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Abstract. This paper covers asymmetric information in financial mar-
kets from a micro perspective. Particularly, we aim to extend the as-
set pricing framework introduced by Guasoni [2], which models price
dynamics with both a martingale component, described by permanent
shocks, and a stationary component, given by temporary shocks. First,
we derive a generalization of this asset pricing model using n Brown-
ian Motions, including an Ornstein-Uhlenbeck process as the (n + 1)th
element. We find non-Markovian dynamics for the partially informed
agents, which questions the validity of the efficient market hypothesis.
Moreover, we compare the positions of informed and partially informed
agents. Thereby, the filtration for informed agents is larger and initially
specified, whereas the filtration for partially informed agents is smaller
and obtained from the Hitsuda representation [3]. Our study examines
the logarithmic utility maximization problem.
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1 Introduction: the model

We consider a financial market with one riskless asset D and one risky asset S.
The market interest rate is considered deterministic. In order to describe the
dynamics of the risky asset, we consider a probability space ({2, F,P) on which

are defined n 4 1, with n € N, independent Brownian Motions:

(Btl)te[o,+00[ ) (Btz)te[o,_i_oo[ 3y (B?)te[o,-i-oo[ ) (Bzﬂ_l)te[o,-i-oo[ :
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If we set the real parameter A\,11 > 0, we consider the Ornstein-Uhlenbeck

process (Utn+1)te[0,+oo) defined by the following equation

t
Uptt 4+ An+1/ Urtlds = B, t €0, +oof
0

which, as known, is given by:

t
0

Then, if we set the real numbers p;, with j =1,2,...,n,n+1, pp41 > 0, and
the first n numbers not all zero, let us consider the process (Y7) ) defined
by:

te[0,4+o00

n
Yo=Y p;B] +pupnUPT
j=1

Now, let us introduce two deterministic Lebesgue measurable functions
0 2 [0, +oo[ — [0, +00[

such that
VT>0 pelLl'(0,T]), ocL*([0,T)]).

The price dynamics of S of the risky asset evolve according to:

ds
2L udt + 0 dY,
S,

and its solution is

t 0,2 t
/ (,us - 6>d5 +/ osdY
S, = Spe’o 2 0 .

Now we can describe the previous situation in the following way: we have ”in-
formed agents” who have all the information provided from the Brownian Mo-
tions, and a ”partially informed agents” who have all the information provided
from the process Y;. The informed agents refer to the filtration (F}) +€[0,4-00]
obtained by completing the natural filtration generated by n + 1 Brownian Mo-
tions B}, B2, ..., B, Bt"'H, which therefore satisfies the usual conditions of com-
pleteness and right continuity. The partially informed agents, instead, refer to

the filtration (ff)t€[0_+oo[ generated by the process Y;. Of course, we have that

FP C F}, Vt. Wemight state that the informed agents’ risky asset value evolves
according to the assigned Brownian Motions; therefore its value is determined

as:
n+1

= (e — Prnp1 Anp10: U dt + oy ijdBf

j=1

s,
St
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which refers to the Brownian Motion

_1
n+1 2 n+1

Wi = pr ijBtj 1)
j=1 j=1

The solution of S, if Sy > 0 is the initial wealth, is given, as known, by:
1
n+1 n+1 2 t

t t
) 1
/ (s = Prt1AniaosUTT) = 5 > 3| o2 lds+ | p /odes
Spe i=1 i=1 0

In the next section, we want to derive, for the partially informed agents, an
analogous equation which represents Y;, and therefore S, in terms of filtration
FO and of an opportune Brownian Motion BP.

2 Decomposition of the Process Y; with respect to F°

In this section, we shall examine the Markov property of Y; and will determine,
with respect to the filtration F9, the relative Brownian Motion which represents
it.

Theorem 1. Let Y; be a Gaussian process, and moreover:

1. E(Y;)=0 Vtel0,4o0]

n

“Ang1lt=sl o =Anga(t+s)

2. I'(s,t) :=cov (Ys, Y2) = E p? tAS+ PR Zrw— = .
i=1

Proof. 1. Gaussian and mean zero properties are obvious.
2.
I(s,t) = cov (Y, Y;) = E(Y,Y,) =

n n
=E ijBg +pn+1U:+1 ijBg + P UP T =
j=1 j=1

applying the Brownian Motion’s independence property, we get:

=E Zp?Bng +E (pp U0 =
j=1

n s t
=S (BBl ([ et anyt [eretapy ) -
j=1 0 0

" sAt
— ZP? sSAt+ piJrl / e—kn+1(t—u)—)\n+1(3_u)du _
Jj=1 0
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2)\"+1 (S/\t) _ 1

n
— 2 2 —Ant1(t+s) € —
= E ]l sAt+ e "t =
p] pn+1 2)\n+1

5 5 e*>\n+1|t75| _ e*)\n+1(t+s)
= p; | sAt+Dp,.4 o
I et 2)\n+1

To verify the Markov property of the process Y;, we recall the following result
[4] (I11.1.13)

Theorem 2. Let Y; be a Markov process if, and only if:
I'(s,t)I'(t,u) =I'(t,t)I'(s,u), Vs<t<u. (2)

Theorem 3. 1. Let \,+1 =0, then Y; is a Markov process.
2. Let \py1 > 0 then Yy is a Markov process if, and only if: p; = 0 Vj =
1,2,...,mn or ppy1 =0.

Proof. Property 1 is obvious. Besides it is obvious that Y; is a Markov process if

n
p; =0 Vj=12,..,norif p,y1 = 0. We suppose that Zp? > 0 and consider

j=1
(2).
Considering
uginoo I'(s,t)[(t,u)
and
ugrfmf(t, t)(s,u)
we get:
) e~ Ant1(t=s) _ o= Anti1(t+s) , 11— e~ 2Ant1t
t =3 _
anrl 2An+1 pn+1 ZAn+1
which can be written also as follows
Ant18 _ ,—Ant18 Ang1t _ o= Angat
e e e e
pi+1 - =0, Vs<t

S t

and considering the limit for ¢ — 400, we get the thesis: p,+1 = 0. O

Now let us consider the process Z; defined by:

1
2

|
Nl

n+1

7= |25
j=1

n+1

n t
S (B A [ Blau) + (X02) gt
0 ;
Jj=1

j=1

It verifies the following result:
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Theorem 4. 1. Let Z; be a Gaussian process.
Q.IE(ZQIZO Vt€[0;+ooL
3. cov(Zy, Zs) =t N s+

n+1

n t s
Zp? Zp? / / (Ans1 + A2 uAv) dudy
j=1 j=1 0 Jo

Proof. We note that the Z; process can be rewritten in the form:

Nl

1
2

n+1 n+1
a=(502) S (ot [[a-man)+(S) pmr -
j=1 j=1
_1 _1
n+1 2 n+1 2

=Y » ij/ (14 Xnp1 (t —w)]dBJ + Zp] pns1 BT
j=1 j=1 0

Therefore the covariance, because of the independence of the Brownian Motions,
is given by:

—1
n+1

n tAs
cov (Zy, Z ij Zp? / 1+ A1 (= w)][14 At (s — w)] dut
— 0

n+1
+ pr pi+1tAs

with standard calculations, we obtain the thesis. O

Now let us consider the following function:

-1
n+1

ZP? ZP? (A1 + A0 it As) 3)
=1 =1

which is part of the covariance of the process Z;. For our further aims, if
0 < s <t, then we can rewrite the (3):

-1
n+1

Zp? Zp? (Ang1+ A2 4s) VO<s<t (4)

-1
n+1

To simplify, if A2 = Z p? Zp? , we can consider the following

result:
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Theorem 5. The function
Ant1n(s)  for0<s<t
g(t,s) = ()

0 otherwise

verifies the following integral equation
Ft)=gtts) - [ Gt0gemd Yo<s<t (6)
0

and 1 (s) verifies the following Cauchy problem

{77’ (5) = Ang1 (n%(s) — 4?)
n(0) = —A2.

Proof. 1t is easy to verify this, considering the following integral equation:
— A% (g1 + A2 418) = Ansan (s) — /\i_H/O n”?(u)du V0<s<t

from which we easily obtain the Cauchy problem. Its solution, as already verified,
is given by the function:

_ _ 2A>\-,L+1‘S‘
n(s):Al A-(1+A4)e o
T— A+ (1 + A) 2Axuris

Now we are able to enunciate the following theorem:

Theorem 6. Let g(t,s) be the negative resolvent of g (t,s) defined by

—Angn(s)e’ Sty for0<s<t
g (t7 8) =

0 otherwise

then the process
t s
BY =7, —/ </ g (s,u) dZu> ds (7)
0 0

is a Brownian Motion with respect to the filtration (]—'to)
Also we have that

t s t s
Zt:B?f/O </0 g(s,u)dB8>dst)\n+1/o </0 n(u)dBS)ds.

Proof. From Proposition 2 in [3], it follows the existence of the Brownian Motion
BY. O

te[0,+o0["
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Theorem 7. Let the processes Y; and Z; verify the following equation:
1
n+1 2

t
Yt+)\n+1/ Yydu = Zp? Zy
0 —
Jj=1

so we have .
n+1 2

t
S DI B A ®
=1 0

Proof. Since:

Nl=

n+1
Y= D>_n| 2=
j=1

n n t
- ijBg + pu U — ij (Bg + /\n+1/ Bidu) — a1 B =
=1 0

j=1

t

t n
= *)\n—&-l\/ ZPJB{L +pn+1U3+1 du = *An—'rl/ Yudu
0

j=1 0

then by integration we easily obtain (8). O

Now it is possible to establish the link between the process Y; and the Brow-
nian Motion BY. Namely, we have the following (fundamental) result:

Theorem 8. LetY; = Y p;Bl +pn1 Ul and (F7)
j=1

natural filtration of Y;. Let BY be the Brownian Motion with respect to the fil-

tration (]_-to) . Besides, we have the following results:

+€ (0,400 be the completed

t€[0,4o00]
1.
wa1 \ 2 e s i /Sn(l)dl
B = | Sr ) Ve [ [ emie Ty as
= 0 0
2. 1
n+1 2 t
o= [ a] [ [ e nw) - nw)] s
j=1 0
3.
1
n+1 2

Y, = ;p? [BP A /Ot {e’\"“ (t—u) (Bg + /Ou n(u)ngﬂ du] .
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Nl

n+1

t s
v (30t) [ aws [ et mamt) .
j=1 0 0

Proof. 1. Substituting

|
ol

n+1

t
7 = Z p? [Yt + Ans1 / Yudu}
j=1 0

in (7)
n+1 _% t s s
BY = Zp? {Yt —|—/ ()\n+1Y3 —/ g(s,u)dY, —/ g(s,u)Yudu> ds} .
= 0 0 0
(9)
Integrating by parts
/( g(s,u)Y,du
0
u
and if we suppose G(s,u) = / g(s,v)dv, it is easy to have:
0
/ g(s,u)Yyudu = Ap1Ys —/ G(s,u)dY, (10)
0 0

To obtain the result 1, we substitute (10) in (9).
2. In

1

n+1 t
j=1 0

we substitute Z, with

S u
ZS:BS—)\TLH/O (/0 n(Z)dB?)du

so that we obtain

n+1 2

t t s
vim () [ e nant s [ ([ e renan)as
= 0 0 0
(11)
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which, applying Fubini Tonelli theorem, can be written as:

Nl

n+1 t t t
Y; = Zp? [/ 67)\"+1(t78)dB2 — )‘n+1/ (/ n(u)e)‘"“(ts)ds) ng]
j=1 0 0 u

which, simplified, gives the result 2.

3. Integrating by parts the first integral of (11)
we obtain:

t t
/ ef)‘"“(t*S)ng = B? — )\"+1/ 67)\"+1(t78)B2d5.
0 0

Substituting and simplifying we get the result 3.
1

n+1 T2

4. Substituting W, = Zp? Y; in result 1, we obtain that
j=1

t s s
B =W, + Anﬂ/ (/ 1+ p(u)] e+ Lo ”“)dlqu) ds
0 0

which, written in standard form

t s s
B =W, — / (/ ~Anp1 [1+n(w)] e L. n(l)dlqu> ds
o \Jo

identifies the following Volterra Kernel
g1 [14n(s)] et St for0<s<t
k(t,s) =

0 otherwise.

Utilizing the relation 2, we also identify the negative resolvent k(t, s)

—k(t, s)efs Rluwdu g0 <s<t

k(t,s) =
0 otherwise

from which, by substitution, we obtain:

) Mg [L+n(s)] e Ant1t=9) se 0 < s <t

k(t,s) =
0 otherwise.

t s
W, =B — / (/ l%(s,u)ng) ds
0 0

from which, we deduce result 4. O

As a consequence
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Using result 4, the asset price dynamics for the partially informed agents,
can be written as:

Nl

d n+1 t
% = mdt+o, | Y p] {dBE — Ant1 ( / [T+ n(u)] eAnH(tu)ng) dt}
t - 0
j=1

which can be rewritten as:

ds o\ t
f= = (05| (o / [1+n(w)] e 1 =dBy ) | di+
Sy = 0

n+1 2

+o¢ Zp? dB?
j=1

Conversely, for the informed agents, the asset price dynamics can be written
as:

ds n+1 ‘
< = (= Payidnsro Uy ) dt 0y Y pjd B
t .
=1

which refers to the Brownian Motion (1).

3 The value functions for two agents

As already said in the previous section, the informed agents consider the un-
derlying value starting from an initial wealth = > 0, and investing H; units of
S;. They obtain the self-financed value of wealth X;, at time ¢, through all the
assigned Brownian Motion. Conversely the partially informed agents, invest the
same monetary item 2 > 0, and they utilize the Brownian Motion BY in order to
assess the dynamics of the wealth obtained. In this section, we want to examine
these two situations, and we also want to evaluate the utility functions the two
type of agents use.

3.1 The value function for the informed agents

Let > 0 be the initial monetary item that the partially informed agents invest
in asset S;. To do this, they utilize an opportune stochastic process H; which,
at time ¢, represents the asset shares used. The value (self-financed) of wealth
Xi, at time t, is given by:

t
Xt :Jf+/ Hédsé
0
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As already said, the process Hy, which will be said admissible, must be pre-
dictable with respect to filtration (]—"tl) +€[0, 400’ integrable with respect to process
Sy and such that almost certainly we also have X; > 0, V¢ € [0,T].

Finally, if U/ is the utility function, the agents maximize the mean utility
of the wealth obtained in the final instant 7. Thereby it solves the following

problem:
T
sup {E (Z/{ <JU—|- th5t>> . H; admissible }
0

In order to guarantee the positivity of the wealth produced at every instant
t, we can consider the process 7; defined by H; = ﬂt)é—tf.
Therefore we obtain:

t
Xs
X, = :n—i-/ Ts——dS;
O S

S

it allows
dX; dS;
i
X 'S
and )
dX; . nt .
X, e (1t — Prg1 10 UPHY) dt + meoy ijdBi-

Jj=1

If we isolate the Brownian Motion (1):

dX n+1 2
2t = Tt (,Ut — pn+1)\n+10'tUtn+1) dt + E p? ﬂtgtth-
Jj=1

Therefore the value of wealth X;, at time ¢, is given by:

t 1 n+1
/ T (,Ufs* 7pn+1)\n+1o'sU,;n+1) - 5 Zp? 7T30'§ dS
X, =xe =1
t = xe

n+1 % t
lz p?] / Ts0sdW
0
e

j=1
and, as a consequence, X; at final instant T, is given by:

T 1 n+1
/ Ts (MS - pn+1)\n+lasU;L+1) - 5 pr 77505 ds
0 j=1
X1 ==zxe
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1
n+1 2 T
[Z pf—} / oo dW,
eli=1 0 )

Now, considering the logarithmic utility function, we have the following re-
sult:

Theorem 9. Let U(y) = logy. The process

1
Hs — pn—&-l)\n—&—IUSU:_‘—
n+1

2| o
ij 95
j=1

provides the optimal investment share and the value function is given by:

Ts =

1 r - Anpr0s U1
u(x) =logz + ————F / (:uS Pn41 n2+1 sUg ) ds
n+1 0 O-S
2| 28
j=1

Proof. ¥V ws admissible, it results

U(XT) = 10g(XT) =

n+1
E p? 202 | ds+
=1

|~

T
=logz + / s (,LLS - pn+l)‘n+lgsUg+1) -
0

1
n+1 2

T
+ (>0 / oo dW,
j=1 0
as a consequence, considering the mean value, we obtain that:
E (log(X7)) =
T 1 n+1
=logx +FE / s (1s — Pry1Ang10sU0 ) — 5 Zp? n20? | ds
0 —
Jj=1
The maximum value is obtained from

1
Hs — pn—i—l)\n-s—lo'sU:L+
n+1 )

2| o
ij 0%
j=1

Tsg =
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It is given by:

1\ 2
s pn-l—lAn-i-lo-sUsn—i_ ) d
n+1

2 2
ij e
j=1

from which we deduce the relation looked for. O

S

1 T
u(z) =logx + =F / (i
2 0

We can rewrite the value function, in the following way:

Theorem 10. Let

1 T Paiy [TAnsr  1—e 2T
u(z) = logx + ] /0 ;der n:1+1 { 4+ _ < .

2> ¥ 2P
j=1 j=1
Proof. From theorem 9 we obtain that:

T
/ M?dsl _ Periduii g
0

n+1 E 2 +1
2
ij
j=1
n+1

2 s
2 Z D;
j=1
T 2
/ (U] ds| .
0
2> v
j=1
Let the functions us and o be deterministic, then:

T 2 T 2
/ M—;ds = / M—;ds.
0o Os 0o Os

T s
/ <NJS/ e)‘7z+1(su)dBZ+1) ds| =
0o \%sJo

T S
:/ E(/is/ e_xnﬂ(s—u)dBZH) ds =
0 O0s.Jo
T s r
- [ e (/ e—An+1<s—u>ng+1> ds= [ Beods —o
0 Os 0 0 s

+

T
u(z) = logz + / &U:“ds
0

Os

+P721+1>\721+1 E

E

Moreover it results:

=B

and
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T 9 T s 2
/ [U;”rl} ds| = / E {/ 6)‘"“(5“)ng+1} ds =
0 0 0

T s —2Xn1 T
— / |:/ 62)\n+1(5u)du:| dS = T — 1 ¢ 5 i .
0 0 2An+1 4ATL+1

In this way we get the thesis. O

E

3.2 The value function for the partially informed agents

Similarly, the partially informed agents consider the investment shares provided
through processes K; admissible: they are predictable with respect to the fil-
tration (]:to)tG[O,Jroo[’ integrable with respect to the process S; and such that
X > 0 almost certainly and V¢ € [0,T]. If V is their utility function, then the
agents maximize their expected utility of wealth at time T'. Therefore it solves
the following problem:

T
max{E <V <x+/ th5t>> . K; admissible }
0

Also in this case the agents consider the process k; defined by:

Xy
K = ki—.
t Rt S,
Therefore we have:
t Xs
X, =x+ A liss—sts
from which we obtain
dX; dS;
kel A,
X, 'S
and if .
v = _/\n+1/ [1 + n(u)] ef)\n-%—l(tfu)ng
0
we have:
1 1
dX n+1 2 n+1 2
Tt = K¢ | Ut + Zp? ViO¢ dt + Koy Zp? dBtO
t , ’
j=1 j=1

The wealth at time ¢, if > 0 is the initial one, is therefore given by

1
t n+1 2 1 n+1
2 2 2 2
/ Ks | s + g P; VsOs | = 5h0, E D; ds
0 j=1 j=1

X =xe
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1
2

t n+1
2 0
/ KsOg g D; dB,
0 —
e =1

and, as a consequence, at final time 7', is given by:

1
T n+1 2 1 n+1
2 2 2 2
/ Rs [ Hs + ij VsOs | — §Hsas ij dS
0 j=1 j=1
X1t ==ze

T n+1

2 0

/ KsOg ij dBy
0 =

e

Considering the logarithmic utility function, we have the following result:

Theorem 11. Let V(y) = logy. The process

1
n+1 2

s + ZP? VsOs
i=1

n+1

E 2 2
pj 05
j=1

Rg =

where

Ve = —Ani1 / [1 4 n(u)] e A+~ qBY
0

provides the optimal investment share. The value function is given by:

1 2

T 1 n+1 2

1
v(z) =loge + —— —F / s + E p? veos | ds
n+1 0 -
Jj=1

2>
j=1

Proof. V ks admissible, it results

o2
O-S

V(Xr) = log(Xr) =

1
n+1 2 n+1

T
1
_ 2 2| .2 2
_logx+A Ks | ps + jgzlpj VsOs | =5 jElej K505 | ds+

1
n+1 2

T
+ > 0] / 05 dW,
j=1 0

55
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as a consequence, considering the mean value, we obtain that:

E (log (X)) =

T n+1 2 1 n+1
=logx+ FE / ks | ps + Zp? vsos | — 3 Zp? KJ?O’? ds
0 . -
j=1 Jj=1

The maximum value is obtained from

n+1
/’I’S+ ij VSUS
j=1
Kg =
n+1
> v} o
j=1
It is given by:
_ i 9 -
n+1 2
pst | P3| veos
1 T =1
v(z) =logx + -F ds
( ) & + 2 /0 n+1
A K
j=1

from which, we obtain the relation looked for. O

We can rewrite the value function, in the following way:

Theorem 12. Let

v(x) =logx+ i

2y »;
=1

Proof. From theorem 11 we have:

T /J2 )\2 T s
/ s 454 21t / { / 1+ 5 (u)]2 e~ 2o =) gy | ds.
0 s 0 0

(NI

1 T jlasy
_ 2 _
U(.Z‘) = IOgﬂi + TE A 0? Ms + ;pj VsOs ds| =

2> »
j=1
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1 T 2 1 T o
= log z+ E / Hs gs +———F / M—Vsds
ntl 0 0—3 n+1 2 0o Os

P20 >

=1

1 T2 1 T, 1
=logx + e / u—;ds—l—i/ M—E[us]ds—i—iE
0 0

g

9 p2 S n+1

Nl

1 T2 1 T 1
=logx + p— / M—;ds—&-i/ &E[Vs]dS-i-iE
0 0

05

2 3 (S

N|=

Besides it results that:

El|=FE {—Anﬂ /O [14 n(u)] e’\"“(su)ng} —0.

T T
/ Vfds = / E [1/3] ds =
0 0

<—>\n+1/ [1+n(w)] 6_/\"“(8_1”ng>
0

Finally we have:

E

2
ds =

T
0
T s
=\ / {/ [1+n(u)]? 62’\”“(5“)114 ds.
o LJo

From the results obtained we get the thesis. O

In order to compare the two value functions so far obtained, we consider the
following theorem:

Theorem 13. Let

T s o 2
lim / { / [1 +77(U)}262A"“(8“)du} ds = LA
0 0

where

1
2

[MES

n+1

n
Sl D DM
j=1

Jj=1
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Proof. First, we verify that

T 2
. 2 —22ng1(T—u) 7, _ (1-4)
TLIIEOO 0 [L+m ()] du 2 41

and substituting v = T — u, we obtain:
T
/ (147 (T — )] e A1)y,
0

Besides, if we denote the indicator function of the interval [0, T with I 1), we

can write
—+oo

. 2 _—2xpq1(v
TEIEOO ; [1+0(T = v)" e 1O g 1y (v) do.

Now, note that, since the (T —v) = —A, then the integrand function

lim g
T—+oo
tends punctually to the function v € [0, +00[— (1 — A)® e~2A»+17 Moreover the
integrand function is:

0<[L+n(T—v) e 7y (v)do < (1+ A) e 221 Vg € [0, +o0
and the decrease and increase functions are integrable on [0, +o0].
The Lebesgue dominated convergence theorem allows that
+oo

+oo
Tlim [14n(T —v))? 672’\"“(”)1[01} (v)dv = / (1— AP e Py,
—++00 Jo 0

Integrating the second term, we obtain that

T 2
- 2 od(Tow) (L= A)
N e

and with the standard results it results:

T s
lim [/ [1+ 7 w)]? e 216wy | ds = +o0.
T—+o00 Jg 0

Applying De L'Hopital’s rule, we obtain the thesis. O

3.3 A comparison between the two value functions

In the previous sections, we have determined the value functions for the two
type of agents: u(x) for the informed one, v(x) for the partially informed one. In
this section, we want to focus on the divergence, when T — 4oc0,the two utility
functions. Besides, when T — +o00, the difference between the expected utility
of two agents, u(z) and v(zx), diverges.

We can enunciate the following result:

Theorem 14. Consider the following properties:
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1.
li =
T2 2 —2TA
= i & pn+1 2TAn+1 —1 + e n4+1 B
_T1—1>r£00 log = + s 2/0 agd8+ +oa 2 [ < _
2 ij ij
Jj=1 i=1
= +o0.
2.
1. =
T—ILIrloov(x)
1 ! : >\2 g ° s — 19
lim | logx + &ds 4+ [ndl 147 (u)]z e~ n1(5=0) gy, | ds
T—+o0 n+1 , Jo O,g 2 o )
Qij
j=1
=+00
3.
. u(z) —v(z)
1 B e
T—1>I—Eoo T
3 —1 1 1
A 41 n 2 n+1 n+1 2 n 3
_n 2 2 9 9
Sl 0301 I D BRI W2 IR DO
=t J=t j=1 j=1

as a consequence we have:

i [u(z) — o)) = +oc.

Proof. The first two properties can be easily verified. About property 3, we note
that

C PA [2TMg — 1 e 2T
T ontl 3 +

>0
j=1

22 T s
_77;1/ U [1+n(u)]2e”"+1<5">du}ds
0 0

u(z) — v(z)
T

and therefore
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_ Phyr [2T A1 — 14 e 2T
T on+l 8T +

>
j=1

)\2 T s
- ”“/ U [1+77(U)]ze_Q’\”“(s_")du}ds:
o LJo

2T
_ 142
n 2
>.7;
_ /\n-i-l p121+1 _ 1= J=1 _
== | » 1 =
> v -2
—" ij
Jj=1 =
1
n 2 n
2 2
) pr > v
_M %7‘*‘1_14_2 =1 _J=t _
- 4 n+1 ntl % n+1 -
2 2
D; 2 pj
jz:; ’ ij) ; !
j=1
1 1
n+1 n 2 n+1 2 n
2 2 2 2 2
Ph— ) p+2( D p Y.r| —>p
_ Ant1 j=1 j=1 j=1 =1
- n+1 -
4 S
p;
j=1
1 1
n 2 n+1 2 n
2 2 2
dom | |2 —>w
_ Ant1 \u=1 j=1 j=1 .
- 2 n+1 -
>.n;
j=1

[N

n
2
, 1 1
Zp'] n+1 2 n 2
_ A \i=2 Z 2| Z 2
- 2 n+1 pj pj
2 j=1 j=1
ij
j=1

which, simplified, provides the thesis. O
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