
Modelling share prices via the random walk
on the lamplighter group

Rukiye Samci Karadeniz1 and Sergey Utev2

1 Department of Mathematics, University of Leicester,
University Road, Leicester, LE1 7RH, UK

rs408@le.ac.uk
2 Department of Mathematics, University of Leicester,

University Road, Leicester, LE1 7RH, UK
su35@leicester.ac.uk

Abstract. This research is a continuation of the study in [9]. It is based
on the analysis of arbitrarily selected share prices with the relatively
small data size (around 250 closing prices for each group). Specifically,
we model data as a geometric Markov chain with a hidden random walk
on a group. The hidden random walk is constructed on the lamplighter
group Z3 and on the tensor product of groups Z2 ⊗ Z2. The lamplighter
group has a specific structure where the hidden information is actually
explicit. We assume that the positions of the lamplighters are known,
but we do not know the status of the lamps. It is referred to as a hidden
random walk on the lamplighter group. The biased random walk (as
introduced [8]) is constructed to fit the data. The missing data algorithms
and Monte Carlo simulation are used to find the best fit for smallest
trace norm difference of the transition matrices for tensor product of
the original transition matrices from the appropriately split data. The
fit is relatively good. Moreover, for the randomly chosen data sets, the
α-biased random walk on the tensor product of the lamplighter group
and α−λ-biased random walk provide significantly better fit to the data.
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1 Introduction

Motivated by the nature of share prices, we discuss several procedures to model
risky assets via the random walk on the lamplighter group (or its tensor prod-
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ucts). Random walks on the wreath products (which is a specialized product
of two groups based on a semi-direct product) are known in the literature as
lamplighter random walks because of the intuitive interpretation of such walks
in terms of the configuration of lamps (as defined in [12]). Specifically, we model
data as a geometric Markov chain with a hidden random walk on group ([5]). The
hidden random walk is constructed on the lamplighter group on Z3 and on the
tensor product of groups Z2⊗Z2. The lamplighter group has a specific structure
where the hidden information is actually explicit. We assume that the positions
of the lamplighters are known, but we do not know the status of the lamps.
We refer to it as a hidden random walk on the lamplighter group. To analyse
the sensitivity of the generators, we choose at least two different generator sets
(choice of an optimal generator is an open question [3]).

We also construct the biased random walks on the tensor product of the
lamplighter group models (as introduced in [8]) to fit the data. Overall, sev-
eral branching walk models are considered. A Monte Carlo simulation is then
applied to find the best fit. The results are then compared with analytic er-
rors computed for the relative distance between two tensor products of random
stochastic matrices.

The missing data algorithms (which are considered in Section 2) and Monte
Carlo simulation are used to find the best fit in the sense of finding the random
walk for which the distance between the original matrix and the corresponding
3× 3 reduced transition matrix is smallest. In this research, as a measure of the
fit of the class of stochastic matrices, we consider the trace norm (

√
tr(A∗A))

between two transition matrices. The fit is relatively good. Moreover, for the
randomly chosen data sets, the α-biased random walk on the tensor product of
the lamplighter group and α−λ-biased random walk provide significantly better
fits to the data.

This research is devoted to treat stock price data as a discrete time Markov
chain perturbed by the Gaussian noise. The data used in this research con-
sists of a share price dataset from ”British Petroleum (London)”, commonly
known as BP. The stock price data were chosen arbitrarily from the internet for
BP’s day-by-day closing share prices for four different financial years, 2009-2010,
2010-2011, 2011-2012, 2012-2013 (April to April). The datasets were obtained
randomly from the website http://uk.finance.yahoo.com.

In Part 1 of Section 2, we first introduce a model as an additive functional of
Markov chains perturbed by the Gaussian noise and then estimate the transition
matrices for the Markov chains via the MLE method. In Part 2 of Section 2,
tensor product splitting data is explained and the missing data algorithms (EM
and C4.5 algorithms) are briefly introduced to treat the missing data. In Section
3, the lamplighter groups and related random walks are introduced. Finally,
case studies are combined in Section 4 and some final remarks are presented in
Section 5.
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2 Initial Modelling and Splitting the Data

Initial modelling . Initially, the data are modelled as an additive functional of
Markov chains perturbed by the Gaussian noise

logSt = log 1 + bt+Σt
i=1(Mi + σηi)

where St is the daily share price process, S1 is the initial value of the share
price, t is the daily unit in a financial year, b is the slope of the share price, Mi is
modelled by Markov Chain, σ is the volatility of the residual, ηi are iid Gaussian
random variables, and i = {1, 2, · · · , t}.

To construct the Markov chain, first we choose three states as “stay (no
jump)”, “small jump”, “big jump”. The three-state Markov Chain is chosen to
avoid overcomplicated calculations whilst still being representative of the data’s
behaviour. This creates the states
(i) Zt < θ1 (“no jump”, 0,Mi = 0);
(ii) θ1 ≤ Zt < θ2 (“small jump”, s,Mi = 1);
(iii) Zt > θ2 (“big jump”, b,Mi = 2).

We choose the same θi for all models for the comparison reasons and in
addition, θi are aimed to maximize the largest embeddable proportion.

Hence the value of the Markov chain is defined on the transformed data for
each data Zt, t = {1, . . . , n} as Mj = Zt, j = {1, 2, 3}. By abuse of notation, the
Markov chain Mi will have states: “no jumps”, “small jump” and “big jump”.

Notice that Mi does not represent the approximate changes in Zi. This sim-
plified labelling is convenient and sufficient in our research.

Tensor product splitting . The term ”tensor product” refers to another way of
constructing a big vector space out of two (or more) smaller vector spaces. Let
A = (aij) and B = (bkm) be the matrices. Then their tensor product is defined
by A⊗B = (aijB), and in the relabelled form (A⊗B)ik,jm = aijbkm..

The tensor product structure arises from splitting the data into “no jump”,
“small jump” and “big jump” groups and matching into the “no small jump-
small jump” and “no big jump-big jump” groups. The tensor product splitting
data is a way to significantly reduce the number of parameters. In addition,
from the financial perspective, the (2× 2)⊗ (2× 2) allows to apply the hedging
argument for each component and to encompass the incomplete data. However,
the side effect of the tensor product modelling is that the construction leads to
a missing data.

To explain it why, we notice that the transformed data Z is an observable data
which might be considered a hidden pair (X,Y ) needed to construct the tensor
product structure. The key point of this structure is Z, which is the maximum of
the pair Z = max (X,Y ) (such as a censored data). Z represents the “no jump”,
“small jump” and “big jump” group which is split into two groups. Therefore,
X represents the “no small jump-small jump” group and Y represents the “no
big jump-big jump” group.
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Let us consider a simple example to clarify the tensor product structure. Let
Z = {s, s, s, 0, b, s, 0, 0, b, s, b, 0, s, 0} be transformed data where 0 is “no jump”,
s is “small jump” and b is “big jump” and, the data is split as follows:

X = {s, s, s, 0, ?, s, 0, 0, ?, s, ?, 0, s, 0} , Y = {0̂, 0̂, 0̂, 0̂, b, 0̂, 0̂, 0̂, b, 0̂, b, 0̂, 0̂, 0̂}

where 0 is “no small jump”, s is “small jump” and 0̂ is “no big jump”, b is
“big jump”. Also “?” represents the missing values. Then, in general Y (“no big
jump-big jump” group) is a complete dataset, however X (“no small jump-small
jump” group) has missing values.

Therefore, this requires us to deal with the missing data. In the literature,
the methods of dealing with the missing data are divided into the following three
categories: (i) Ignoring and Discarding Data, (ii) Parameter Estimation and (iii)
Imputation ([2]). In order to treat the missing values, we apply Expectation-
Maximization algorithm ([4]) as the parameter estimation method and Machine
Learning algorithm (C4.5) ([11]) as the imputation method.

2.1 EM algorithm

The Expectation Maximisation (EM) algorithm is a well-known iterative algo-
rithm for parameter estimation by maximum likelihood to deal with the dataset
that has missing or incomplete random variables ([4], [10]). Each iteration of the
algorithm includes two steps:

– The expectation step (E-step): replacing missing parameters by estimated
parameters.

– The maximization step (M-step) using the updated data from the first step
to find a maximum likelihood estimation of the parameters.

The algorithm is run until the change of the estimated parameter reaches the
chosen threshold.

2.2 C4.5 algorithm

C4.5 is a decision tree-based machine learning classifier, that is the C4.5 algo-
rithm constructs classifiers expressed as decision trees built from root to leaves,
[11]. As a learning algorithm, it generates a class of tests based on training
examples and improves itself.

To rank possible tests, the information gain criteria (referred to as the In-
foGain) is applied, more exactly we choose the test which minimises the total
entropy of the resulting classified map.

3 Random Walk on the Group

In this section, we work mainly with directed graphs and have found that branch-
ing trees and graphs are particularly useful in the stochastic modelling of the
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data. In Subsection 3.2 we construct a branching tree or directed graph (a vari-
ant of the Caley graph) on the lamplighter group by choosing particular semi
group generators. Then, we model the jump part of the shares as a random walk
on the associated branching tree of the lamplighter group, which is referred to
as a random walk on the lamplighter group.

As stated above, the data jumps are modelled as a geometric Markov chain
with a hidden random walk on the lamplighter group on Z3 and on the tensor
product of groups Z2⊗Z2. Let us begin with definition of the lamplighter group:

3.1 Lamplighter Group

The lamplighter group L(G) on the group G is defined as a semi direct product,
L(G) := G n Σx∈GZ2, with the direct sum of copies of Z2 indexed by G; for
m,m′ ∈ G and η, η′ ∈ Σx∈ZZ2 the group operation is

(m, η)(m′, η′) := (m+m′, η ⊕ ρ−mη′)

where ⊕ is component wise addition modulo 2 and ρ is left shift ([8]). The m-
move is for the lamplighter and the η-move for the status of lamps (on→ off and
off → on). Then m is a position of the lamplighter, η is a configuration, status
of lamps, (see the Figure 1 and [7] for more details).

Fig. 1. Lamplighter group.

For example, take G = Z3 (modulo 3), ρ is a left shift (so ρ−1 is a right shift).

(1, (1, 1, 0)) + (1, (0, 1, 0)) = (1 + 1, (1, 1, 0) + ρ−1(0, 1, 0))

= (2, (1, 1, 0) + (0, 0, 1)) = (2, (1, 1, 1)).
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The answer is interpreted as an element where position of the lamplighter is
2 and the configuration is (1, 1, 1), i.e. all lamps are on.

3.2 Random Walk on the lamplighter group

To construct a random walk on the group G and apply it to fit the data, we
first choose a semigroup generator set S of G, next we construct a branching
tree (direct graph on G), finally we generate a random walk, referred to as a
branching random walk.

In addition, using specifics of the lamplighter group, we construct a random
walk on the combined states.

We begin with considering the lamplighter group on Z3. There are three
lamplighter positions 0, 1, and 2 in the lamplighter group. They refer to differ-
ences between daily adjusted closing values of the share prices such as no jump,
small jump, big jump. In addition, each lamp has two possibility “on” or “off” on
the each positions which gives overall 8 states of lamps for each fixed position of
the lamplighter. Therefore, the lamplighter group on Z3 has 24 elements which
are listed in the following set:

E = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1)),

e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1, )),

e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), e19 = (2, (0, 1, 0)), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}.

A subset S ⊆ G is a semigroup generator of G if any element a ∈ G has a
product representation of elements in S, i.e. a = x1 . . . xn for some n, xi ∈ S.

Let us fix a non-empty set S and an element e ∈ S. With each x we associate
a set of its offsprings {xy : y ∈ S}. We construct the branching tree recursively,
as a direct graph (G∗, V ) by adding links and offsprings to each generation. The
origin element e is referred to as 0th generation (G0) and we take V0 = ∅. Given
generation Gk and the branching tree Vk of links, we first take Vk+1 = Vk∪{x→
xy : x ∈ Gk, y ∈ S} (add new links to Vk). Then Gk+1 = {xy : x ∈ Gk, y ∈ S} is
a set of offsprings of the previous generation. In order to avoid repetitions, we
terminate links from the offspring which was born before. The overall procedure
stops when there are no new elements. Notice that S is a semi group generator
if and only if the branching tree will produce all the elements in group G, i.e.
G∗ = G.

The random walk on the graph (G∗, V ) is then defined by

wij = 1/di if i links to j, wij = 0, otherwise

where di is the number of links from element i.
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In our case, di ≡ 2 and the 24× 24 transition matrix W of the random walk
(referred to as a simple random walk) is defined as follows:

wij =

{
1/2 if i links to j,

0 otherwise.

The hidden Markov chain on the lamplighter group is then constructed to model
the data. For the hidden part, it is assumed that we know the lamplighter posi-
tions, but we do not know the status of the lamps. So, the possible positions of
lamplighter (0, 1, 2) are observed as follows:

0 = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1))}
1 = {e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1, ))}
2 = {e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), e19 = (2, (0, 1, 0)), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}

Next, we construct the branching tree by choosing one of the elements from
the generator set as the origin.

Finally, we construct the branching type random walk on the branching tree
treated as a direct graph.

Overall based on the original branching random walk, we construct a new
random walk on combined states 0, 1, 2. Then, for the new random walk, the
simulation is run 105 times to find the transition matrix. The answer may be
found theoretically, but it seems the random simulation is a more efficient way
of finding it.

To examine the sensitivity of the generators, two different generator sets are
chosen at random. First, we choose a random set of elements and verified that
the set was indeed the generator (as a semi-group). If the set generates the group,
the set is chosen as the generator set. Else, we choose another random set and
repeat all the steps again until we find two different generator sets. Theoretically,
it may appear that for two different generators the results may be qualitatively
different. Choosing the “right” generator is still an open question [3].

The two randomly chosen generator sets of the lamplighter group on Z3 are:

S1 = {e4 = (0, (1, 0, 0)), e11 = (1, (0, 1, 0))},
S2 = {e10 = (1, (0, 0, 1)), e20 = (2, (1, 0, 0))}.

We compare the results for both choices in the Section 4.
Figure 2 shows the generated branching tree with the first generator set S1,

started at e4.
In the next two parts, we construct biased random walks on the lamplighter

group.
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Fig. 2. The branching tree via S1.

Biased Random Walk on the lamplighter group λ, α and α − λ biased
random walks on the lamplighter group are considered in this part.

The λ- biased random walk on the lamplighter group:
Following R. Lyons, R. Pemantle, and Y. Peres (1996,[8]), for λ > 0, define

the λ- biased random walk RWλ on a connected locally finite graph with a
distinguished vertex Θ as the time-homogeneous Markov chain {Xn;n ≥ 0}
with the following transition probabilities. The distance from a vertex |v| to Θ
is the number of the edges on a shortest path joining the two vertexes. Suppose
that v is a vertex of the graph. Let v1, ..., vk (k ≥ 1 unless v = Θ) be the
neighbours of v at distance |v| − 1 from Θ and let u1, u2, ..., uj (j ≥ 0) be the
other neighbours of v. Then the transition probabilities are

w(v, vi) =
λ

(kλ+ j)
for i = 1, ..., k,

w(v, ui) =
1

(kλ+ j)
for i = 1, ..., k.

And,

wij =

{
1/d if there are d links where d > 0,

0 otherwise,

when the λ- biased condition for the neighbours of the vertex v is satisfied ([8]).
To construct the λ- biased random walk for the data, we closely follow the

construction procedure of the simple random walk. We work with the same 3×3
state Markov chain and generator sets S1, S2. Moreover, we only treat the case
of the first generator set S1. The results are then analysed for both generator
sets (S1, S2) in Section 4.
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Then, the λ- biased random walk is constructed on the lamplighter group via
transition probabilities:

w(v, vi) =
λ

(λ+ 1)
, w(v, ui) =

1

(λ+ 1)
(1)

and

wij =

{
1/2 if d = 2,

0 otherwise,
(2)

when the λ- biased condition for the neighbours is satisfied.
The transition probabilities of 24× 24 Markov chain are calculated based on

the Cayley table. The transition matrix P1 consist of two part.
In the fist part all links below have transition probabilities being 1/2, i.e.

w4,1 = w4,15 = w1,4 = w1,11 = 1
2 , w11,9 = w11,21 = w18,17 = w18,6 = 1

2 ;
w17,18 = w17,4 = w6,2 = w6,15 = 1

2 , w21,19 = w21,8 = w19,21 = w19,7 = 1
2 ;

w14,16 = w14,20 = w16,14 = w16,23 = 1
2 , w15,12 = w15,24 = w1,4 = w1,11 = 1

2 ;
w12,15 = w12,22 = w20,22 = w20,1 = 1

2 , w2,6 = w2,13 = w13,10 = w13,19 = 1
2 ;

w24,23 = w24,5 = w23,24 = w23,3 = 1
2 , w10,13 = w10,17 = 1

2 .
The second part probabilities are defined by

w9,11 = 1
λ+1 , w9,18 = λ

λ+1 , w7,12 = 1
λ+1 , w7,3 = λ

λ+1 ;

w8,5 = 1
λ+1 , w8,14 = λ

λ+1 w22,2 = 1
λ+1 , w22,20 = λ

λ+1 ;

w3,7 = 1
λ+1 , w3,9 = λ

λ+1 , w5,8 = 1
λ+1 , w5,10 = λ

λ+1 .
Then, the hidden Markov chain on the lamplighter group is constructed to

model the data. The hidden part is same as before, with the known lamplighter
positions but unknown states of lamps. The Monte Carlo simulation is run 105

times with choosing the optimal parameter λ to find the transition matrix to
find the best fit for the estimated transition matrices.

The α- biased random walk on the lamplighter group:
We consider a slightly perturbed simple random walk on the lamplighter

group generated as a semi group with non-symmetric set of generators. The
approach is similar to the previous cases with the same set up: the same two
generator sets (S1, S2) are chosen and the same 3 × 3 state Markov chain is
considered as the initial matrix.

And again, we only treat the case of the first generator set S1 with the results
then being analysed for both generator sets (S1, S2) in Section 4.

As before, based on the Cayley table, we calculate the transition probability
of Markov Chain 24 × 24 state. Notice that e1 = 0 is not in our generators
(i.e. e1 = 0 6∈ Si), and so staying at the same position is not allowed in the
branching-type random walk. To modify this, the α parameter is introduced
such as α ∈ [0, 1] and the transition matrix is perturbed by the diagonal matrix,
i.e. the 24× 24 matrix for the α- biased random walk is:

wij =


1
2 (1− α) if i links to j,

α if i = j,

0 othewise.

(3)
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The other steps (e.g. hidden part, observations, ...) are similar to the previous
approaches. Monte Carlo simulation is used to find the best fit with using trace
norm differences for the estimated transition matrices.

The α − λ- biased random walk on the lamplighter group: The
process is similar to the previous cases.

The transition probabilities for the α− λ- biased random walk are:

w(v, vi) = (1− α)
λ

(kλ+ j)
) , w(v, ui) = (1− α)

1

(kλ+ j)
) for i = 1, ..., k.

vi and ui are sites satisfying conditions explained in the part “Biased Random
Walk on the lamplighter group”.

And

wij =


(1− α) 1

d if i links to j,

α if i = j,

0 othewise

when the neighbours of the vertex v are satisfied the λ- biased condition.
Specifically for the case, the 24× 24 matrix W is:

w(v, vi) = (1− α)
λ

(λ+ 1)
, w(v, ui) = (1− α)

1

(λ+ 1)
(4)

and

wij =


1
2 (1− α) if i links to j,

α if i = j,

0 othewise,

(5)

when the λ- biased condition for the neighbours is satisfied.
Notice that the 24 × 24 transition matrix P2 of the Markov Chain is found

by
P2 = (1− α)P1 + αI

where I is the identity matrix and P1 is the transition matrix of the λ-biased
case. Finally, the Monte Carlo simulation is run 105 times with choosing the
optimal parameters λ and α ∈ [0, 1] to compute the transition matrix to find the
best fit for the original transition matrices.

3.3 Random Walk on the lamplighter group on the tensor product
group

We are going to construct a random walk on the lamplighter group on the tensor
product group Z2⊗Z2, for brevity referred to as a tensor product of lamplighter
groups. First, let the group G be the tensor product of two groups G = G1⊗G2.
The elements of the group G are pairs of the elements of the groups G1 and G2.

G = G1 ⊗G2 = (a, b), a ∈ G1, b ∈ G2;

(a1, b1)⊗ (a2, b2) = (a1 + a2, b1 + b2).
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Consider the lamplighter group on the group G, and particularly G1 = G2 = Z2.
Notice that the elements of the lamplighter group on Z2:

E = (0, (0, 0)), (0, (0, 1)), (0, (1, 0)), (0, (1, 1)), (1, (0, 0)), (1, (0, 1)), (1, (1, 0)), (1, (1, 1))

Now, we introduce the elements of the lamplighter group on the tensor product
group G = Z2 ⊗ Z2. The lamplighter group has 64 elements because of the
tensor product property. By relabelling there are four positions 0, 1, 2, 3 for the
lamplighter. They refer to differences between daily adjusted closing values of the
share prices such as “no small jump, small jump” and “no big jump, big jump”
(observed data). In addition, each lamp has two possibility “on” or “off” on each
position (hidden data). Therefore, a straightforward analysis (by permutation)
shows that the lamplighter group on Z2 ⊗ Z2 has 64 elements which are:

E = {e1 = (0, (0, 0, 0, 0)), e2 = (0, (0, 0, 0, 1)), e3 = (0, (0, 0, 1, 0)), e4 = (0, (0, 1, 0, 0)),

e5 = (0, (1, 0, 0, 0)), e6 = (0, (0, 0, 1, 1)), e7 = (0, (0, 1, 1, 0)), e8 = (0, (1, 1, 0, 0)),

e9 = (0, (0, 1, 0, 1)), e10 = (0, (1, 0, 0, 1)), e11 = (0, (1, 0, 1, 0)), e12 = (0, (0, 1, 1, 1)),

e13 = (0, (1, 0, 1, 1)), e14 = (0, (1, 1, 0, 1)), e15 = (0, (1, 1, 1, 0)), e16 = (0, (1, 1, 1, 1)),

e17 = (1, (0, 0, 0, 0)), e18 = (1, (0, 0, 0, 1)), e19 = (1, (0, 0, 1, 0)), e20 = (1, (0, 1, 0, 0)),

e21 = (1, (1, 0, 0, 0)), e22 = (1, (0, 0, 1, 1)), e23 = (1, (0, 1, 1, 0)), e24 = (1, (1, 1, 0, 0)),

e25 = (1, (0, 1, 0, 1)), e26 = (1, (1, 0, 0, 1)), e27 = (1, (1, 0, 1, 0)), e28 = (1, (0, 1, 1, 1)),

e29 = (1, (1, 0, 1, 1)), e30 = (1, (1, 1, 0, 1)), e31 = (1, (1, 1, 1, 0)), e32 = (1, (1, 1, 1, 1)),

e33 = (2, (0, 0, 0, 0)), e34 = (2, (0, 0, 0, 1)), e35 = (2, (0, 0, 1, 0)), e36 = (2, (0, 1, 0, 0)),

e37 = (2, (1, 0, 0, 0)), e38 = (2, (0, 0, 1, 1)), e39 = (2, (0, 1, 1, 0)), e40 = (2, (1, 1, 0, 0)),

e41 = (2, (0, 1, 0, 1)), e42 = (2, (1, 0, 0, 1)), e43 = (2, (1, 0, 1, 0)), e44 = (2, (0, 1, 1, 1)),

e45 = (2, (1, 0, 1, 1)), e46 = (2, (1, 1, 0, 1)), e47 = (2, (1, 1, 1, 0)), e48 = (2, (1, 1, 1, 1)),

e49 = (3, (0, 0, 0, 0)), e50 = (3, (0, 0, 0, 1)), e51 = (3, (0, 0, 1, 0)), e52 = (3, (0, 1, 0, 0)),

e53 = (3, (1, 0, 0, 0)), e54 = (3, (0, 0, 1, 1)), e55 = (3, (0, 1, 1, 0)), e56 = (3, (1, 1, 0, 0)),

e57 = (3, (0, 1, 0, 1)), e58 = (3, (1, 0, 0, 1)), e59 = (3, (1, 0, 1, 0)), e60 = (3, (0, 1, 1, 1)),

e61 = (3, (1, 0, 1, 1)), e62 = (3, (1, 1, 0, 1)), e63 = (3, (1, 1, 1, 0)), e64 = (0, (1, 1, 1, 1))}.

And now, same as in the first model (see Section 3.2) we randomly choose two
different generator sets of the tensor product of the lamplighter group G1 ⊗G2,
generating it a semi group. The generator sets of the group are chosen as:

S3 = {e18 = (1, (0, 0, 0, 1)), e35 = (2, (0, 0, 1, 0))},

S4 = {e36 = (2, (0, 1, 0, 0)), e50 = (3, (0, 0, 0, 1))}.

Then, we construct the simple random walk and the biased random walks via the
tensor product of the lamplighter groups. We also consider the hidden Markov
chain on the group to model the data. For the hidden part, it is assumed that we
know the lamplighter positions, but we do not know the status of the lamps. So,
the possible positions of lamplighter (0, 1, 2, 3). Therefore, the 64× 64 transition
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matrices is reduced to 4× 4 transition matrices. Finally, we estimate the transi-
tion matrix for the new model. The overall procedure is then similar to the case
of the lamplighter group on Z3, where necessary definitions and explanations
can be found.

Let us start by constructing the simple random walk on the group. Transition
matrix of the simple random walk:

wij =

{
1/2 if i links to j,

0 otherwise.

The hidden part and observations are similar to the previous model. Figure 3
shows the generated branching tree with the first generator set (S3).

We run the simulation 105 times to find the best fit to the original matrix.
The data is split as in Section 2. The transition matrices are estimated by the
MLE and their tensor product is used further in the tensor product modelling.

Biased Random Walk on the tensor product of the lamplighter group
In this part, we construct the biased random walk via tensor product of the
lamplighter group by choosing optimal parameters. Let us start with the λ-
biased random walk:

The λ- biased random walk on the tensor product of the lamp-
lighter group: We consider a slightly perturbed λ- biased random walk on a
lamplighter group ([8]).

Then, the λ- biased random walk is constructed on the lamplighter group via
transition probabilities as defined in (1)-(2).

The transition probability of Markov Chain 64× 64 state is calculated based
on the Cayley graph. Particularly, the transition probabilities as below:

w1,18 = w1,35 = w2,17 = w2,38 = w3,22 = w3,33 = w5,26 = w5,43 = 1
2 ,

w6,19 = w6,34 = w7,28 = w7,36 = w8,30 = w8,47 = w9,20 = w9,44 = 1
2 ,

w10,21 = w10,45 = w11,29 = w11,37 = w12,23 = w12,41 = w13,27 = w13,42 = 1
2 ,

w14,24 = w14,48 = w15,32 = w15,40 = w16,31 = w16,46 = w17,37 = w17,50 = 1
2 ,

w18,42 = w18,49 = w19,43 = w19,54 = w21,33 = w21,58 = w23,47 = w23,60 = 1
2 ,

w24,36 = w24,62 = w25,46 = w25,52 = w27,35 = w27,61 = w28,48 = w28,55 = 1
2 ,

w29,38 = w29,59 = w30,41 = w30,56 = w32,44 = w32,63 = w33,52 = w33,5 = 1
2 ,

w34,57 = w34,10 = w35,55 = w35,11 = w36,49 = w36,8 = w37,56 = w37,1 = 1
2 ,

w38,60 = w38,13 = w39,51 = w39,15 = w40,53 = w40,4 = w42,62 = w42,2 = 1
2 ,

w43,63 = w43,3 = w44,54 = w44,16 = w45,64 = w45,6 = w47,59 = w47,7 = 1
2 ,

w48,61 = w48,12 = w49,3 = w49,20 = w51,1 = w51,23 = w52,7 = w52,17 = 1
2 ,

w53,11 = w53,24 = w54,2 = w54,28 = w55,4 = w55,19 = w56,15 = w56,21 = 1
2 ,

w57,12 = w57,18 = w58,13 = w58,30 = w59,5 = w59,31 = w60,9 = w60,22 = 1
2 ,

w61,10 = w61,32 = w62,16 = w62,26 = w63,8 = w63,27 = w64,14 = w64,29 = 1
2 ,

w31,64 = 1
λ+1 , w31,39 = λ

λ+1 , w46,58 = 1
λ+1 , w46,9 = λ

λ+1 ,

w26,53 = 1
λ+1 , w26,24 = λ

λ+1 , w50,25 = 1
λ+1 , w50,6 = λ

λ+1 ,

w22,45 = 1
λ+1 , w22,51 = λ

λ+1 , w20,40 = 1
λ+1 , w20,57 = λ

λ+1 ,

w4,25 = 1
λ+1 , w4,39 = λ

λ+1 , w41,14 = 1
λ+1 , w41,50 = λ

λ+1 .
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Fig. 3. The branching tree via S3.
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We use similar process to the simple random walk on the tensor product of
the lamplighter group. Finally the simulation is run 105 times, and the optimal
parameter λ is found to give the best fit to the original matrix.

The α- biased random walk on the tensor product of the lamp-
lighter group: The 64× 64 transition matrix is defined as in (3).

The other steps (e.g. hidden part, observations,...) are similar to the previous
approaches. Monte Carlo simulation used to find the best fit with using norm
differences for the estimated transition matrices.

The α−λ- biased random walk on the tensor product of the lamp-
lighter group: The transition probabilities for the α− λ- biased random walk
on the lamplighter group are defined similar to the first model, more exactly as
in (4) -(5).

The Monte Carlo simulation is run 105 times to choose the optimal parameter
λ and α ∈ [0, 1] to find the best fit for the estimated transition matrices.

4 Results and Comparisons

Modelling without the tensor product structure. Branching type random walk is
constructed on the lamplighter group with two different generator sets (S1, S2)
in Section 3.2. Also, biased random walk is considered on the lamplighter group.
3× 3 transition matrices estimated by the Monte Carlo simulation. We estimate
the transition matrices by constructing the model as the simple random walk
and biased random walks on the lamplighter group to find the best fit for the
estimated transition matrices. Table 1 shows the estimated transition matrices
by Maximum likelihood. Then Tables 2-5 illustrate transition matrices for the
branching type random walk on the lamplighter group.

Table 1. Three-by-three estimated transition matrices by MLE.

Cases P

BP(2009-2010)

 0.2051 0.7436 0.0513
0.1429 0.7551 0.1020
0.1667 0.7500 0.0833


BP(2010-2011)

 0.4381 0.4762 0.0857
0.4310 0.4310 0.1379
0.2500 0.4444 0.3056


BP(2011-2012)

 0.0667 0.8667 0.0667
0.1140 0.7668 0.1192
0.1667 0.6667 0.1667


BP(2012-2013)

 0.2162 0.6757 0.1081
0.1327 0.7704 0.0969
0.1200 0.8000 0.0800


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Table 2. Branching-type random walk on the lamplighter group.

Cases Generator S1 Generator S2

BP(2009-2010)

 0.4845 0.5155 0
0 0.4908 0.5092

0.4716 0 0.5284

  0 0.5271 0.4729
0.5638 0 0.4362
0.5128 0.4872 0


BP(2010-2011)

 0.4702 0.5298 0
0 0.4847 0.5153

0.4732 0 0.5268

  0 0.4738 0.5262
0.5385 0 0.4615
0.5106 0.4894 0


BP(2011-2012)

 0.4947 0.5093 0
0 0.5015 0.4985

0.4670 0 0.5330

  0 0.5233 0.4767
0.5444 0 0.4556
0.5031 0.4969 0


BP(2012-2013)

 0.4654 0.4346 0
0 0.5157 0.4843

0.5136 0 0.4864

  0 0.5701 0.4299
0.4766 0 0.5234
0.5294 0.4706 0


Table 3. λ- biased random walk on the lamplighter group.

Cases Generator S1 Generator S2

BP(2009-2010)

 0.4088 0.5912 0
0 0.5955 0.4045

0.4909 0 0.5091

  0 0.5836 0.4164
0.3623 0.1836 0.4541
0.4295 0.5705 0


BP(2010-2011)

 0.4718 0.5282 0
0 0.6084 0.3916

0.4474 0 0.5526

  0 0.5604 0.4396
0.4144 0.1663 0.4194
0.4348 0.5652 0


BP(2011-2012)

 0.3723 0.6277 0
0 0.5438 0.4562

0.4928 0 0.5072

  0 0.5749 0.4251
0.3687 0.2048 0.4265
0.4463 0.5537 0


BP(2012-2013)

 0.4418 0.5582 0
0 0.5888 0.4112

0.5159 0 0.4841

  0 0.5019 0.4981
0.3131 0.2015 0.4854
0.3921 0.6079 0


Table 4. α- biased random walk on the lamplighter group.

Cases Generator S1 Generator S2

BP(2009-2010)

 0.6860 0.3140 0
0 0.7927 0.2073

0.2247 0 0.7753

  0.6167 0.3833 0
0.3174 0.6807 0.0018

0 1.0000 0


BP(2010-2011)

 0.6070 0.3930 0
0 0.6990 0.3010

0.1886 0 0.8114

  0.5482 0.2193 0.2326
0.2295 0.5184 0.2521
0.1561 0.3035 0.5405


BP(2011-2012)

 0.6808 0.3192 0
0 0.7629 0.2371

0.2103 0 0.7897

  0 0.4000 0.6000
0.0061 0.3347 0.6592
0.0020 0.6514 0.3466


BP(2012-2013)

 0.2857 0.7143 0
0 0.8000 0.2000

0.0041 0 0.9959

  0.3438 0.2188 0.4375
0.0181 0.5221 0.4598
0.0234 0.4936 0.4830


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Table 5. α− λ- biased random walk on the lamplighter group.

Cases Generator S1 Generator S2

BP(2009-2010)

 0.6478 0.3522 0
0 0.7650 0.2350

0.2222 0 0.7778

  0.2500 0.7500 0
0.0020 0.9970 0.0010

0 1.0000 0


BP(2010-2011)

 0.5000 0.5000 0
0 0.8571 0.1429
0 0 1.0000

  0.3273 0.3165 0.3561
0.2414 0.4409 0.3177
0.2785 0.4399 0.2816


BP(2011-2012)

 0.5584 0.4416 0
0 0.7258 0.2742

0.2544 0 0.7456

  0 0.6667 0.3333
0.0010 0.9970 0.0020
0.3333 0.6667 0


BP(2012-2013)

 0.4000 0.6000 0
0 0.9932 0.0068

0.0036 0 0.9964

  0.2500 0.5000 0.2500
0.0010 0.9950 0.0040
0.2000 0.8000 0



Motivated by [9], to avoid a random fit and to compare the four different
methods with the four different random walks on the lamplighter group and
two different generator sets, we calculate the trace error norms between the
simulated matrices and the one based on the data. First part of the Table 6
shows the comparison of trace norm values for all of the cases for each of the
four methods with the first generator S1. And, comparison of trace norm values
for all of the methods with second generator S2 are stated in the second part
of the table. It shows that the best approximation was given by the α- biased
and α− λ- biased random walks. The smallest norm value is around 0.025 (BP,
2012-2013). Also, there is no significant difference between the values for the two
different generator sets.

Table 6. Norm errors of the random walk on the lamplighter group.

Cases Simple RW λ biased RW α biased RW α− λ biased RW

BP(2009-2010) 0.9715 0.8422 0.3077 0.0997
BP(2010-2011) 0.9684 0.8561 0.2952 0.0530
BP(2011-2012) 0.9664 0.8330 0.3140 0.0731
BP(2012-2013) 0.9781 0.9630 0.3136 0.0742

BP(2009-2010) 0.9832 0.8996 0.2224 0.0455
BP(2010-2011) 0.9076 0.8616 0.2649 0.0417
BP(2011-2012) 0.9868 0.9003 0.3426 0.0669
BP(2012-2013) 0.9855 0.9080 0.2992 0.0253

Adding a tensor product structure. Additionally, we assume that the transformed
data are such as Z = (X,Y ) where X represents a “no jump”, “small jump”
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group variable and Y - “no big jump”, “big jump” groups. PX - estimated transi-
tion matrix of X and PY - estimated transition matrix of Y . In order to estimate
the transition matrix PX , we deal with the missing data by applying two dif-
ferent methods: EM algorithm and C4.5 algorithm. Altogether, we estimate two
different transition matrices for each case and then take their tensor products
which are illustrated by Table 7 and Table 8. Moreover, branching type random
walk is constructed on the tensor product of the lamplighter group with two dif-
ferent generator sets (S3, S4) in Section 3.3. Additionally, biased random walk
is considered on the tensor product lamplighter group. Their transition matri-
ces and the estimated transition matrices from Section 3.2 are compared with
tensor product of the original transition matrices (PX ⊗ PY ). The trace norm
is applied to find the best fit to the data. To give an idea of the results of this
methods, Table 9 shows the transition matrices for λ- biased random walk on
tensor product of the lamplighter group with the generator S3.
Finally, Table 10 shows the comparison of the norm errors of the random walk
on the tensor product of lamplighter group with two different generator sets (S3,
S4) with the transition matrices are estimated via EM algorithm and Machine
learning (C4.5 algorithm). The best approximation is again achieved by the α-
biased and α−λ- biased random walks. The smallest norm value is around 0.01
(Table 10, BP 2011-2012) . Also, there is no significant difference between the
values for the two different generator sets and the two different missing value
treatment methods.

Table 7. Transition matrices via EM algorithm.

Cases PX PY PX ⊗ PY

BP(2009-2010)

(
0.2419 0.7581
0.2449 0.7551

) (
0.9060 0.0940
0.9167 0.0833

) 
0.2192 0.0227 0.6868 0.0713
0.2218 0.0202 0.6949 0.0632
0.2219 0.0230 0.6841 0.0710
0.2245 0.0204 0.6922 0.0629


BP(2010-2011)

(
0.5319 0.4681
0.5652 0.4348

) (
0.8864 0.1136
0.6944 0.3056

) 
0.4715 0.0604 0.4149 0.0532
0.3694 0.1625 0.3251 0.1430
0.5010 0.0642 0.3854 0.0494
0.3925 0.1727 0.3019 0.1329


BP(2011-2012)

(
0.2333 0.7667
0.2344 0.7656

) (
0.7293 0.2707
0.6761 0.3239

) 
0.3298 0.1224 0.3995 0.1483
0.3057 0.1465 0.3704 0.1775
0.3354 0.1245 0.3939 0.1462
0.3109 0.1490 0.3652 0.1750


BP(2012-2013)

(
0.2787 0.7213
0.2296 0.7704

) (
0.9009 0.0991
0.9200 0.0800

) 
0.2511 0.0276 0.6498 0.0715
0.2564 0.0223 0.6636 0.0577
0.2068 0.0228 0.6940 0.0764
0.2112 0.0184 0.7088 0.0616


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Table 8. Transition matrices via Machine Learning.

Cases PX PY PX ⊗ PY

BP(2009-2010)

(
0.2072 0.7928
0.3729 0.6271

) (
0.9060 0.0940
0.9167 0.0833

) 
0.1877 0.0195 0.7183 0.745
0.1899 0.0173 0.7268 0.0660
0.3378 0.351 0.5682 0.0589
0.3418 0.0311 0.5749 0.0522


BP(2010-2011)

(
0.3489 0.6511
0.6504 0.3496

) (
0.8864 0.1136
0.6944 0.3056

) 
0.3093 0.0396 0.5771 0.0740
0.2423 0.1066 0.4521 0.1990
0.5765 0.0739 0.3099 0.0397
0.4516 0.1988 0.2428 0.1068


BP(2011-2012)

(
0.0463 0.9537
0.3221 0.6779

) (
0.7293 0.2707
0.6761 0.3239

) 
0.0338 0.0125 0.6955 0.2582
0.0313 0.0150 0.6448 0.3089
0.2349 0.0872 0.4944 0.1835
0.2178 0.1043 0.4583 0.2196


BP(2012-2013)

(
0.1332 0.8668
0.3146 0.6854

) (
0.9009 0.0991
0.9200 0.0800

) 
0.1200 0.0132 0.7809 0.0859
0.1225 0.0107 0.7975 0.0693
0.2834 0.0312 0.6175 0.0679
0.2894 0.0252 0.6306 0.0548



Table 9. λ biased random walk on the tensor product of the lamplighter group with
S3.

Cases P̂

BP(2009-2010)


0 0.4323 0.5677 0
0 0 0.5973 0.4027

0.5018 0 0 0.4982
0.5391 0.4609 0 0


BP(2010-2011)


0 0.4568 0.5432 0
0 0 0.5261 0.4739

0.5919 0 0 0.4081
0.5273 0.4727 0 0


BP(2011-2012)


0 0.3827 0.6173 0
0 0 0.5577 0.4423

0.5261 0 0 0.4739
0.5526 0.4474 0 0


BP(2012-2013)


0 0.4167 0.5833 0
0 0 0.5804 0.4196

0.5246 0 0 0.4754
0.5000 0.5000 0 0



5 Some Final Remarks

The fit is relatively good. For the randomly chosen data sets, the α-biased ran-
dom walk on the lamplighter group and α − λ- biased random walk provide
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significantly better fit to the data. The smallest trace norm values is around
0.01. Also, the α-biased random walk on the tensor product of the lamplighter
group and α−λ- biased random walk provide significantly better fit to the data
comparing with other models.

Table 10. Norm errors of the random walk on the tensor product of the lamplighter
group

Cases Simple RW λ biased RW α biased RW α− λ biased RW

BP(2009-2010) 1.2659 0.9677 0.3767 0.1797
BP(2010-2011) 1.1207 0.8234 0.2334 0.0290
BP(2011-2012) 1.1675 0.8690 0.2934 0.0123
BP(2012-2013) 1.2215 0.9214 0.3400 0.1089

BP(2009-2010) 1.2201 0.9123 0.3001 0.1569
BP(2010-2011) 1.1814 0.8692 0.2771 0.0783
BP(2011-2012) 1.2062 0.8966 0.3166 0.0995
BP(2012-2013) 1.2662 0.9528 0.3531 0.1534

BP(2009-2010) 1.2400 0.9460 0.3495 0.1261
BP(2010-2011) 1.1738 0.8759 0.2082 0.1334
BP(2011-2012) 1.1611 0.8612 0.2050 0.1399
BP(2012-2013) 1.2504 0.9528 0.3347 0.1142

BP(2009-2010) 1.2575 0.9457 0.3138 0.1141
BP(2010-2011) 1.1882 0.8790 0.2684 0.1016
BP(2011-2012) 1.1674 0.8626 0.2424 0.1283
BP(2012-2013) 1.2553 0.9407 0.3201 0.1176

The random walk on the tensor product of the lamplighter group gives better
approximation than the random walk on the lamplighter group. Two different
generators are chosen arbitrarily for the each case and the results for different
generators are similar which shows a mild sensitivity on the generator. Two
different methods (EM and Machine Learning) are applied to deal with the
missing data and again, the results look similar showing the robustness of the
overall method.

Note that our missing data comes from the choice of the tensor product
model, which can be seen as a side-effect. However, by adding the tensor prod-
uct structure, we greatly simplify the number of parameters that need to be
estimated. For example, the transition matrix in the lamplighter group on Z4

is identified by 64 × 64 parameters, but on Z2 ⊗ Z2 it requires at most 4 × 4
parameters.
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