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Abstract. The main goal of this paper is to construct a wavelet-type
random series representation for a random field X, defined by a multi-
stable stochastic integral, which generates a multifractional multistable
Riemann-Liouville (mmRL) process Y . Such a representation provides,
among other things, an efficient method of simulation of paths of Y .
In order to obtain it, we expand in the Haar basis the integrand asso-
ciated with X and we use some fundamental properties of multistable
stochastic integrals. Then, thanks to the Abel’s summation rule and the
Doob’s maximal inequality for discrete submartingales, we show that
this wavelet-type random series representation of X is convergent in a
strong sense: almost surely in some spaces of continuous functions. Also,
we determine an estimate of its almost sure rate of convergence in these
spaces.
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1 Introduction

The main idea behind multifractional processes is that Hurst parameter which
governs path roughness is no longer a constant but a function whose values can
change from point to point (see e.g. [1]). Thus, such processes provide more flex-
ible models than the classical fractional Brownian motion whose path roughness
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remains everywhere the same. In the same spirit, the articles [4–6] have proposed
three different (non-equivalent) approaches allowing to generalize stable stochas-
tic processes (see for instance [9]) in such a way that the parameter α governing
the heavy tail behaviour of their distributions becomes a function. Such general-
izations are called multistable processes. The approach introduced in [6] relies on
the construction of multistable stochastic integrals. Such an integral I depends
on a functional parameter α(·); this deterministic Lebesgue measurable function
α(·) is defined on the real line R and with values in some compact interval [α , α]
included in (0, 2]. Throughout this article, we assume that α(·) belongs to the
Hölder space C1+ρα([0, 1]), for some ρα ∈ (0, 1); in other words α(·) is contin-
uously differentiable on [0, 1] and its derivative α′(·) satisfies a uniform Hölder
condition on [0, 1] of order ρα, that is one has |α′(s1) − α′(s2)| ≤ c|s1 − s2|ρα ,
for some constant c > 0 and for all (s1, s2) ∈ [0, 1]2. Moreover, we assume that

1 < α ≤ α(s) ≤ α < 2, for all s ∈ R. (1)

The integrands associated with the multistable stochastic integral I are the
deterministic functions from R to R belonging to Fα, the Lebesgue space of
variable order defined as:

Fα :=
{
f s.t. f is a Lebesgue measurable function from R to R and∫
R
|f(s)|α(s)ds < +∞

}
. (2)

Notice that, for any fixed f ∈ F∗α := Fα \ {0}, the function from (0,+∞) into
itself λ 7→

∫
R λ
−α(s)|f(s)|α(s)ds is continuous and strictly decreasing, and one has

limλ→0+
∫
R λ
−α(s)|f(s)|α(s)ds = +∞ and limλ→+∞

∫
R λ
−α(s)|f(s)|α(s)ds = 0.

Therefore, there exists a unique positive real number denoted by ‖f‖α such that∫
R
‖f‖−α(s)α |f(s)|α(s)ds = 1. (3)

The map ‖ · ‖α defined on Fα in this way and by using the convention that
‖0‖α = 0 is a quasi-norm on Fα; notice that the only difference between a
norm and a quasi-norm is that in the latter case the triangular inequality holds
up to a multiplicative constant, namely there exists c′ ∈ [1,+∞), such that
‖f + g‖α ≤ c′

(
‖f‖α + ‖g‖α

)
, for all f, g ∈ Fα. Also notice that one can derive

from (2) and the inequality∫
R
|f(s)|α(s)ds ≤

∫
R
|f(s)|α ds+

∫
R
|f(s)|αds,

which is satisfied by any Lebesgue measurable function f from R to R, that

Lα (R) ∩ Lα(R) ⊆ Fα , (4)

where, for all p ∈ (0,+∞], one denotes Lp(R) the classical Lebesgue space of
order p of real-valued functions over R. Moreover, there is a finite constant κ1
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only depending on α and α, such that, for all f ∈ Lα (R) ∩ Lα(R), one has

‖f‖α ≤ κ1
(
‖f‖α + ‖f‖α

)
= κ1

(∫
R
|f(s)|α ds

)1/α
+ κ1

(∫
R
|f(s)|αds

) 1/α

. (5)

The latter inequality simply results from the fact that∫
R

(
21/α‖f‖α + 21/α‖f‖α

)−α(s)
|f(s)|α(s)ds

≤
∫
R

(
21/α‖f‖α + 21/α‖f‖α

)−α
|f(s)|α ds

+

∫
R

(
21/α‖f‖α + 21/α‖f‖α

)−α
|f(s)|αds

≤ 2−1
∫
R
‖f‖−αα |f(s)|α ds+ 2−1

∫
R
‖f‖−αα |f(s)|α ds = 1.

Let us now recall some fundamental properties of the multistable stochastic
integral I which was introduced in [6]. Denote by Lγ(Ω,A,P) the space of the
real-valued random variables on a given probability space (Ω,A,P) whose ab-
solute moment of order γ is finite, where γ ∈ (0, α) is arbitrary and fixed. The
integral I is a linear map from Fα into Lγ(Ω,A,P) such that, for all f ∈ Fα,
the characteristic function ΦI(f) of the random variable I(f) satisfies

ΦI(f)(ξ) := E
(
eiξI(f)

)
= exp

(
−
∫
R

∣∣ξf(s)
∣∣α(s)ds) , for every ξ ∈ R. (6)

Observe that (6) implies that I(f) has a symmetric distribution. Similarly to sta-
ble stochastic integrals (see for instance [9]), one can in a natural way associate to
the multistable stochastic integral I an independently scattered random measure
denoted by Mα (see [6]). Thus, I(f) is frequently denoted by

∫
R f(s)Mα (ds).

It is worth mentioning that an upper bound of the asymptotic behavior at +∞
of the tail of the distribution of the random variable

∫
R f(s)Mα (ds) is provided

by Proposition 2.3 of [6]:

P
(∣∣∣ ∫

R
f(s)Mα (ds)

∣∣∣ ≥ λ) ≤ κ2 ∫
R
λ−α(s)|f(s)|α(s)ds, for all λ ∈ (0,+∞),

(7)
where κ2 is a constant only depending on α and α. The same proposition also
provides, thanks to (7), an estimate for the absolute moment of any order γ ∈
(0, α) of

∫
R f(s)Mα (ds):

E
(∣∣∣ ∫

R
f(s)Mα (ds)

∣∣∣γ) ≤ κ3(γ) ‖f‖γα, for each fixed γ ∈ (0, α), (8)

where κ3(γ) is a finite constant only depending on γ, α and α. We mention in
passing that the paper [2] has shown that the inequality (7) is sharp: the reverse
inequality also holds.
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2 Main result and simulations

Let us now give the main motivation behind our present article. The paper [8]
has introduced via Haar basis an almost surely uniformly convergent wavelet-
type random series representation for the stable stochastic field which generates
linear multifractional stable motions [10, 11]. In our present article, we intend to
generalize this result to the framework of the multistable stochastic field which
generates linear multifractional multistable motions of Riemann-Liouville type.
The latter field is denoted by

{
X(u, v) : (u, v) ∈ [0, 1]× (1/α , 1)

}
, and defined,

for all (u, v) ∈ [0, 1]× (1/α , 1), as:

X(u, v) :=

∫
R
Ku,v(s)Mα (ds) , (9)

where, for every (u, v, s) ∈ [0, 1]× (1/α , 1)× R,

Ku,v(s) := (u− s)
v− 1

α(s)

+ 1[0,1](s) =

{
0 if s /∈ [0, u),

(u− s)v−
1

α(s) otherwise.
(10)

It can easily be seen that, for each fixed (u, v) ∈ [0, 1]× (1/α , 1), one has

0 ≤ Ku,v(s) ≤ 1[0,1](s), for all s ∈ R. (11)

Thus, the function Ku,v belongs to the space Fα (see (2)) which guarantees
the existence of the multistable stochastic integral in (9). Also, one can derive
from (11) that the function Ku,v belongs to all the Lebesgue spaces Lp([0, 1]),
p ∈ (0,+∞], and in particular to the Hilbert space L2([0, 1]). A well-known
orthonormal basis of the latter space was introduced by Haar in [7]; it consists
in the following collection of functions:

1[0,1)(•) ,

2j/2h(2j • −k) = 2j/2
(
1[

2−jk,2−j(k+ 1
2 )
)(•)− 1[

2−j(k+ 1
2 ),2

−j(k+1)
)(•)) ,

j ∈ Z+ and k ∈ {0, . . . , 2j − 1},
(12)

where h := 1[0,1/2) − 1[1/2,1). By expanding, for each fixed (u, v) ∈ [0, 1] ×
(1/α , 1), the function Ku,v on the latter basis, one gets that

Ku,v(•) = ‖Ku,v‖11[0,1) +

+∞∑
j=0

2j−1∑
k=0

wj,k(u, v)h(2j • −k) , (13)

where ‖Ku,v‖1 :=
∫ 1

0
Ku,v(s)ds and

wj,k(u, v) := 2j
∫ 1

0

Ku,v(s)h(2js−k)ds, for all j ∈ Z+ and k ∈ {0, . . . , 2j − 1}.

(14)
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A priori, the series in (13) is convergent for the L2([0, 1]) norm; yet (1), (5) and
the Hölder inequality imply that this series is also convergent for the quasi-norm
‖ · ‖α. Thus, using (9) and (8) one gets that

X(u, v) = ‖Ku,v‖1η +

+∞∑
j=0

2j−1∑
k=0

wj,k(u, v)εj,k , (15)

where η :=
∫
R 1[0,1)(s)Mα (ds) =Mα

(
[0, 1)

)
and

εj,k :=

∫
R
h(2js− k)Mα (ds) , for all j ∈ Z+ and k ∈ {0, . . . , 2j − 1}. (16)

A priori, the series in (15) is convergent in the sense of the Lγ(Ω,A,P) (quasi)-
norm, for each fixed (u, v) ∈ [0, 1] × (1/α , 1) and γ ∈ (0, α). The main goal of
our article is to show that it is also convergent in a much stronger sense, namely:

Theorem 21 For all integer J ≥ 1 and (u, v) ∈ [0, 1]× (1/α, 1), let XJ(u, v) be
the partial sum of the series in (15) defined as:

XJ(u, v) = ‖Ku,v‖1η +

J−1∑
j=0

2j−1∑
k=0

wj,k(u, v)εj,k . (17)

Then, there exists an event Ω∗ of probability 1, such that, for all ω ∈ Ω∗ and
for every real numbers a and b satisfying 1/α < a < b < 1,

(
XJ(·, ·, ω)

)
J∈N is a

Cauchy sequence in C
(
[0, 1]× [a, b]

)
the Banach space of the real-valued contin-

uous functions over the rectangle [0, 1] × [a, b] equipped with the uniform norm
denoted by ‖ · ‖C. Thus, it is convergent in this space. Moreover, the multistable

stochastic field
{
X̃(u, v) : (u, v) ∈ [0, 1] × [a, b]

}
with continuous paths, defined

as:

X̃(·, ·, ω) := lim
J→+∞

XJ(·, ·, ω), if ω ∈ Ω∗, and X̃(·, ·, ω) := 0, else, (18)

is a modification of
{
X(u, v) : (u, v) ∈ [0, 1]× [a, b]

}
, and one has, for any fixed

ζ > 1/α and ω ∈ Ω∗,

sup
{
J−ζ 2J min{ρα, a−1/α }

∣∣X̃(u, v, ω)−XJ(u, v, ω)
∣∣ :

(J, u, v) ∈ N× [0, 1]× [a, b]
}
< +∞. (19)

Remark 21 In view of (17) and of the fact that X̃ is a modification of X, the
inequality (19) provides an almost sure estimate of the rate of convergence for
the uniform norm ‖ · ‖C of the random series of functions in (15). Notice that
in the particular case where X is an α-stable field (that is α(s) = α, for all
s ∈ [0, 1], where α ∈ (1, 2) is a constant parameter), this estimate of the rate of
convergence becomes O(2−J(a−1/α)J1/α+η), where η is an arbitrarily small fixed
positive real number. Thus, it improves the estimate O(2−J(a−1/α)J2/α+η) which
was previously obtained in [8, Theorem 2.1].



6 Antoine Ayache, and Julien Hamonier

Definition 1. Let H(·) be a deterministic function from [0, 1] into [a, b] ⊂
(1/α, 1). The multifractional multistable Riemann-Liouville (mmRL) process of

parameter H(·), generated by the field
{
X̃(u, v) : (u, v) ∈ [0, 1] × [a, b]

}
, is

the multistable process denoted by {Y (t) : t ∈ [0, 1]} and defined as:

Y (t) := X̃(t,H(t)), for all t ∈ [0, 1]. (20)

Notice that when the function H(·) is a constant {Y (t) : t ∈ [0, 1]} is called
fractional multistable Riemann-Liouville (fmRL) process.

Remark 22 It easily follows from Theorem 21 and Definition 1 that {Y (t) :
t ∈ [0, 1]} has almost surely continuous paths as soon as H(·) is a continuous
function.

Remark 23 Using (12), (14), and (16), it can be shown by induction on J that,
for all J ∈ N and for each (u, v) ∈ [0, 1]×(1/α, 1), the random variable XJ(u, v),
defined in (17), can be expressed as:

XJ(u, v) =

2J−1∑
l=0

K
J,l

u,vMα

([
2−J l, 2−J(l + 1)

))
, (21)

where, for all J ∈ N and l ∈ {0, . . . , 2J − 1}, KJ,l

u,v is the average value of the

function Ku,v on the dyadic interval
[
2−J l, 2−J(l + 1)

)
, that is

K
J,l

u,v := 2J
∫ 2−J (l+1)

2−J l

Ku,v(s)ds. (22)

The equalities (21), (18) and (20) provide an efficient method for simulating
paths of the mmRL process Y . To this end, when J is large enough, one uses the
approximation:

Mα

([
2−J l, 2−J(l + 1)

))
≈ Zα(2−J l)

([
2−J l, 2−J(l + 1)

))
, (23)

where the Zα(2−J l), l = 0, . . . , 2J − 1, are independent usual symmetric stable

random measures with stability parameters α(2−J l), l = 0, . . . , 2J − 1. Notice
that the approximation (23) is justified by [6, Theorem 2.6].

In Figure 1 there are some simulations. In Figure 2, for the same function α
as above.

3 Proof of the main result

The main two ideas of the proof of Theorem 21 are:

1. The use of the Abel’s summation rule in order to express Lj(u, v) in a con-
venient way (see Remark 31).
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Fig. 1: Multifractional multistable Riemann-Liouville process.

2. The use of the Doob’s maximal inequality for discrete submartingales in
order to derive, for each j ∈ N, a suitable upper for the supremum of the
absolute values of the partial sums τj,k, k ∈ {0, . . . , 2j−1}, of the multistable
random variables εj,0 , . . . , εj,2j−1 (see Remark 32, Lemma 1 and its proof).

The first idea is borrowed from [8] while the second one is completely new.

Remark 31 For all j ∈ Z+ and (u, v) ∈ [0, 1]× (1/α , 1), one sets

Lj(u, v) :=

2j−1∑
k=0

wj,k(u, v)εj,k =

[2ju]∑
k=0

wj,k(u, v)εj,k . (24)

One mentions in passing that the last equality in (24), in which [2ju] denotes
the integer part of 2ju, follows from (12) and (14). Using the Abel’s summation
rule one has that:

Lj(u, v) = τj,[2ju]wj,[2ju](u, v) +

[2ju]−1∑
k=0

τj,k (wj,k(u, v)− wj,k+1(u, v)) , (25)
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Fig. 2: Fractional multistable Riemann-Liouville processes.

where
{
τj,k : j ∈ Z+ and k ∈ {0, . . . , 2j − 1}

}
is the sequence of the multistable

random variables defined, for all j ∈ Z+ and k ∈ {0, . . . , 2j − 1}, as:

τj,k :=

k∑
m=0

εj,m =

∫
R

( k∑
m=0

h(2js−m)
)
Mα (ds) . (26)

Notice that the last equality in (26) follows from (16).

Remark 32 One knows from (16) and (8) that the multistable random variables
εj,k, j ∈ N and k ∈ {0, . . . , 2j − 1}, belong to Lγ(Ω,A,P), for all γ ∈ (0, α);
which in particular means that they are in L1(Ω,A,P) since α > 1; notice that
they are centered since their distributions are symmetric. Moreover, for each fixed
j ∈ N, the random variables εj,k, k ∈ {0, . . . , 2j−1}, are independent since the
random measureMα is independently scattered and the supports of the functions
h(2j • −k), k ∈ {0, . . . , 2j − 1}, are pairwise disjoints (up to Lebesgue negligible
sets). Thus, in view of the first equality in (26), it turns out that, for each fixed
j ∈ N, the sequence of random variables {τj,k}0≤k<2j is a discrete martingale
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with respect to the filtration (Aj,k)0≤k<2j−1 such that, for any k ∈ {0, . . . , 2j−2},
Aj,k denotes the smallest σ-algebra for which the random variables εj,0, . . . , εj,k
are measurable.

Lemma 1. There exists an event Ω∗ of probability 1 such that on Ω∗, one has,
for all fixed ζ > 1/α ,

sup
j∈Z+

{
(1 + j)−ζ sup

0≤k<2j
|τj,k|

}
< +∞. (27)

Proof (Proof of Lemma 1). Let ζ > 1/α and γ ∈ [1, α) be fixed and such that

ζ > 1/γ > 1/α . (28)

Observe z 7→ |z|γ is a convex function from R to R+, and one has E
(
|τj,k|γ

)
<

+∞, for all j and k (see the last equality in (26), (8) and (12)). Thus, it follows
Remark 32 and from [3, Theorem 10.3.3 on page 354], that, for each fixed j ∈ N,
the sequence of random variables

{
|τj,k|γ

}
0≤k<2j

is a discrete submartingale

with respect to the filtration (Aj,k)0≤k<2j−1. Hence, using the Doob’s maximal
inequality (see [3, Theorem 10.4.2 on page 360]) one has, for all positive real
number M ,

P
(

sup
0≤k<2j

|τj,k|γ > M
)
≤M−1E

(
|τj,2j−1|γ

)
. (29)

Observe that it follows from the last equality in (26), (8) and the fact that

∫
R

∣∣∣ 2j−1∑
m=0

h(2js−m)
∣∣∣α(s)ds = 1 ,

that
E
(
|τj,2j−1|γ

)
≤ κ3(γ), for all j ∈ Z+, (30)

where κ3(γ) is the same finite constant as in (8). Next, taking in (29) M =
(1 + j)γζ and using (30) and (28), one obtains that

+∞∑
j=1

P
(

sup
0≤k<2j

|τj,k| > (1 + j)ζ
)
≤ κ3(γ)

+∞∑
j=1

(1 + j)−γζ < +∞.

Thus, it follows from the Borel-Cantelli’s Lemma that the probability of the
event

Ω∗ζ :=

{
ω ∈ Ω : sup

j∈Z+

{
(1 + j)−ζ sup

0≤k<2j
|τj,k(ω)|

}
< +∞

}
is equal to 1. For finishing the proof, one sets

Ω∗ :=
⋂

ζ∈Q∩(1/α ,+∞)

Ω∗ζ

where Q denotes the countable set of the rational numbers.
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In order to derive Theorem 21, one also needs the following five lemmas whose
proofs are given in the Appendix A. From now on, for the sake of simplicity one
denotes by I the interval [0, 1].

Lemma 2. There exists a positive and finite constant c1 such that, for any
j ∈ N, for each (u, v) ∈ I × [a, b] satisfying u ≥ 4.2−j−1, and for all s ∈
[0, u− 4.2−j−1], the following inequality holds∣∣Ku,v(s)−Ku,v(s+ 2−j−1)−Ku,v(s+ 2.2−j−1) +Ku,v(s+ 3.2−j−1)

∣∣
≤ c12−j

(
2−jρα + 2−j |u− s− 3.2−j−1|a−1/α−2

)
. (31)

Lemma 3. There exists a positive and finite constant c2 such that, for any
j ∈ Z+ and (u, v) ∈ I × [a, b], the following inequality, in which [2ju] denotes
the integer part of 2ju, is satisfied∣∣wj,[2ju](u, v)

∣∣ ≤ c22−j(a−
1
α ). (32)

Lemma 4. There exists a positive and finite constant c3 such that, for any
j ∈ Z+ and (u, v) ∈ I × [a, b], one has

I1j (u, v) := 2j
∫ u−2−(j+1)

u−2·2−(j+1)

∣∣∣∣(u− s)v− 1
α(s) − (u− s− 2−j−1))

v− 1

α(s+2−j−1)

∣∣∣∣ds
≤ c32−j(a−

1
α ), (33)

with the convention that I1j (u, v) := 0 when u ≤ 2−(j+1).

Lemma 5. There exists a positive and finite constant c4 such that, for any
j ∈ Z+ and (u, v) ∈ I × [a, b], one has

I2j (u, v) := 2j
∫ u−2·2−(j+1)

u−3·2−(j+1)

∣∣∣∣(u− s)v− 1
α(s) − (u− s− 2−(j+1))

v− 1

α(s+2−j−1)

− (u− s− 2 · 2−(j+1))
v− 1

α(s+2·2−j−1)

∣∣∣∣ds
≤ c42−j(a−

1
α ), (34)

with the convention that I2j (u, v) := 0 when u ≤ 2 · 2−(j+1).

Lemma 6. There exists a positive and finite constant c5 such that, for any
j ∈ Z+ and (u, v) ∈ I × [a, b], one has

I3j (u, v) := 2j
∫ u−3·2−(j+1)

u−4·2−(j+1)

∣∣∣∣(u− s)v− 1
α(s) − (u− s− 2−(j+1))

v− 1

α(s+2−j−1)

− (u− s− 2 · 2−(j+1))
v− 1

α(s+2·2−j−1)

+ (u− s− 3 · 2−(j+1))
v− 1

α(s+3·2−j−1)

∣∣∣∣ds
≤ c52−j(a−

1
α ), (35)

with the convention that I3j (u, v) := 0 when u ≤ 3 · 2−(j+1).
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We are now in position to prove Theorem 21.

Proof (Proof of Theorem 21). Let J ∈ N, Q ∈ N, (u, v) ∈ I × [a, b] and ω ∈ Ω∗
be arbitrary and fixed. Using (17), (24), (25), the triangular inequality, (14) and
(12), one gets that

∣∣XJ+Q(u, v, ω)−XJ(u, v, ω)
∣∣ =

∣∣∣∣∣
J+Q−1∑
j=J

Lj(u, v, ω)

∣∣∣∣∣
≤
J+Q−1∑
j=J

(
sup

0≤k<2j
|τj,k(ω)|

)(
|wj,[2ju](u, v)|+

[2ju]−1∑
k=0

|wj,k(u, v)− wj,k+1(u, v)|
)

=

J+Q−1∑
j=J

(
sup

0≤k<2j
|τj,k(ω)|

)(
|wj,[2ju](u, v)|

+

[2ju]−1∑
k=0

∣∣∣∣2j ∫ (k+1/2)2−j

k2−j

(
Ku,v(s)−Ku,v(s+ 2−j−1)−Ku,v(s+ 2 · 2−j−1)

+Ku,v(s+ 3 · 2−j−1)
)
ds

∣∣∣∣
)

≤
J+Q−1∑
j=J

(
sup

0≤k<2j
|τj,k(ω)|

)(
|wj,[2ju](u, v)|

+ 2j
∫ u−2−j−1

0

∣∣∣Ku,v(s)−Ku,v(s+ 2−j−1)−Ku,v(s+ 2 · 2−j−1)

+Ku,v(s+ 3 · 2−j−1)
∣∣∣ds). (36)

Next, putting together (36), (10) and Lemmas 1 to 6, one obtains, for any fixed
ζ > 1/α, that:

∣∣XJ+Q(u, v, ω)−XJ(u, v, ω)
∣∣ ≤ C ′(ω)

J+Q−1∑
j=J

(1 + j)ζ
(

2−jmin{a− 1
α ,ρα} + 2−j

·
∫ u−4·2−j−1

0

(u− s− 3 · 2−j−1)a−1/α−2ds
)

≤ C”(ω)

J+Q−1∑
j=J

(1 + j)ζ2−jmin{a− 1
α ,ρα} ≤ C”(ω)

+∞∑
j=J

(1 + j)ζ2−jmin{a− 1
α ,ρα},

(37)

where C ′ and C” are two positive and finite random variables not depending on
J , Q and (u, v). Thus, one can derive from (37) that (XJ(·, ·, ω))J∈N is a Cauchy
sequence in the Banach space C(I × [a, b]); its limit in this space is denoted by

X̃(·, ·, ω).
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Let us now prove that (19) is satisfied. When Q goes to +∞, it follows from
(37) that

∣∣X̃(u, v, ω)−XJ(u, v, ω)
∣∣ ≤ C”(ω)

+∞∑
j=J

(1 + j)ζ2−jmin{a− 1
α ,ρα}

≤ C”(ω)(1 + J)ζ2−J min{a− 1
α ,ρα}

+∞∑
j=0

(1 + j)ζ2−jmin{a− 1
α ,ρα}

≤ C ′′′(ω) Jζ2−J min{a− 1
α ,ρα}, (38)

where C ′′′ is a positive and finite random variable not depending on J and (u, v).
Thus, (38) implies that (19) holds.

A Appendix

Proof (Proof of Lemma 2). One assumes that j ∈ N and (u, v) ∈ I × [a, b] are
arbitrary and such that u ≥ 4.2−j−1. Then, one denotes by Lu,v the infinitely
differentiable function on the open set (−∞, u)× (1/v,+∞) ⊂ R2 defined as:

Lu,v(x, y) := (u− x)v−1/y , for all (x, y) ∈ (−∞, u)× (1/v,+∞). (39)

Thus, using (10), one has

Ku,v(z) = Lu,v
(
z, α(z)

)
for all z ∈ [0, u− 2−j−1]. (40)

One can derive from (40) and the triangular inequality that, for every s ∈ [0, u−
4.2−j−1],∣∣Ku,v(s)−Ku,v(s+ 2−j−1)−Ku,v(s+ 2.2−j−1) +Ku,v(s+ 3.2−j−1)

∣∣
=
∣∣∣Lu,v(s, α(s))− Lu,v(s+ 2−j−1, α(s+ 2−j−1))

− Lu,v(s+ 2.2−j−1, α(s+ 2.2−j−1)) + Lu,v(s+ 3.2−j−1, α(s+ 3.2−j−1))
∣∣∣

≤ Aju,v(s) +Bju,v(s), (41)

where

Aju,v(s) :=
∣∣∣Lu,v(s, α(s))− Lu,v(s+ 2−j−1, α(s+ 2−j−1))

− Lu,v(s+ 2.2−j−1, α(s)) + Lu,v(s+ 3.2−j−1, α(s+ 2−j−1))
∣∣∣ (42)

and

Bju,v(s) :=
∣∣∣Lu,v(s+ 2.2−j−1, α(s))− Lu,v(s+ 3.2−j−1, α(s+ 2−j−1))

− Lu,v(s+ 2.2−j−1, α(s+ 2.2−j−1))

+ Lu,v(s+ 3.2−j−1, α(s+ 3.2−j−1))
∣∣∣. (43)
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First step: The goal of this step is to provide a suitable upper bound for
the quantity Aju,v(s).

For any fixed s ∈ [0, u−4.2−j−1], one denotes by g1,s the infinitely differentiable
function defined as:

g1,s :

{
[0, 2−j ] −→ R
x 7−→ Lu,v(s+ x, α(s))− Lu,v(s+ 2−j−1 + x, α(s+ 2−j−1)).

(44)

Thus, it follows from (42) that Aju,v(s) =
∣∣g1,s(2−j) − g1,s(0)

∣∣. Then using the

mean value theorem, one obtains that Aju,v(s) = 2−j |g′1,s(x∗)|, for some x∗ ∈
(0, 2−j−1). Therefore, one can derive from (44), (39), the triangular inequality
and the inequalities |v − 1/α(s+ 2−j−1)| < 1 and |v − 1/α(s)| < 1 that

Aju,v(s) ≤ 2−j
(∣∣∣(u− s− 2−j−1 − x∗)v−1−1/α(s+2−j−1)

− (u− s− 2−j−1 − x∗)v−1−1/α(s)
∣∣∣

+
∣∣∣ 1

α(s+ 2−j−1)
− 1

α(s)

∣∣∣(u− s− 2−j−1 − x∗)v−1−1/α(s)

+
∣∣∣(u− s− 2−j−1 − x∗)v−1−1/α(s) − (u− s− x∗)v−1−1/α(s)

∣∣∣) . (45)

Next, notice that it follows from the assumption α ∈ C1+ρα(I), (1), x∗ ∈
(0, 2−j−1) and v ∈ [a, b], that∣∣∣ 1

α(s+ 2−j−1)
− 1

α(s)

∣∣∣(u− s− 2−j−1 − x∗)v−1−1/α(s)

≤ c12−j−1(u− s− 2−j−1 − x∗)v−1−1/α(s)

≤ c12−j−1(u− s− 3.2−j−1)a−1−1/α , (46)

where c1 is a constant not depending on j, u, s, v. Thus, using (45) and (46), and
applying the mean value theorem to the functions:

g2,s,x∗ :

{
[0, 2−j−1]→ R
w 7−→ (u− s− x∗ − w)v−1−

1
α(s)

g3,s,x∗ :

{
[α(s) ∧ α(s+ 2−j−1), α(s) ∨ α(s+ 2−j−1)]→ R
z 7−→ (u− s− 2−j−1 − x∗)v−1−

1
z

,

one obtains that

Aju,v(s) ≤ c22−2j
(

(u− s− 3.2−j−1)a−1−1/α + (u− s− 3.2−j−1)a−2−1/α

+ | log(u− s− 2−j−1)|(u− s− 3.2−j−1)a−1−1/α
)

≤ c22−2j
(

2(u− s− 3.2−j−1)a−2−1/α + | log(u− s− 2−j−1)|

· (u− s− 3.2−j−1)a−1−1/α
)
, (47)
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where c2 is a constant not depending on j, u, s, v. Finally, combining (47) and
the inequality | log(x)| ≤ x−1, for all x ∈ (0, 1], one gets that

Aju,v(s) ≤ c32−2j(u− s− 3.2−j−1)a−2−1/α , (48)

where c3 is a constant not depending on j, u, s, v.
Second step: The goal of this step is to provide a suitable upper bound for

the quantity Bju,v(s).

In view of (43), the quantity Bju,v(s) can be rewritten as:

Bju,v(s) =
∣∣∣(Lu,v(s+ 2.2−j−1, α(s))− Lu,v(s+ 2.2−j−1, α(s+ 2.2−j−1))

)
−
(
Lu,v(s+ 3.2−j−1, α(s+ 2−j−1))

− Lu,v(s+ 3.2−j−1, α(s+ 3.2−j−1))
)∣∣∣.

Thus applying the mean value theorem to the functions

g4,s :

{
[α(s) ∧ α(s+ 2.2−j−1), α(s) ∨ α(s+ 2.2−j−1)] −→ R
y 7−→ Lu,v(s+ 2.2−j−1, y),

g5,s :

{
[α(s+ 2−j−1) ∧ α(s+ 3.2−j−1), α(s+ 2−j−1) ∨ α(s+ 3.2−j−1)] −→ R
y 7−→ Lu,v(s+ 3.2−j−1, y).

and putting together the triangular inequality, the assumption α ∈ C1+ρα(I),
(1), v ∈ [a, b], and the equality

df − gh = d(f − h) + h(d− g) , for all d, f, g, h ∈ R,

one obtains, for some

y∗ ∈
(
α(s) ∧ α(s+ 2.2−j−1), α(s) ∨ α(s+ 2.2−j−1)

)
(49)

and

y∗∗ ∈
(
α(s+ 2−j−1) ∧ α(s+ 3.2−j−1), α(s+ 2−j−1) ∨ α(s+ 3.2−j−1)

)
, (50)

that

Bju,v(s) ≤ c42−j(1+ρα)
∣∣∣ 1

y2∗
log(u− s− 2.2−j−1)

∣∣∣(u− s− 2.2−j−1)a−1/α

+ c42−j
∣∣∣( 1

y2∗
− 1

y2∗∗

)
log(u− s− 2.2−j−1)

∣∣∣(u− s− 2.2−j−1)a−1/α

+ c42−j
∣∣∣∣ 1

y2∗∗
log(u− s− 2.2−j−1)

∣∣∣∣ ∣∣∣(u− s− 2.2−j−1)v−1/y∗

− (u− s− 2.2−j−1)v−1/y∗∗
∣∣∣

+ c42−j
∣∣∣∣ 1

y2∗∗

(
(u− s− 2.2−j−1)v−1/y∗∗ log(u− s− 2.2−j−1)

− (u− s− 3.2−j−1)v−1/y∗∗ log(u− s− 3.2−j−1)
)∣∣∣ , (51)
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where c4 is a constant not depending on j, u, s, v, y∗, y∗∗ . Next, notice that using
(1), (49), (50) and the assumption α ∈ C1+ρα(I), one gets that

max
{ 1

y2∗
,

1

y2∗∗

}
< 1 (52)

and∣∣∣ 1

y2∗
− 1

y2∗∗

∣∣∣ =∣∣∣y2∗∗ − y2∗
y2∗∗y

2
∗

∣∣∣ ≤ 4 |y∗∗ − y∗| ≤ 4
∣∣ max
0≤i≤3

α(s+ i2−j−1)− min
0≤i≤3

α(s+ i2−j−1)
∣∣

≤ c52−j , (53)

where c5 is a constant not depending on j, u, s, v, y∗, y∗∗ . Also, notice that ap-
plying the mean value theorem to the function

g6,s :

{
[y∗ ∧ y∗∗, y∗ ∨ y∗∗] −→ R
x 7−→ (u− s− 2.2−j−1)v−1/x

and using v ∈ [a, b], y∗, y∗∗ ∈ (α, α), the second and the third inequality in (53),
one obtains that∣∣∣(u− s− 2.2−j−1)v−1/y∗ − (u− s− 2.2−j−1)v−1/y∗∗

∣∣∣
≤ c62−j(u− s− 2.2−j−1)a−1/α

∣∣ log(u− s− 2.2−j−1)
∣∣ , (54)

where c6 is a constant not depending on j, u, s, v, y∗, y∗∗ . Moreover, notice that
applying the mean value theorem to the function

g7,s,y∗∗ :

{
[0, 2−j−1] −→ R
x 7−→ (u− s− 2.2−j−1 − x)v−1/y∗∗ log(u− s− 2.2−j−1 − x)

and making use of v ∈ [a, b] and y∗, y∗∗ ∈ (α, α), it follows that∣∣∣(u− s− 2.2−j−1)v−1/y∗∗ log(u− s− 2.2−j−1)

− (u− s− 3.2−j−1)v−1/y∗∗ log(u− s− 3.2−j−1)
∣∣∣

≤ c72−j(u− s− 3.2−j−1)a−1/α−1
(

1 + log(u− s− 3.2−j−1)
)
, (55)

where c7 is a constant not depending on j, u, s, v, y∗, y∗∗ . Next putting together
(51) to (55), one gets that

Bju,v(s) ≤ c42−j(1+ρα)
∣∣ log(u− s− 2.2−j−1)

∣∣(u− s− 2.2−j−1)a−1/α

+ c82−2j
(

(u− s− 2.2−j−1)a−1/α
∣∣ log(u− s− 2.2−j−1)

∣∣
+ (u− s− 2.2−j−1)a−1/α log2(u− s− 2.2−j−1)

+ (u− s− 3.2−j−1)a−1/α−1
(

1 + log(u− s− 3.2−j−1)
))

, (56)
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where c8 is a constant not depending on j, u, s, v, y∗, y∗∗ . Then, one can derive
from (56) and the inequalities

sup
z∈(0,1]

| log(z)|za−1/α < +∞, sup
z∈(0,1]

| log2(z)|za−1/α < +∞ and | log(x)| ≤ |x|−1 ,

for all x ∈ (0, 1], that

Bju,v(s) ≤ c9
(
2−j(1+ρα) + 2−2j |u− s− 3.2−j−1|a−1/α−2

)
, (57)

where c9 is a constant not depending on j, u, s, v . Finally combining (41), (48)
and (57), one obtains (31).

Proof (Proof of Lemma 3). It easily follows from (14), (12), (10), (1) and the
assumption that v ∈ [a, b] that∣∣wj,[2ju](u, v)

∣∣ ≤ 2j
∫ u

2−j [2ju]

(u− s)v−
1

α(s) ds

≤ 2j
∫ u

2−j [2ju]

2−j(a−1/α)ds ≤ 2−j(a−1/α).

The proofs of Lemmas 4, 5 and 6 are very similar so we only give that of
Lemma 6.

Proof (Proof of Lemma 6). Let j ∈ Z+ and (u, v) ∈ I × [a, b] be arbitrary and
such that u > 3 · 2−(j+1). In view of the assumptions on (u, v) and (1), it can
easily be seen that, for all s ∈ [u − 4 · 2−(j+1), u − 3 · 2−(j+1)] and for any
q ∈ {0, 1, 2, 3}, one has

0 ≤
(
u− s− q · 2−(j+1)

)v− 1

α(s+q·2−j−1)

≤
(
7 · 2−(j+1)

)v− 1

α(s+q·2−j−1) ≤ 7b−1/α · 2−(j+1)(a−1/α) .

Thus, using the triangular inequality one gets that

I3j (u, v) := 2j
∫ u−3·2−(j+1)

u−4·2−(j+1)

∣∣∣(u− s)v− 1
α(s) −

(
u− s− 2−(j+1)

)v− 1

α(s+2−j−1)

−
(
u− s− 2 · 2−(j+1)

)v− 1

α(s+2·2−j−1)

+
(
u− s− 3 · 2−(j+1)

)v− 1

α(s+3·2−j−1)

∣∣∣ds
≤ 2j

∫ u−3·2−(j+1)

u−4·2−(j+1)

4 · 7b−1/α · 2−(j+1)(a−1/α)ds

= 2−1 · 4 · 7b−1/α · 2−(j+1)(a−1/α) ,

which shows that (35) is satisfied.
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