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Abstract. This paper covers asymmetric information in financial mar-
kets from a micro perspective. Particularly, we aim to extend the as-
set pricing framework introduced by Guasoni [2], which models price
dynamics with both a martingale component, described by permanent
shocks, and a stationary component, given by temporary shocks. First,
we derive a generalization of this asset pricing model using n Brown-
ian Motions, including an Ornstein-Uhlenbeck process as the (n + 1)th
element. We find non-Markovian dynamics for the partially informed
agents, which questions the validity of the efficient market hypothesis.
Moreover, we compare the positions of informed and partially informed
agents. Thereby, the filtration for informed agents is larger and initially
specified, whereas the filtration for partially informed agents is smaller
and obtained from the Hitsuda representation [3]. Our study examines
the logarithmic utility maximization problem.
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1 Introduction: the model

We consider a financial market with one riskless asset D and one risky asset S.
The market interest rate is considered deterministic. In order to describe the
dynamics of the risky asset, we consider a probability space (Ω,F ,P) on which
are defined n+ 1, with n ∈ N , independent Brownian Motions:(

B1
t

)
t∈[0,+∞[

,
(
B2
t

)
t∈[0,+∞[

, ..., (Bnt )t∈[0,+∞[ ,
(
Bn+1
t

)
t∈[0,+∞[

.
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If we set the real parameter λn+1 > 0, we consider the Ornstein-Uhlenbeck
process

(
Un+1
t

)
t∈[0,+∞)

defined by the following equation

Un+1
t + λn+1

∫ t

0

Un+1
s ds = Bn+1

t , t ∈ [0,+∞[

which, as known, is given by:

Un+1
t =

∫ t

0

e−λn+1(t−s)dBn+1
s .

Then, if we set the real numbers pj , with j = 1, 2, ..., n, n+ 1, pn+1 > 0, and
the first n numbers not all zero, let us consider the process (Yt)t∈[0,+∞) defined
by:

Yt =

n∑
j=1

pjB
j
t + pn+1U

n+1
t .

Now, let us introduce two deterministic Lebesgue measurable functions

µ, σ : [0,+∞[ −→ [0,+∞[

such that

∀ T > 0 µ ∈ L1 ([0, T ]) , σ ∈ L2 ([0, T ]) .

The price dynamics of S of the risky asset evolve according to:

dSt
St

= µtdt+ σtdYt

and its solution is

St = S0e

∫ t

0

(
µs −

σ2
s

2

)
ds+

∫ t

0

σsdYs
.

Now we can describe the previous situation in the following way: we have ”in-
formed agents” who have all the information provided from the Brownian Mo-
tions, and a ”partially informed agents” who have all the information provided
from the process Yt. The informed agents refer to the filtration

(
F1
t

)
t∈[0,+∞[

obtained by completing the natural filtration generated by n+ 1 Brownian Mo-
tions B1

t , B
2
t , ..., B

n
t , B

n+1
t , which therefore satisfies the usual conditions of com-

pleteness and right continuity. The partially informed agents, instead, refer to
the filtration

(
F0
t

)
t∈[0,+∞[

generated by the process Yt. Of course, we have that

F0
t ⊂ F1

t , ∀ t. We might state that the informed agents’ risky asset value evolves
according to the assigned Brownian Motions; therefore its value is determined
as:

dSt
St

=
(
µt − pn+1λn+1σtU

n+1
t

)
dt+ σt

n+1∑
j=1

pjdB
j
t
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which refers to the Brownian Motion

Wt =

n+1∑
j=1

p2j

− 1
2 n+1∑
j=1

pjB
j
t (1)

The solution of St, if S0 > 0 is the initial wealth, is given, as known, by:

S0e

∫ t

0

(µs − pn+1λn+1σsU
n+1
s

)
− 1

2

n+1∑
j=1

p2j

σ2
s

ds+

n+1∑
j=1

p2j

 1
2 ∫ t

0

σsdWs

.

In the next section, we want to derive, for the partially informed agents, an
analogous equation which represents Yt, and therefore S, in terms of filtration
F0 and of an opportune Brownian Motion B0.

2 Decomposition of the Process Yt with respect to F0

In this section, we shall examine the Markov property of Yt and will determine,
with respect to the filtration F0, the relative Brownian Motion which represents
it.

Theorem 1. Let Yt be a Gaussian process, and moreover:

1. E (Yt) = 0 ∀t ∈ [0,+∞[

2. Γ (s, t) := cov (Ys, Yt) =

 n∑
j=1

p2j

 t ∧ s+ p2n+1
e−λn+1|t−s|−e−λn+1(t+s)

2λn+1
.

Proof. 1. Gaussian and mean zero properties are obvious.
2.

Γ (s, t) := cov (Ys, Yt) = E (YsYt) =

= E

 n∑
j=1

pjB
j
s + pn+1U

n+1
s

 n∑
j=1

pjB
j
t + pn+1U

n+1
t

 =

applying the Brownian Motion’s independence property, we get:

= E

 n∑
j=1

p2jB
j
sB

j
t

+ E
(
p2n+1U

n+1
s Un+1

t

)
=

=

n∑
j=1

p2jE
(
BjsB

j
t

)
+p2n+1E

(∫ s

0

e−λn+1(s−u)dBn+1
u

∫ t

0

e−λn+1(t−u)dBn+1
u

)
=

=

 n∑
j=1

p2j

 s ∧ t+ p2n+1

∫ s∧t

0

e−λn+1(t−u)−λn+1(s−u)du =
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=

 n∑
j=1

p2j

 s ∧ t+ p2n+1e
−λn+1(t+s)

e2λn+1(s∧t) − 1

2λn+1
=

=

 n∑
j=1

p2j

 s ∧ t+ p2n+1

e−λn+1|t−s| − e−λn+1(t+s)

2λn+1
2

To verify the Markov property of the process Yt, we recall the following result
[4] (III.1.13)

Theorem 2. Let Yt be a Markov process if, and only if:

Γ (s, t)Γ (t, u) = Γ (t, t)Γ (s, u), ∀ s ≤ t ≤ u. (2)

Theorem 3. 1. Let λn+1 = 0, then Yt is a Markov process.
2. Let λn+1 > 0 then Yt is a Markov process if, and only if: pj = 0 ∀j =

1, 2, ..., n or pn+1 = 0.

Proof. Property 1 is obvious. Besides it is obvious that Yt is a Markov process if

pj = 0 ∀j = 1, 2, ..., n or if pn+1 = 0. We suppose that

n∑
j=1

p2j > 0 and consider

(2).
Considering

lim
u→+∞

Γ (s, t)Γ (t, u)

and
lim

u→+∞
Γ (t, t)Γ (s, u)

we get:

tp2n+1

e−λn+1(t−s) − e−λn+1(t+s)

2λn+1
= sp2n+1

1− e−2λn+1t

2λn+1

which can be written also as follows

p2n+1

[
eλn+1s − e−λn+1s

s
− eλn+1t − e−λn+1t

t

]
= 0, ∀s ≤ t

and considering the limit for t→ +∞, we get the thesis: pn+1 = 0. 2

Now let us consider the process Zt defined by:

Zt =

n+1∑
j=1

p2j

− 1
2 n∑
j=1

pj

(
Bjt + λn+1

∫ t

0

Bjudu

)
+

n+1∑
j=1

p2j

− 1
2

pn+1B
n+1
t .

It verifies the following result:
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Theorem 4. 1. Let Zt be a Gaussian process.
2. E (Zt) = 0 ∀t ∈ [0,+∞[.
3. cov (Zt, Zs) = t ∧ s+n+1∑

j=1

p2j

−1 n∑
j=1

p2j

∫ t

0

∫ s

0

(
λn+1 + λ2n+1u ∧ v

)
dudv

Proof. We note that the Zt process can be rewritten in the form:

Zt =

n+1∑
j=1

p2j

− 1
2 n∑
j=1

pj

(
Bjt + λn+1

∫ t

0

(t− u) dBju

)
+

n+1∑
j=1

p2j

− 1
2

pn+1B
n+1
t =

=

n+1∑
j=1

p2j

− 1
2 n∑
j=1

pj

∫ t

0

[1 + λn+1 (t− u)] dBju +

n+1∑
j=1

p2j

− 1
2

pn+1B
n+1
t .

Therefore the covariance, because of the independence of the Brownian Motions,
is given by:

cov (Zt, Zs) =

n+1∑
j=1

p2j

−1 n∑
j=1

p2j

∫ t∧s

0

[1 + λn+1 (t− u)] [1 + λn+1 (s− u)] du+

+

n+1∑
j=1

p2j

−1 p2n+1 t ∧ s

with standard calculations, we obtain the thesis. 2

Now let us consider the following function:

f̃ (t, s) = −

n+1∑
j=1

p2j

−1 n∑
j=1

p2j

(λn+1 + λ2n+1t ∧ s
)

(3)

which is part of the covariance of the process Zt. For our further aims, if
0 ≤ s ≤ t, then we can rewrite the (3):

f̃ (t, s) = −

n+1∑
j=1

p2j

−1 n∑
j=1

p2j

(λn+1 + λ2n+1s
)
∀ 0 ≤ s ≤ t. (4)

To simplify, if A2 =

n+1∑
j=1

p2j

−1 n∑
j=1

p2j

, we can consider the following

result:



46 Luigi Romano and Donato Scolozzi

Theorem 5. The function

g̃ (t, s) =

λn+1η(s) for 0 ≤ s ≤ t

0 otherwise
(5)

verifies the following integral equation

f̃ (t, s) = g̃ (t, s)−
∫ s

0

g̃ (t, u) g̃ (s, u) du ∀ 0 ≤ s ≤ t (6)

and η (s) verifies the following Cauchy problem{
η′ (s) = λn+1

(
η2(s)−A2

)
η (0) = −A2.

Proof. It is easy to verify this, considering the following integral equation:

−A2
(
λn+1 + λ2n+1s

)
= λn+1η (s)− λ2n+1

∫ s

0

η2 (u) du ∀ 0 ≤ s ≤ t

from which we easily obtain the Cauchy problem. Its solution, as already verified,
is given by the function:

η (s) = A
1−A− (1 +A) e2Aλn+1s

1−A+ (1 +A) e2Aλn+1s
. 2

Now we are able to enunciate the following theorem:

Theorem 6. Let g(t, s) be the negative resolvent of g̃ (t, s) defined by

g (t, s) =


−λn+1η(s)e

λn+1

∫ t
s
η(u)du

for 0 ≤ s ≤ t

0 otherwise

then the process

B0
t = Zt −

∫ t

0

(∫ s

0

g (s, u) dZu

)
ds (7)

is a Brownian Motion with respect to the filtration
(
F0
t

)
t∈[0,+∞[

.

Also we have that

Zt = B0
t −

∫ t

0

(∫ s

0

g̃ (s, u) dB0
u

)
ds = B0

t − λn+1

∫ t

0

(∫ s

0

η (u) dB0
u

)
ds.

Proof. From Proposition 2 in [3], it follows the existence of the Brownian Motion
B0
t . 2
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Theorem 7. Let the processes Yt and Zt verify the following equation:

Yt + λn+1

∫ t

0

Yudu =

n+1∑
j=1

p2j

 1
2

Zt

so we have

Yt =

n+1∑
j=1

p2j

 1
2 ∫ t

0

e−λn+1(t−u)dZu. (8)

Proof. Since:

Yt −

n+1∑
j=1

p2j

 1
2

Zt =

=

n∑
j=1

pjB
j
t + pn+1U

n+1
t −

n∑
j=1

pj

(
Bjt + λn+1

∫ t

0

Bjudu

)
− pn+1B

n+1
t =

= −λn+1

∫ t

0

 n∑
j=1

pjB
j
u + pn+1U

n+1
u

 du = −λn+1

∫ t

0

Yudu.

then by integration we easily obtain (8). 2

Now it is possible to establish the link between the process Yt and the Brow-
nian Motion B0

t . Namely, we have the following (fundamental) result:

Theorem 8. Let Yt =

n∑
j=1

pjB
j
t + pn+1U

n+1
t and

(
F0
t

)
t∈[0,+∞[

be the completed

natural filtration of Yt. Let B0
t be the Brownian Motion with respect to the fil-

tration
(
F0
t

)
t∈[0,+∞[

. Besides, we have the following results:

1.

B0
t =

n+1∑
j=1

p2j

− 1
2

Yt + λn+1

∫ t

0

∫ s

0

[1 + η(u)] e
λn+1

∫ s

u

η(l)dl
dYu

 ds

 .
2.

Yt =

n+1∑
j=1

p2j

 1
2 ∫ t

0

[
e−λn+1(t−u) [1 + η(u)]− η(u)

]
dB0

u.

3.

Yt =

n+1∑
j=1

p2j

 1
2 [
B0
t − λn+1

∫ t

0

[
e−λn+1 (t− u)

(
B0
u +

∫ u

0

η(v)dB0
v

)]
du

]
.
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4.

Yt =

n+1∑
j=1

p2j

 1
2 [
B0
t − λn+1

∫ t

0

(∫ s

0

[1 + η(u)] e−λn+1(s−u)dB0
u

)
ds

]
.

Proof. 1. Substituting

Zt =

n+1∑
j=1

p2j

− 1
2 [
Yt + λn+1

∫ t

0

Yudu

]

in (7):

B0
t =

n+1∑
j=1

p2j

− 1
2 [
Yt +

∫ t

0

(
λn+1Ys −

∫ s

0

g(s, u)dYu −
∫ s

0

g(s, u)Yudu

)
ds

]
.

(9)
Integrating by parts ∫ s

0

g(s, u)Yudu

and if we suppose G(s, u) =

∫ u

0

g(s, v)dv, it is easy to have:

∫ s

0

g(s, u)Yudu = λn+1Ys −
∫ s

0

G(s, u)dYu (10)

To obtain the result 1, we substitute (10) in (9).
2. In

Yt =

n+1∑
j=1

p2j

 1
2 ∫ t

0

e−λn+1(t−s)dZs

we substitute Zs with

Zs = B0
s − λn+1

∫ s

0

(∫ u

0

η (l) dB0
l

)
du

so that we obtain

Yt =

n+1∑
j=1

p2j

 1
2 [∫ t

0

e−λn+1(t−s)dB0
s − λn+1

∫ t

0

(∫ s

0

η(u)e−λn+1(t−s)dB0
u

)
ds

]
(11)
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which, applying Fubini Tonelli theorem, can be written as:

Yt =

n+1∑
j=1

p2j

 1
2 [∫ t

0

e−λn+1(t−s)dB0
s − λn+1

∫ t

0

(∫ t

u

η(u)e−λn+1(t−s)ds

)
dB0

u

]
which, simplified, gives the result 2.

3. Integrating by parts the first integral of (11)
we obtain: ∫ t

0

e−λn+1(t−s)dB0
s = B0

t − λn+1

∫ t

0

e−λn+1(t−s)B0
sds.

Substituting and simplifying we get the result 3.

4. Substituting Wt =

n+1∑
j=1

p2j

− 1
2

Yt in result 1, we obtain that

B0
t = Wt + λn+1

∫ t

0

(∫ s

0

[1 + η(u)] e
λn+1

∫ s
u
η(l)dl

dWu

)
ds

which, written in standard form

B0
t = Wt −

∫ t

0

(∫ s

0

−λn+1 [1 + η(u)] e
λn+1

∫ s
u
η(l)dl

dWu

)
ds

identifies the following Volterra Kernel

k(t, s) =


−λn+1 [1 + η(s)] e

λn+1

∫ t
s
η(l)dl

for 0 ≤ s ≤ t

0 otherwise.

Utilizing the relation 2, we also identify the negative resolvent k̃(t, s)

k̃(t, s) =


−k(t, s)e

∫ t
s
k(u,u)du

for 0 ≤ s ≤ t

0 otherwise

from which, by substitution, we obtain:

k̃(t, s) =

λn+1 [1 + η(s)] e−λn+1(t−s) se 0 ≤ s ≤ t

0 otherwise.

As a consequence

Wt = B0
t −

∫ t

0

(∫ s

0

k̃(s, u)dB0
u

)
ds

from which, we deduce result 4. 2
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Using result 4, the asset price dynamics for the partially informed agents,
can be written as:

dSt
St

= µtdt+ σt

n+1∑
j=1

p2j

 1
2 [
dB0

t − λn+1

(∫ t

0

[1 + η(u)] e−λn+1(t−u)dB0
u

)
dt

]

which can be rewritten as:

dSt
St

=

µt − λn+1

n+1∑
j=1

p2j

 1
2 (

σt

∫ t

0

[1 + η(u)] e−λn+1(t−u)dB0
u

) dt+

+σt

n+1∑
j=1

p2j

 1
2

dB0
t .

Conversely, for the informed agents, the asset price dynamics can be written
as:

dSt
St

=
(
µt − pn+1λn+1σtU

n+1
t

)
dt+ σt

n+1∑
j=1

pjdB
j
t

which refers to the Brownian Motion (1).

3 The value functions for two agents

As already said in the previous section, the informed agents consider the un-
derlying value starting from an initial wealth x > 0, and investing Ht units of
St. They obtain the self-financed value of wealth Xt, at time t, through all the
assigned Brownian Motion. Conversely the partially informed agents, invest the
same monetary item x > 0, and they utilize the Brownian Motion B0

t in order to
assess the dynamics of the wealth obtained. In this section, we want to examine
these two situations, and we also want to evaluate the utility functions the two
type of agents use.

3.1 The value function for the informed agents

Let x > 0 be the initial monetary item that the partially informed agents invest
in asset St. To do this, they utilize an opportune stochastic process Ht which,
at time t, represents the asset shares used. The value (self-financed) of wealth
Xt, at time t, is given by:

Xt = x+

∫ t

0

HsdSs.
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As already said, the process Ht, which will be said admissible, must be pre-
dictable with respect to filtration

(
F1
t

)
t∈[0,+∞[

, integrable with respect to process

St and such that almost certainly we also have Xt > 0, ∀t ∈ [0, T ].
Finally, if U is the utility function, the agents maximize the mean utility

of the wealth obtained in the final instant T . Thereby it solves the following
problem:

sup

{
E

(
U

(
x+

∫ T

0

HtdSt

))
: Ht admissible

}
.

In order to guarantee the positivity of the wealth produced at every instant
t, we can consider the process πt defined by Ht = πt

Xt
St

.
Therefore we obtain:

Xt = x+

∫ t

0

πs
Xs

Ss
dSs

it allows
dXt

Xt
= πt

dSt
St

and
dXt

Xt
= πt

(
µt − pn+1λn+1σtU

n+1
t

)
dt+ πtσt

n+1∑
j=1

pjdB
j
t .

If we isolate the Brownian Motion (1):

dXt

Xt
= πt

(
µt − pn+1λn+1σtU

n+1
t

)
dt+

n+1∑
j=1

p2j

 1
2

πtσtdWt.

Therefore the value of wealth Xt, at time t, is given by:

Xt = xe

∫ t

0

πs (µs − pn+1λn+1σsU
n+1
s

)
− 1

2

n+1∑
j=1

p2j

π2
sσ

2
s

ds

e

[
n+1∑
j=1

p2j

] 1
2 ∫ t

0

πsσsdWs

and, as a consequence, Xt at final instant T , is given by:

XT = xe

∫ T

0

πs (µs − pn+1λn+1σsU
n+1
s

)
− 1

2

n+1∑
j=1

p2j

π2
sσ

2
s

ds
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e

[
n+1∑
j=1

p2j

] 1
2 ∫ T

0

πsσsdWs

.

Now, considering the logarithmic utility function, we have the following re-
sult:

Theorem 9. Let U(y) = log y. The process

πs =
µs − pn+1λn+1σsU

n+1
sn+1∑

j=1

p2j

σ2
s

provides the optimal investment share and the value function is given by:

u(x) = log x+
1

2

n+1∑
j=1

p2j

E
[∫ T

0

(
µs − pn+1λn+1σsU

n+1
s

)2
σ2
s

ds

]
.

Proof. ∀ πs admissible, it results

U(XT ) = log(XT ) =

= log x+

∫ T

0

πs (µs − pn+1λn+1σsU
n+1
s

)
− 1

2

n+1∑
j=1

p2j

π2
sσ

2
s

ds+

+

n+1∑
j=1

p2j

 1
2 ∫ T

0

πsσsdWs

as a consequence, considering the mean value, we obtain that:

E (log(XT )) =

= log x+ E

∫ T

0

πs (µs − pn+1λn+1σsU
n+1
s

)
− 1

2

n+1∑
j=1

p2j

π2
sσ

2
s

ds
 .

The maximum value is obtained from

πs =
µs − pn+1λn+1σsU

n+1
sn+1∑

j=1

p2j

σ2
s

.



Asymmetric information in a market with n + 1 Brownian motions 53

It is given by:

u(x) = log x+
1

2
E


∫ T

0

(
µs − pn+1λn+1σsU

n+1
s

)2n+1∑
j=1

p2j

σ2
s

ds


from which we deduce the relation looked for. 2

We can rewrite the value function, in the following way:

Theorem 10. Let

u(x) = log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+
p2n+1

n+1∑
j=1

p2j

[
Tλn+1

4
− 1− e−2Tλn+1

8

]
.

Proof. From theorem 9 we obtain that:

u(x) = log x+
1

2

n+1∑
j=1

p2j

E

[∫ T

0

µ2
s

σ2
s

ds

]
− pn+1λn+1

n+1∑
j=1

p2j

E

[∫ T

0

µs
σs
Un+1
s ds

]
+

+
p2n+1λ

2
n+1

2

n+1∑
j=1

p2j

E

[∫ T

0

[
Un+1
s

]2
ds

]
.

Let the functions µs and σs be deterministic, then:

E

[∫ T

0

µ2
s

σ2
s

ds

]
=

∫ T

0

µ2
s

σ2
s

ds.

Moreover it results:

E

[∫ T

0

µs
σs
Un+1
s ds

]
= E

[∫ T

0

(
µs
σs

∫ s

0

e−λn+1(s−u)dBn+1
u

)
ds

]
=

=

∫ T

0

E

(
µs
σs

∫ s

0

e−λn+1(s−u)dBn+1
u

)
ds =

=

∫ T

0

µs
σs
E

(∫ s

0

e−λn+1(s−u)dBn+1
u

)
ds =

∫ T

0

µs
σs

0ds = 0

and
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E

[∫ T

0

[
Un+1
s

]2
ds

]
=

∫ T

0

E

[[∫ s

0

e−λn+1(s−u)dBn+1
u

]2]
ds =

=

∫ T

0

[∫ s

0

e−2λn+1(s−u)du

]
ds =

T

2λn+1
− 1− e−2λn+1T

4λ2n+1

.

In this way we get the thesis. 2

3.2 The value function for the partially informed agents

Similarly, the partially informed agents consider the investment shares provided
through processes Kt admissible: they are predictable with respect to the fil-
tration

(
F0
t

)
t∈[0,+∞[

, integrable with respect to the process St and such that

Xt > 0 almost certainly and ∀t ∈ [0, T ]. If V is their utility function, then the
agents maximize their expected utility of wealth at time T . Therefore it solves
the following problem:

max

{
E

(
V

(
x+

∫ T

0

KtdSt

))
: Kt admissible

}
.

Also in this case the agents consider the process κt defined by:

Kt = κt
Xt

St
.

Therefore we have:

Xt = x+

∫ t

0

κs
Xs

Ss
dSs

from which we obtain
dXt

Xt
= κt

dSt
St

and if

νt = −λn+1

∫ t

0

[1 + η(u)] e−λn+1(t−u)dB0
u

we have:

dXt

Xt
= κt

µt +

n+1∑
j=1

p2j

 1
2

νtσt

 dt+ κtσt

n+1∑
j=1

p2j

 1
2

dB0
t .

The wealth at time t, if x > 0 is the initial one, is therefore given by

Xt = xe

∫ t

0

κs
µs +

n+1∑
j=1

p2j

 1
2

νsσs

− 1

2
κ2sσ

2
s

n+1∑
j=1

p2j


ds
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e

∫ t

0

κsσs

n+1∑
j=1

p2j

 1
2

dB0
s

and, as a consequence, at final time T , is given by:

XT = xe

∫ T

0

κs
µs +

n+1∑
j=1

p2j

 1
2

νsσs

− 1

2
κ2sσ

2
s

n+1∑
j=1

p2j


ds

e

∫ T

0

κsσs

n+1∑
j=1

p2j

 1
2

dB0
s

Considering the logarithmic utility function, we have the following result:

Theorem 11. Let V(y) = log y. The process

κs =

µs +

n+1∑
j=1

p2j

 1
2

νsσsn+1∑
j=1

p2j

σ2
s

where

νs = −λn+1

∫ s

0

[1 + η(u)] e−λn+1(s−u)dB0
u

provides the optimal investment share. The value function is given by:

v(x) = log x+
1

2

n+1∑
j=1

p2j

E
∫ T

0

1

σ2
s

µs +

n+1∑
j=1

p2j

 1
2

νsσs


2

ds

 .

Proof. ∀ κs admissible, it results

V(XT ) = log(XT ) =

= log x+

∫ T

0

κs
µs +

n+1∑
j=1

p2j

 1
2

νsσs

− 1

2

n+1∑
j=1

p2j

κ2sσ
2
s

ds+

+

n+1∑
j=1

p2j

 1
2 ∫ T

0

πsσsdWs
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as a consequence, considering the mean value, we obtain that:

E (log (XT )) =

= log x+ E

∫ T

0

κs
µs +

n+1∑
j=1

p2j

 1
2

νsσs

− 1

2

n+1∑
j=1

p2j

κ2sσ
2
s

ds
 .

The maximum value is obtained from

κs =

µs +

n+1∑
j=1

p2j

 1
2

νsσsn+1∑
j=1

p2j

σ2
s

It is given by:

v(x) = log x+
1

2
E


∫ T

0

µs +

n+1∑
j=1

p2j

 1
2

νsσs


2

n+1∑
j=1

p2j

σ2
s

ds


from which, we obtain the relation looked for. 2

We can rewrite the value function, in the following way:

Theorem 12. Let

v(x) = log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+
λ2n+1

2

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds.

Proof. From theorem 11 we have:

v(x) = log x+
1

2

n+1∑
j=1

p2j

E
∫ T

0

1

σ2
s

µs +

n+1∑
j=1

p2j

 1
2

νsσs


2

ds

 =
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= log x+
1

2

n+1∑
j=1

p2j

E

[∫ T

0

µ2
s

σ2
s

ds

]
+

1n+1∑
j=1

p2j

 1
2

E

[∫ T

0

µs
σs
νsds

]
+

1

2
E

[∫ T

0

ν2sds

]
=

= log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+
1n+1∑

j=1

p2j

 1
2

∫ T

0

µs
σs
E [νs] ds+

1

2
E

[∫ T

0

ν2sds

]
=

= log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+
1n+1∑

j=1

p2j

 1
2

∫ T

0

µs
σs
E [νs] ds+

1

2
E

[∫ T

0

ν2sds

]
.

Besides it results that:

E [νs] = E

[
−λn+1

∫ s

0

[1 + η(u)] e−λn+1(s−u)dB0
u

]
= 0.

Finally we have:

E

[∫ T

0

ν2sds

]
=

∫ T

0

E
[
ν2s
]
ds =

=

∫ T

0

E

[(
−λn+1

∫ s

0

[1 + η(u)] e−λn+1(s−u)dB0
u

)2
]
ds =

= λ2n+1

∫ T

0

[∫ s

0

[1 + η(u)]
2
e−2λn+1(s−u)du

]
ds.

From the results obtained we get the thesis. 2

In order to compare the two value functions so far obtained, we consider the
following theorem:

Theorem 13. Let

lim
T→+∞

1

T

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds =

(1−A)
2

2λn+1

where

A =

n+1∑
j=1

p2j

− 1
2
 n∑
j=1

p2j

 1
2

.
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Proof. First, we verify that

lim
T→+∞

∫ T

0

[1 + η (u)]
2
e−2λn+1(T−u)du =

(1−A)
2

2λn+1

and substituting v = T − u, we obtain:∫ T

0

[1 + η (T − v)]
2
e−2λn+1(v)dv.

Besides, if we denote the indicator function of the interval [0, T ] with I[0,T ], we
can write

lim
T→+∞

∫ +∞

0

[1 + η (T − v)]
2
e−2λn+1(v)I[0,T ] (v) dv.

Now, note that, since the lim
T→+∞

η (T − v) = −A, then the integrand function

tends punctually to the function v ∈ [0,+∞[7→ (1−A)
2
e−2λn+1v. Moreover the

integrand function is:

0 ≤ [1 + η (T − v)]
2
e−2λn+1(v)I[0,T ] (v) dv ≤ (1 +A) e−2λn+1v ∀ v ∈ [0,+∞[

and the decrease and increase functions are integrable on [0,+∞[.
The Lebesgue dominated convergence theorem allows that

lim
T→+∞

∫ +∞

0

[1 + η (T − v)]
2
e−2λn+1(v)I[0,T ] (v) dv =

∫ +∞

0

(1−A)
2
e−2λn+1vdv.

Integrating the second term, we obtain that

lim
T→+∞

∫ T

0

[1 + η (u)]
2
e−2λn+1(T−u)du =

(1−A)
2

2λn+1

and with the standard results it results:

lim
T→+∞

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds = +∞.

Applying De L’Hopital’s rule, we obtain the thesis. 2

3.3 A comparison between the two value functions

In the previous sections, we have determined the value functions for the two
type of agents: u(x) for the informed one, v(x) for the partially informed one. In
this section, we want to focus on the divergence, when T → +∞,the two utility
functions. Besides, when T → +∞, the difference between the expected utility
of two agents, u(x) and v(x), diverges.

We can enunciate the following result:

Theorem 14. Consider the following properties:
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1.
lim

T→+∞
u(x) =

= lim
T→+∞

log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+ +
p2n+1

n+1∑
j=1

p2j

[
2Tλn+1 − 1 + e−2Tλn+1

8

]
 =

= +∞.

2.
lim

T→+∞
v(x) =

lim
T→+∞

log x+
1

2

n+1∑
j=1

p2j

∫ T

0

µ2
s

σ2
s

ds+
λ2n+1

2

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds


= +∞

3.

lim
T→+∞

u(x)− v(x)

T
=

=
λn+1

2

 n∑
j=1

p2j

 1
2
n+1∑
j=1

p2j

−1

n+1∑
j=1

p2j

 1
2

−

 n∑
j=1

p2j

 1
2


as a consequence we have:

lim
T→+∞

[u(x)− v(x)] = +∞.

Proof. The first two properties can be easily verified. About property 3, we note
that

u(x)− v(x) =

=
p2n+1

n+1∑
j=1

p2j

[
2Tλn+1 − 1 + e−2Tλn+1

8

]
+

−
λ2n+1

2

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds

and therefore
u(x)− v(x)

T
=
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=
p2n+1

n+1∑
j=1

p2j

[
2Tλn+1 − 1 + e−2Tλn+1

8T

]
+

−
λ2n+1

2T

∫ T

0

[∫ s

0

[1 + η (u)]
2
e−2λn+1(s−u)du

]
ds =

=
λn+1

4


p2n+1

n+1∑
j=1

p2j

−


1−

 n∑
j=1

p2j

 1
2

n+1∑
j=1

p2j

 1
2



2
=

=
λn+1

4


p2n+1

n+1∑
j=1

p2j

− 1 + 2

 n∑
j=1

p2j

 1
2

n+1∑
j=1

p2j

 1
2

−

n∑
j=1

p2j

n+1∑
j=1

p2j


=

=
λn+1

4

p2n+1 −
n+1∑
j=1

p2j + 2

 n∑
j=1

p2j

 1
2
n+1∑
j=1

p2j

 1
2

−
n∑
j=1

p2j

n+1∑
j=1

p2j

=

=
λn+1

2

 n∑
j=1

p2j

 1
2
n+1∑
j=1

p2j

 1
2

−
n∑
j=1

p2j

n+1∑
j=1

p2j

=

=
λn+1

2

 n∑
j=1

p2j

 1
2

n+1∑
j=1

p2j


n+1∑
j=1

p2j

 1
2

−

 n∑
j=1

p2j

 1
2


which, simplified, provides the thesis. 2
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