subintervals,
[
0, 14
)

and
[
1
4 ,

1
2

)
,

which respectively receive a percentage u0 and u1 of the total mass µ1

([
0, 12
])

.

Applying the same procedure to the dyadic set
[
1
2 , 1
]
, it follows

f2(t) :=


µ2

([
0, 14
])

= u0 · u0 = u20 if t ∈
[
0, 14
)

µ2

([
1
4 ,

1
2

])
= u0 · u1 = u0u1 if t ∈

[
1
4 ,

1
2

)
µ2

([
1
2 ,

3
4

])
= u1 · u0 = u0u1 if t ∈

[
1
2 ,

3
4

)
µ2

([
3
4 , 1
])

= u1 · u1 = u21 if t ∈
[
3
4 , 1
]
,

and the total mass is preserved since

22−1∑
i=0

µ2

([
i

22
,
i+ 1

22

])
= u20 + 2u0u1 + u21 = (u0 + u1)

2
= 1.

It is trivial to prove that at stage k the mass still preserve, and hence the
procedure can generate an infinite sequence of conservative measures.
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At step k + 1, assume that the measure µk has been defined. To construct
µk+1, it is convenient to consider the general dyadic interval

[
t, t+ 2−k

]
, and ex-

press t as dyadic number of the form, that is t := (0.η1η2 . . . ηk)2 =
(∑k

i=1 ηi · 2−k
)
10

,

for a finite k and η1, η2, . . . , ηk ∈ (0, 1).
Then, uniformly spreading a fraction u0 and u1 of the mass µk

([
t, t+ 2−k

])
on the subintervals

[
t, t+ 2−(k+1)

)
and

[
t+ 2−(k+1), t+ 2−k

]
, this procedure

repetition (repeated on all the subintervals) define the measure µk+1.
Let ϕ0 and ϕ1 denote the relative frequencies of 0’s and 1’s in the finite

binary development t = (0.η1η2 . . . ηk)2. The so-called pre-binomial measure in
the dyadic interval

[
t, t+ 2−k

]
, takes the value

µk
([
t, t+ 2−k

])
= uk·ϕ0

0 · uk·ϕ1

1 . (1)

Because of the conservation of the mass at each stage, it follows2

2k−1∑
i=0

µk

([
i

2k
,
i+ 1

2k

])
= (u0 + u1)

k
= 1.

This construction can receive several extensions. At each stage the interval
can be split in more than two (b > 2) intervals of equal size. Subintervals, indexed
from left to right by j (0 ≤ j ≤ b − 1), receive fraction of the total mass equal
to u0, u1, . . . , ub−1 such that they sum up to one. Under this assumption, the
multinomial measure on the b-adic interval

[
t, t+ b−k

]
follows the conservation

rule
bk−1∑
i=0

µk

([
i

bk
,
i+ 1

bk

])
=

b−1∑
j=0

uj

k

= 1

and, the measure is computed as

µk(∆t) =

b−1∏
j=0

u
k ·ϕj
j . (2)

where∆t = b−k and t is the b-adic number t := (0.η1η2 . . . ηk)b =
(∑k

i=1 ηi · b−k
)
10

,

for a finite k and η1, η2, . . . , ηk ∈ (0, 1, . . . , b− 1), and ϕj are the relative frequen-
cies of the digits of the representation in base b.

The next extension is obtained by making the allocation of the mass ran-
dom. Thus, given a probability space (Ω,F ,P), assume that the multipliers of

2 The iteration of the procedure generates an infinite sequence of random measure

(µk)k∈N that weakly converges to the binomial measure µ, that is µk
d→ µ. Note

that the binomial measure has important features common to many multifractal
(measures): It is continuous but also a singular probability measure; it thus has no
density, being limk→∞ µk = 0 and

∑∞
i=0 µk

([
i
2k
, i+1

2k

])
= 1.
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each subinterval are extracted by a sequence of iid (positive) random variables
(Uj)j∈{0,1,...,b−1}. As for the previous cases, assume that the mass is preserved

at each stage of the construction, that is
∑b−1
j=0 Uj = 1. Hence, 0 ≤ Uj ≤ 1 and

E (Uj) = 1/b must hold for all j. The resulting measure is called microcanonical
measure.

Given a date t = (0.η1η2 . . . ηk)b and a length ∆t = b−k, the measure of the
b-adic cell

[
t, t+ b−k

]
satisfies

µk(∆t) = Uη1 · Uη1η2 · ... · Uη1η2...ηk

where η1η2 . . . ηk is one of the element (it is a b-adic number) of the ordered
selection with repetition made with b digits. Because of its properties (iid random
variables), it follows

E
[
µk(∆t)

q]
= E

(
Uqη1
)
· E
(
Uqη1η2

)
· ... · E

(
Uqη1η2...ηk

)
= E (Uq)

k

for all q ≥ 0.
Setting τ(q) := − logb E (Uq) − 1 (which is named scaling function), the

expression can be written as

E
[
µk(∆t)

q]
= ∆tτ(q)+1, (3)

which is the typical behaviour of a multifractal measure (see [5]).

The very last extension define the multifractal canonical measure. If, given a
sequence of iid (positive) random variables, each iteration conserves probability
mass only “on average” in the sense that

E

b−1∑
j=0

Uj

 = 1,

a less restrictive class on multipliers is achieved, just allowing for the positivity
of the random variables, that is Uj ≥ 0 for all j. Hence, the total mass of the
canonical measure, denoted as Υ , is generally random.

Thus, given a time t = 0.η1η2 . . . ηk, at the k-th stage, since the conservation
of the mass holds only “on average”, the canonical measure does not has an
extra term than the microcanonical measure, that is

µk(∆t) = Υη1η2...ηk ·
(
Uη1 · Uη1η2 · ... · Uη1η2...ηk

)
Since it can be proven that Υη1η2...ηk are iid random variables3 and, being inde-
pendent from Uj for all j, it follows

E
[
µk(∆t)

q]
= E (Υ q) · E (Uq)

k
.

3 The random variable Υ is the fixed point of the operation of randomly weighted

averaging using as weights the random quantities Υj , that is
∑b−1

j=0 Υj · Uj
d∼ Υ .
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Setting c(q) := E (Υ q) (usually called prefactor), we finally get the sought
expression for the canonical measure

E
[
µk(∆t)

q]
= c(q) ·∆tτ(q)+1. (4)

To sum up, four different measures have been introduced with different levels
of sophistication: (1) (pre-binomial), (2) (multinomial), (3) (microcanonical),
and (4) (canonical). The latter is the cornerstone for constructing multifractal
stochastic processes.

3 Multifractal processes and the application to the
MMAR

Now the concept of multifractality can be extended to stochastic process. Be-
cause of the way multifractal random measures have been constructed, it is con-
venient defining multifractal processes in terms of their moments. Nevertheless,
we have to remark that dealing with measures rather than stochastic process
might be similar; however it is not the same. In the following, we will discuss
about some discrepancies.

Definition 1. Given a filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
, a Ft-

adapted real-valued stochastic process (X(t))t∈[0,T ] is called a multifractal pro-

cess, if it has stationary increments and satisfies the following properties4:

(a) X(0) = 0 a.s.;
(b) The expectation of its absolute increments raised to the q-th power are such

that
E
[
|X(t)−X(s)|q

]
= c(q) · |t− s|τ(q)+1

where q ∈ Q ⊆ R and c, τ : Q→ R.

Thank to the definition, setting s = 0, it follows

E
[
|X(t)|q

]
= c(q) · tτ(q)+1.

Such a definition of multifractal process extend the one of self-similar process
(whose standard and fractional Browninan motions belong to). As a matter of
fact, since a self-similar process is a process such that, given a ∈ R+

(X(a · t))t∈[0,T ]
d∼
(
aH ·X(t)

)
t∈[0,T ]

with 0 < H < 1, it also satisfies

(|X(t)|q)t∈[0,T ]
d∼
(
tHq · |X(1)|q

)
t∈[0,T ]

.

4 Such process need to be defined on closed intervals [0, T ] in order to preserve multi-
fractality. See [2].
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Taking their expectation, it follows

E
[
|X(t)|q

]
= tHq · E

[
|X(1)|q

]
that is a multifractal process with τ(q) = Hq − 1 and c(q) = E

[
|X(1)|q

]
. In the

special case of self-similar processes, the scaling function τ(q) is thus linear and
fully determined by the unique Hurst exponent H. For this reason, multifractal
processes with linear τ(q) are called unifractal. In this work, however, the main
analysis will be devote to multifractal processes with non-linear functions τ(q).
Moreover, the fact that in the uniscaling case the crucial exponent is (the only
one) Hurst exponent, it should be expected that the (continuum of) exponent of
the multiscaling case might be related to the first derivative τ ′(q) of the scaling
function. This point can be analyzed though the multifractal spectrum and the
Legendre transform (see Section 5).

As already sketched, trading time plays a notable role in transmitting mul-
tifractality to financial records. A preliminary definition regarding a particular
class of stochastic processes is needed for understanding this transmission mech-
anism.

Definition 2. Given a filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
, let

(Z(t))t∈ [0,T ] be a Ft-adapted real-valued stochastic process and θ(t) an increasing
function of the time t. The process

X(t) := Z [θ(t)]

is called a compound process.

Since t denotes the clock physical time, the function θ(t) reproduces the so-called
trading time. We are now able to state the theoretical assumption of the MMAR.

Definition 3. Given a filtered probability space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
, let

(X(t))t∈ [0,T ] the Ft-adapted real-valued stochastic process describing the log-
return on the stock price, that is

X(t) := lnS(t)− lnS(0) (5)

where (S(t))t∈ [0,T ] is the Ft-adapted real-valued stochastic process of the price
of the stock. The MMAR bases on the following three hypotheses:

1. (X(t))t∈ [0,T ] is a compound process

X(t) = BH [θ(t)]

where BH(t) is a fractional Brownian motion under P with Hurst exponent
H, and θ(t) is a stochastic trading time;
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2. The trading time θ(t) is the cumulative distribution function of a multifractal
measure defined on [0, T ]. Thus, θ(t) is a multifractal process with continu-
ous, non-decreasing paths, and stationary increments;

3. (BH(t))t∈ [0,T ] and (θ(t))t∈ [0,T ] are independent.

We first note that θ(0) must be null due to the definition of X(t), which
imposes X(0) = 0. Moreover the assumptions on θ(t) impose that the latter is
the cumulative distribution function of a self-similar random measure, such as
the microcanonical or the canonical.

It is quite natural to expect that trading time θ(t) “transfers” multifractality
to X(t), and that scaling functions τθ(q) and τX(q) may be related. The following
theorem expresses this intuition.

Theorem 1. The process X(t) is multifractal, with stationary increments and
scaling function such that

τX(q) = τθ(Hq).

Proof. : Since

X(t) = BH [θ(t)],

using the law of total expectation, E
[
|X(t)|q

]
can be written as

E
[
|X(t)|q

]
= E

[
E
[
|X(t)|q | θ(t) = θ

]]
.

Due to independence between trading time (θ(t))t∈ [0,T ] and the fractional Brow-

nian motion (BH(t))t∈ [0,T ], applying the properties of fractional Brownian mo-
tions, it follows

E
[
|X(t)|q | θ(t) = θ

]
= E

[
|BH(θ)|q | θ(t) = θ

]
= E

[
|BH(1)|q

]
· θ(t)Hq.

Thus,

E
[
|X(t)|q

]
= E

[
E
[
|BH(1)|q

]
· θ(t)Hq

]
= E

[
|BH(1)|q

]
· E
[
θ(t)Hq

]
.

Since θ(t) satisfies the scaling relation

E
[
|θ(t)|q

]
= cθ(q) · tτθ(q)+1,

it implies

E
[
|X(t)|q

]
= E

[
|BH(1)|q

]
· cθ(Hq) · tτθ(Hq)+1.

Setting cX(q) := E
[
|BH(1)|q

]
· cθ(Hq) and τX(q) := τθ(Hq), the thesis follows

E
[
|X(t)|q

]
= cX(q) · tτX(q)+1. (6)

�



On the scaling function of multifractal processes 31

Hence, choosing a fractional Brownian motion as compounder and a mul-
tifractal measure to deform time, we are able to “spread” multiscaling to the
process of the asset return X(t). This is one of the most important property of
the MMAR which allows to make further statements about the finiteness of the
moments of the process.

Firstly, (6) shows that, if E
[
|X(t)|q

]
is finite for some t, then it is finite for

all t. Moreover, since E
[
|X(t)|q

]
depends on E

[
θ(t)Hq

]
, it is finite if and if only

the process θ(t) has finite moment of order Hq. Hence, the trading time controls
the moment of the return X(t).

Since the trading time is generated by a multifractal random measure, the
choice of using either a microcanonical or a canonical multifractal measure influ-
ences the process features. As a matter of fact, microcanonical measures have a
fixed mass on the interval [0, T ] on which are defined. So θ(t) is bounded, and the
compound process X(t) has finite moments of all order. As Mandelbrot pointed
out in [1] and [11], it generates mild randomness, with relatively thin tails.

On the other hand, being canonical measure depending on the random vari-
able Υ , it permits the model to have divergent moments. This eventuality is
analyzed in 4. The corresponding process X(t) will be then wild. Overall, the
MMAR has enough flexibility to allow for a wide variety of tail behaviour, both
thin and fat.

4 Analytical properties of the scaling function τ (q)

In the this section all the relevant properties of the scaling function τ(q) are
analysed: These are its zeros and concavity/convexity. Mandelbrot in [14] gave a
proof of the concavity of the scaling function only for the canonical measure with
b = 2 (that is the dyadic case). Hereinafter, the proof for every b ∈ N : b ≥ 2
is given. Furthermore, special attention is addressed to the asymptotic behavior
of the function, and its connections within the MMAR.

Given the probability space (Ω,F ,P) where canonical measure is defined,
starting from the definition of the scaling function

τ(q) := − logb E (Uq)− 1,

where U is a discrete random variable extracted form the sequence (Uj)j={0,1,...,b−1}
(which are iid). Thus, the q-th moment can be written as

τ(q) = − logb

b−1∑
j=0

P (U = uj) · uqj

− 1

where uj are the values taken by the random variables.

Theorem 2. : The points (0,−1) and (1, 0) are respectively the intercept and a
zero for the scaling function τ(q).
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Proof. Setting q = 0, it follows

τ(0) = − logb

b−1∑
j=0

P (U = uj) · u0j

− 1 = − logb

b−1∑
j=0

P (U = uj)

− 1 =

= − logb (1)− 1 = −1,

hence the point (0,−1) is the intercept of the scaling function. Studying the
first moment of the random variable, which corresponds to the value q = 1, the
trivial zero of τ is given. In fact

τ(1) = − logb

b−1∑
j=0

P (U = uj) · uj

− 1 = − logb

(
1

b

)
− 1 =

= −(−1)− 1 = 0,

since E(U) = 1
b . Thus the point (1, 0) is one of the zeros of the function τ(q).�

On the existence of other zeros, it will be discussed later. The following theo-
rems (Theorem 3, 4, and 5), with the related proofs, are new to the literature.
General conditions about the increasing/decreasing paths and about the con-
cavity/convexity of the scaling function are derived. These conditions provide a
possible explanations about the fact that the canonical measure is able to pro-
duce fat tails in the distribution of the measure, thus connecting multifractal
formalism with jump processes.

Theorem 3. : The scaling function τ(q) is non-decreasing if the measure is mi-
crocanical; if the measure is canonical the function might exhibit both increasing
and decreasing regions.

Proof. The first derivative of τ(q) is such that

τ ′(q) =
d
[
− logb

(∑b−1
j=0 P (U = uj) · uqj

)
− 1
]

dq
=

= − logb(e) ·
∑b−1
j=0 P (U = uj) · uqj · ln(uj)∑b−1

j=0 P (U = uj) · uqj
.

Since b ∈ N\ {0, 1}, − logb(e) is always negative. Moreover, since Uj ≥ 0 for all j,
all the moments of the random variable are positive5. Hence the denominator is
positive. The only entity whose sign may vary is the numerator of the fraction,
whose positivity/negativity is due to the quantities ln(uj). If we consider the
microcanical measure, that is 0 ≤ Uj ≤ 1, the logarithms are all negative,
making the numerator negative as well. In this case, we find τ ′(q) ≥ 0, being
so non-decreasing. However, if the measure is canonical, hence allowing Uj ≥ 0,
it is not possible to state a priori whether the scaling function is increasing or
decreasing. �
5 They would be exactly equal to zero only in the degenerate case, that is if the random

variables were all null.
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Theorem 4. : Regardless the measure is microcanical or canonical, the scaling
function τ(q) is convcave.

Proof. : Studying the concavity/convexity of τ(q) through the second derivative

τ ′′(q) =
d2
[
− logb

(∑b−1
j=0 P (U = uj) · uq

j

)
− 1
]

dq2
=

= − logb(e) ·
∑b−1

j=0

∑b−1
i=j+1 P (U = uj) · P (U = ui) · uq

j · u
q
i · [ln (uj)− ln (ui)]

2(∑b−1
j=0 P (U = uj) · uq

j

)2 ,

shows that the fraction is always positive. Thus, the second derivative is always
negative. Hence τ ′′(q) < 0 and the scaling function is always concave, despite
the fact that the measure is microcanonical or canonical. �

The last features we are interested in investigating is the existence of asymp-
totes for the function τ(q).

Theorem 5. : Regardless the measure is microcanical or canonical, the scaling
function τ(q) is asymptotic linear both for q → −∞ and q → +∞.

Proof. : First, the function is unbounded above and below. In fact

lim
q→+∞

τ(q) = lim
q→+∞

− logb

b−1∑
j=0

P (U = uj) · uqj

− 1

 =

{
+∞ if 0 ≤ Uj ≤ 1

−∞ if Uj ≥ 0

and

lim
q→−∞

τ(q) = lim
q→−∞

− logb

b−1∑
j=0

P (U = uj) · uqj

− 1

 = −∞.

Hence, there might be at most two oblique asymptotes (one for q → −∞ and
one for q → +∞). Since the previous limits are necessary conditions but not
sufficient, to individuate the asymptotes (if any), the following limit (which
calculate the slope of the asymptote) need to be calculated

lim
q→+∞

τ(q)

q
= lim
q→+∞

− logb

(∑b−1
j=0 P (U = uj) · uqj

)
− 1

q
=

= − lim
q→+∞

logb

(∑b−1
j=0 P (U = uj) · uqj

)
q

.

Since, as q → +∞

logb

b−1∑
j=0

P (U = uj) · uqj

 ∼ logb

(
P (U = umax) · uqmax

)
,
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where umax = maxj∈{0,1,...,b−1} (uj), it follows

lim
q→+∞

τ(q)

q
= − lim

q→+∞

logb

(
P (U = umax) · uqmax

)
q

=

= − lim
q→+∞

logb
(
P (U = umax)

)
+ q · logb (umax)

q
=

= − logb (umax) <∞ .

To ascertain that there is an oblique asymptote actually, the computation of the
following limit (which calculate the intercept of the asymptote) is required

lim
q→+∞

[
τ(q)− q · [− logb (umax)]

]
= lim
q→+∞

[
τ(q) + q · logb (umax)

]
=

= lim
q→+∞

− logb

b−1∑
j=0

P (U = uj) · uqj

− 1 + q · logb (umax)

 =

= lim
q→+∞

[
− logb

(
P (U = umax) · uqmax

)
− 1 + q · logb (umax)

]
=

= lim
q→+∞

[
− logb

(
P (U = umax)

)
− q · logb (umax)− 1 + q · logb (umax)

]
=

= − logb
(
P (U = umax)

)
− 1 <∞ .

Thus, for q → +∞, the scaling function τ(q) is asymptotic to the straight line
with equation

a1(q) = − logb (umax) · q − logb
(
P (U = umax)

)
− 1 . (7)

The same procedure has to be repeated for q → −∞.

lim
q→−∞

τ(q)

q
= lim
q→−∞

− logb

(∑b−1
j=0 P (U = uj) · uqj

)
− 1

q
=

= − lim
q→−∞

logb

(∑b−1
j=0 P (U = uj) · uqj

)
q

.

Because, as q → −∞

logb

b−1∑
j=0

P (U = uj) · uqj

 ∼ logb

(
P (U = umin) · uqmin

)
,

where umin = minj∈{0,1,...,b−1} (uj), the limit simplifies as

lim
q→−∞

τ(q)

q
= − lim

q→−∞

logb

(
P (U = umin) · uqmin

)
q

=

= − lim
q→−∞

logb
(
P (U = umin)

)
+ q · logb (umin)

q
=

= − logb (umin) <∞ .
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The limit for the existence of the intercept is

lim
q→−∞

[
τ(q)− q · [− logb (umin)]

]
= lim
q→−∞

[
τ(q) + q · logb (umin)

]
=

= lim
q→−∞

− logb

b−1∑
j=0

P (U = uj) · uqj

− 1 + q · logb (umin)

 =

= lim
q→−∞

[
− logb

(
P (U = umin) · uqmin

)
− 1 + q · logb (umin)

]
=

= lim
q→−∞

[
− logb

(
P (U = umin)

)
− q · logb (umin)− 1 + q · logb (umin)

]
=

= − logb
(
P (U = umin)

)
− 1 <∞ .

Hence, even for q → −∞, the scaling function τ(q) has another slant asymptote,
that is

a2(q) = − logb (umin) · q − logb
(
P (U = umin)

)
− 1 . (8)

�

The slope and the intercept of the asymptotes allow to make further state-
ments about the behaviour of the scaling function. Consider (7) and (8). The in-
tercept of the left (right) asymptote is positive if and only if P (U = umin) < 1/b
(P (U = umax) < 1/b). The implications for the right asymptote are however
more interesting (see infra, about the existence of other zeros).

About the slope of the asymptotes, the inclination varies according to the
fact the measure is microcanonical or canonical for q → +∞. In fact, for a1,
the rate of growth − logb (umax) is positive if we are dealing with microcanical
measures (since 0 ≤ Uj ≤ 1 a.s., that is umax < 1), but becomes negative if the
measure is canonical (since Uj ≥ 0 a.s., thus being umax > 1). On the contrary,
for a2 the slope of the asymptote is always positive, since it must be the case
that umin < 1, both in the microcanonical case and the canonical one.

Hereunder, all the relevant properties of the scaling function are summarised:

1. The point (1, 0) is a zero for τ(q);

2. The point (0,−1) is the intercept of τ(q);

3. If the measure is microcanonical, the function is non-decreasing;

4. The function is concave;

5. The function is asymptotical linear

τ(q) ∼ − logb (umax) · q − logb
(
P (U = umax)

)
− 1 for q → +∞

τ(q) ∼ − logb (umin) · q − logb
(
P (U = umin)

)
− 1 for q → −∞.

These properties allow us to infer another property of τ(q) if a canonical
measure is involved. Since the function is always concave and also asymptotic,
for q → +∞, to the straight line which has a negative slope, thus it must have
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Fig. 1. Possible shapes of τ(q) for different sequences (Uj). Red dots are different qcrit.

a “cap” form, such as
⋂

. Moreover, since the function as a zero for q = 1, there
must exist another one, which is usually addressed as qcrit, that is

qcrit := {q > 1 : τ(q) = 0} ,

remarking that the second zero (qcrit, 0) exists only if a canonical measures has
been chosen. That zero has a great impact on the finiteness of the moments of
the measure. As a matter of fact Mandelbrot in [14] showed that, for q > 1,
the moments of the measure are finite if and only if τ(q) > 0. That eventuality
occurs only for 1 < q < qcrit.

In fact, since the q-th moment of a canonical measure is given by

E
[
µ (∆t)

q]
= E (Υ q) ·∆tτ(q)+1 ,

its finiteness may depends only on either τ(q) or E (Υ q). Since, for finite q, τ(q) is
finite a.s., hence the infiniteness can be achieved only by a particular behaviour
of the random variable Υ which is the random mass on the interval [0, 1].

Indeed, Guivarc’h proved in [6] that Υ has Paretian tails and allows infi-
nite moments, for those values q ≥ qcrit. Thus, the random variable Υ follows a
Pareto’s distribution of exponent qcrit.
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5 Conclusions and future developments

In order to study further properties of τ(q) and thus draw the sought conclusion,
the definition of local Hölder exponent of a function is required. This quantity
characterises the smoothness of a function at a given point.

Definition 4. Let g : R→ R be a real-valued function defined on a neighborhood
of a given point t. The number

α (t) := sup
(
β > 0 : |g (t+ h)− g (t)| = O

(
|h|β

))
as h→ 0, is called the local Hölder exponent of g at t.

We note that α (t0) is non-negative if and only if the function g is bounded
around t0. Local Hölder exponent is a notion that can be well applied to functions
and measures, deterministic or stochastic, with some adjustment. In the case
of stochastic processes, the local Hölder exponent depends on the particular
sample path considered. There are however some famous exceptions: continuous
stochastic process such as Brownian motion and fractional Brownian motion are
characterized by a unique Hölder exponent almost everywhere, for almost all
sample paths. Differently, for the MMAR a continuum of Hölder exponent is
allowed.

Defining log-returns in the following way

X(t,∆t) := X(t)−X(t−∆t),

where X(t) is defined as in (5), it follows

E
[
|X(t,∆t)|

]
∼ ∆tα(t) (9)

for all t, as ∆t → 0. In the standard Brownian motion and in the standard
fractional Brownian motion cases, the local absolute variation are always pro-
portional to ∆t1/2 and to ∆tH respectively. On the other hand, multifractal
processes generate variety in local regularity while filling with a continuum of
values of α(t). Given that the local Hölder exponent may vary from sample path
to sample path, it is not a robust statistical tool for characterising the rough-
ness of a stochastic process. The notion of multifractal/singularity spectrum was
introduced to give a less detailed but more stable characterisation of the local
smoothness of a function in a “statistical” sense.

Definition 5. Let g : R → R be a real-valued function and for each α > 0
define the set of point at which g has Hölder exponent α(t)

Λ(α) := {t, α(t) = α} .

The multifractal/singularity spectrum of g is the function τ? : R+ → R which
associates to each α > 0 the Hausdorff-Besicovich dimension of Λ(α):

τ?(α) := dimHB Λ(α) .
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Using the above definition, one may associate to each sample path X(ω, t) of a
stochastic process X(t) its singularity spectrum. If it depends on the path ω,
then the singularity spectrum is not likely to give much information about the
properties of the process X(t). Fortunately, it has been shown that, for large
classes of stochastic processes, the singularity spectrum is the same for almost
all sample paths. Moreover, for multifractal process it has been proven that
the multifractal spectrum is equivalent to the the Legendre transform of the
scaling function (which is easier to compute than the spectrum). Hence, for such
processes, the Legendre transform is the main tool for describing the distribution
of local Hölder exponents. In fact

τ?(α) = inf
q ∈R
{α · q − τ(q)} ,

where the expression on the right-hand side is the Legendre transform of τ .
Given these premises and given the result of Theorem 5, a few statements about
the set of local Hölder exponents can be done.

Due to the asymptotic relations

τ(q) ∼ − logb (umax) · q − logb
(
P (U = umax)

)
− 1 for q → +∞

τ(q) ∼ − logb (umin) · q − logb
(
P (U = umin)

)
− 1 for q → −∞,

the slope of the oblique asymptotes are respectively

αmax = − logb (umin) > 0 and αmin = − logb (umax) ≶ 0 .

The relation max/min is inverted since the the slope of the asymptote for q →
−∞ is grater than the one of the asymptote for q → +∞. Moreover, these two
values give the bounds of the support of the multifractal spectrum, that is

τ? : [αmin, αmax]→ R ,

since they are the least and the highest value α can take. Hence, if the scaling
function τ(q) is defined on the entire real line, its asymptotic linear behaviour
implies the multifractal spectrum τ?(α) to be defined only on a closed set of
values. Note that, if the measure involved in the process physical time in trading
time is canonical, hence [αmin, αmax] 6⊂ R+ since αmin < 0 (as the definition of
the multifractal spectrum requires). Hence the multifractal spectrum should be
considered as the restriction of that set up to zero. However, the negative values
of alpha have a deeper financial meaning: When the local local Hölder exponents
become negative, it must be the case the process exhibits jumps. Thus choosing
a canonical measure for deforming time implies the presence of fat tails (the
moments diverge for q > qcrit) and jumps in the sample paths (αmin < 0).

Since (9) holds, the largest the range of possible α(t), the riskiest is the asset
since the local Hölder exponents can take more values. It conveys a more vari-
ability of the log-returns, and hence an higher uncertainty in the magnitude of
future price variations. Moreover, the smaller the value of αmin, the riskiest the
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asset should be considered.

The asymptotic behavior of the scaling function and the connection with the
αs through the Legendre transform should lead to reconsider the information
connected with the higher moments of the log-returns’ distribution. As a mat-
ter of fact, the right asymptote of τ(q) might have positive or negative slope
according to the intrinsic riskiness of the asset. Since this quantity is linked to
the higher moments of the distribution (q → +∞) , more consistent estimation
techniques6 ought to be developed being αmin the most ruinous local exponent
that can occur. As a matter of fact, on the drawback of these estimation methods
is that their finite sample properties are not well known.

Moreover, a more in-depth study of the link between the quantity P (U = umax)
and the choice of the distribution for deforming time would be necessary. Since
Uj are random, a suitable distribution should be chosen 7 for practical purpose.
Subsequently, the distribution of Uj would require special attention since the
maximum value of umax defines αmin.
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