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Abstract. This paper investigates the contemporaneous as well as the
causal relationship between trading volume and a new measure of volatil-
ity based on the pointwise Holder regularity of price process. Using daily
data of Nikkei 225 index, evidence of contemporaneous correlation is
found. A vector autoregressive (VAR) analysis is employed to test the
dynamic relationship and a bidirectional causality is shown.
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1 Introduction

One of the most debated topics in financial research is represented by the volume-
volatility relation. A large body of literature has investigated their association
from both an empirical and theoretical point of view. In fact, according to [30],
the volume-volatility relationship may help to better understand some mecha-
nisms of financial markets including, for example, the prediction of market move-
ments for technicians as well as the the appropriate model for the distribution of
stock prices. Two main information theories have been developed: the Mizture
of Distributions Hypothesis (MDH) and the Sequential Arrival of Information
Hypothesis (SATH). The former — introduced by [12] in 1973 — suggests that the
volatility is positively related to trading volume because of its dependence of a
common latent mixing variable represented by the rate of information arrival
(see, e.g., [17], [42] and [24]). In particular, the MDH posits that both volume
and volatility are driven by the same underlying information flow and, for this
reason, they do change contemporaneously as soon as information is processed by
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market participants. Despite many empirical contributions have confirmed the
validity of MDH in several markets with different frequency of data (see, e.g.,
(31], [4], [9], [32], [10], [11] and [29] among others), some authors either have not
found any relation ([23] and [15]) or have shown a negative relation when the
jump component of volatility was considered or turbulent markets were exam-
ined ([21], [2], [22] and [43]). In fact, as pointed out by [8], the MDH is based on
a possible statistical explanation for the positive volume—volatility relationship
but it remains silent about the underlying economic mechanisms that governs
the link between trades and price adjustments to the news. An extension of MDH
(the modified MDH model) which includes informational asymmetries is due to
Andersen [1]. Under the modified MDH assumptions, the positive relationship
between volume and volatility is mainly driven by informed traders, while lig-
uidity volume is unrelated to return volatility. On the other hand, Copeland in
1976 ([14]) introduced the sequential arrival of information hypothesis to explain
the evidence of a lead-lag relationship between return and volumes. The model
assumes that the information is asymmetrically distributed and spreads sequen-
tially from one trader to another. Later, Copeland’s analysis was extended by
[37], [27] and [28]. Since the 1990s, the financial researches have moved their
interest to causal relation between price changes and trading volume. Typically,
unidirectional and/or bidirectional causality between these variables has been
addressed by the vector autoregressive (VAR) analysis and/or Granger causal-
ity tests. Analyzing stock indexes from emerging markets, [41] finds that volume
seems to lead volatility but not viceversa as well as [10] for S&P500 index.
Studying Asian markets, [11] reveals that, for a sample of ten indexes, volatility
implies volumes while only the indexes of Japan and Taiwan show evidence of
volume leading volatility. Examining stock and foreign markets, the results of
Chen and Daigler [9] show a one-way Granger causation from volatility to vol-
ume. A significant bidirectional causality between price variability and volume
was found by [25] for DJIA index as well as [32] for S&P500, TOPIXS and FTSE
indexes. Same results are obtained by [33] and [34] for 1-minute intraday data
from Taiwan stock exchange.

This study differs from other studies on the volume-volatility relationship be-
cause the measure of volatility is calculated exploiting the pointwise regularity of
the price process. We examine both the contemporaneous and dynamic relation
for Nikkei 225 index from July 2002 to November 2017. Our results confirm the
validity of MDH which predicts a simultaneous positive association. As to the
the causal relation, a bidirectional causality is found but to different extent.

2 The model and volatility estimation

The empirical applications of this work are based on the assumption that the dy-
namic of a stock index does follow a particular stochastic process — referred to as
multifractional Brownian motion (mBm) — which has been proved to size many
empirical features displayed by actual time series, i.e. the so-called “stylized
facts” (see [13] for an exhaustive literature). The mBm represents an extension
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of the well-known fractional Brownian motion (fBm) introduced by the semi-
nal paper of [35] as a moving average of the ordinary Brownian motion (oBm).
Briefly, the fBm displays a slowly decaying autocorrelation function which de-
pends on the parameter H (named Hurst or Holder parameter) belonging to the
interval (0, 1] (see [36] for a survey bibliography). The increments of fBm are the
only zero-mean Gaussian, stationary, self-similar! sequence with an autocovari-
ance function g(h) = KTZ{(h +1)2H —2pH 4 |h — 12}, where h > 0 represents
the lag and K is a scale factor. It is well known that: (1) if 0 < H < 1/2
the motion displays antipersistence (positive increments tend to be followed by
negative increments and viceversa); (2) if 1/2 < H < 1 {Bm shows persistence
(increments tend to be followed by increments of the same sign). Finally, when
H = 1/2 fBm reduces to the ordinary Brownian motion (see [19] for details).
The generalization of fBm leads to mBm under the assumption that the Hurst
parameter does vary over time becoming a Holder function? H : (0, 00) +— (0, 1].
The mBm — introduced independently by [40] and [3] — is a Gaussian process
that admits the following non anticipative moving average representation

Mato wo(®) = K(0)-Vifs [ fi(s)an(s (1)

with f,() = T {|t — s[O3 y(s) — |S|H(t)_%l(—oo,0](s)} where
Vi (1)is a normalizing function, K (¢) is a scaling function and B(-) is the Brown-
ian motion (see [5] for details). Notice that when H (¢t) = H the fBm is recovered
as special case of the mBm.

Basically, two main approaches have been developed to estimate H(t) : 1) the
generalized quadratic variations ([26]); 2) the absolute moments of a Gaussian
random variable ([39] and [5]). For our purpose, we will adopt a well-known esti-
mator introduced in [6] (see [7] for details), that measures the Holder pointwise
regularity at point ¢ along the trajectory of process X; = log(P;), where P, is
the stock price. In particular, sampling in discrete time ¢, X,,(n = 1,..., N), and
denoting by K the unit time variance, the estimator (of order k and lag ¢) is
defined in terms of moving average of size ¢ as

f{t];q,N,K(t) = log (ﬁs‘;’q’N(t)/ (2k/2f(%)Kk)) o

klog (ﬁ)

Do X G+ -X ()
6—q+1

where S5 4 n(t) = andt=0+1,---,N+1—gq.

! The stochastic process {X(t),t € T} is said self-similar with parameter H if for
any a > 0 {X(at) & a™ X (t)}, where the equality holds for the finite-dimensional
distributions of the process (see, e.g. [16]).

2 Let {Y(t),dy} and {Z(t), dz} be two metric spaces, the function f : Y — Z is called
Hélder function with exponent v > 0 if, for each x,y € Y such that dy(z,y) < 1
there exists a constant k such that dz(f(z), f(y)) < kdy (z,y)”.
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In this regard, some issues deserve a concise discussion in light of empirical
applications. It has been shown that £ = 2 and ¢ = 1 are the optimal values
which minimize the variance of estimator (2) (see e.g. [6]) while the choice of
the size of ¢ is critical. From a financial point of view, § represents the window
in which information is assumed not to change significantly and this means
assuming the normal distribution for data. Since the variance of the estimator
(2) decreases with ¢, the larger § the smoother the estimates but — at the same
time — the larger the pointwise information lost. Empirical evidence for financial
time series (see, e.g. [7] and [19], among others) along with the good rate of
convergence (O(6~/2log='N)) of estimated H(t) suggest a range of variation
for § of 20-30 datapoints. In this study, we set 6 = 21, which represents about a
trading month.

As H(t) is the punctual Holder exponent of mBm at point ¢, the process is
locally asymptotically self-similar with index H(t) (see e.g. [3]) in the sense that

- My n, g (rn) (E+ hu) = My @) (t) a
R g = Bk )

with v € R. The previous distributional equality means that at any point ¢
there exists a fBm with parameter H(t) tangent to mBm. This indicates that
mBm locally behaves like a fBm of a given Holder exponent. For this reason,
in light of the meaning of the Hurst parameter of a fBm previously discussed,
it is natural to interpret H(¢) as a measure of volatility. In order to reinforce
our consideration, fig. 1 displays the exponential interpolation of the standard
deviation of log-variations against the corresponding estimates of H (t) calculated
for the Nikkei 225 index that will be used in the following applications. Table 1
reports the results of the goodness of fit. When the market volatility increases
(decreases) the corresponding pointwise exponent decreases (increases) following
an exponential trend. The advantage of using the pointwise Holder exponent
instead of the simple standard deviation as a measure of volatility relies in the
fact that the estimation of H(t) is linked to the concept of market efficiency in
the sense of Fama [18] (see [7] for an exhaustive discussion) and this allows to
measure the efficiency of the analyzed stock or index for all time ¢ belonging to
the time domain.

Table 1. Exponential regression: std, = a - exp”

a b sse rmse  RZ

0.703 —8.259 0.0032 0.0009 0.982
(0.694,0.712) (—8.277, —8.231)
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Fig. 1. Exponential interpolation: standard deviation versus the estimated pointwise
Holder exponent.

3 Empirical applications

3.1 Data and preliminary analysis.

The analysis concerns the daily closing prices and trading volumes of Nikkei 225
index from July 8th, 2002 to November 2nd, 2017. Let AP, = In p‘;”jl denote
the log-variations, where p; represents the daily closing stock index. In line with
previous literature, in order to stabilize the variability of the trading volume
series and to reduce the non-normality of distributions, the raw trading volumes
are firstly transformed by natural logarithm (see e.g. [10]) and then filter out?
by the their trend to avoid spurious regressions, according to a consolidated pro-
cedure (see e.g. [9], [38] and [21] among others). Furthermore, for each trading
month we calculate the corresponding mean of detrended volume (v;). As to the
estimates of the pointwise Holder exponent?, these are obtained applying equa-
tion (2) with § = 21, k = 2 and ¢ = 1, as discussed in the previous paragraph.
The Augmented Dickey-Fuller (ADF) test for the stationarity of series as well
as descriptive statistics of variables are reported in Table 2 °.

It can be seen that log-variations behave similarly to what we usually ob-
serve in the literature: they exhibit an excess of kurtosis and are left-skewed. In

3 In fact, as pointed out by Tauchen et al. [42]: “any variance-volume study should
include preliminary tests for trend in the volume of trading”.

4 We adopt an in-house software running in MatLab R2015a and developed by the
QuantLab (Laboratory of Applied Mathematics) at the UCLAM.

® For the estimated H;, the Augmented Dickey-Fuller test with drift variant has been
developed. Critical values for ADF test are: —3.44 (1%), —2.87 (5%) and —2.57
(10%).
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Table 2. Descriptive Statistics

Log-variations ~ Estimated Hy Log-volumes (detr.)

mean 1.7705* 0.4904 —3.4824 ™%
max 0.1323 0.6245 1.4479
min —0.1211 0.2741 —1.6291
std 0.0151 0.0505 0.3428
skew —0.4822 —0.4630 0.0324
kurt 10.2939 4.2641 3.4805
ADF —63.5825 —4.3062 —18.4714

*x10~ %, ¥k %1010,

addition, the mean value of the estimated pointwise Holder exponent is approx-
imately %; this is strongly consistent with the literature claiming that markets
are efficient over long time span. Clearly, the hypothesis of a unit root process is
rejected for each series, allowing for a vector-autoregressive analysis. Fig. 2 shows
the log-variations (top panel) and the corresponding estimates of H; (bottom
panel).

Log-variations
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Pointwise Holder exponent
0.7 T T
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Fig. 2. Log-variations (top panel). Pointwise Holder exponent (bottom panel) for
Nikkei 225 index.

The mean-reverting property displayed by the pointwise Holder exponent
— which swings around 0.5 (market efficiency) — reveals its capability to cap-
ture the stylized fact of volatility clustering. Indeed, the estimates of H(t) range
from significant antipersistence (the minimum value is about 0.27) to signif-
icant persistence (the maximum value is about 0.62). An evident feature of
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this pattern is that quite flat and relatively long periods alternate to sudden
and large downward movements which are followed in their turn by a gradual
upward movements. This mechanism admits the following explanation: when
uncertainty dominates the market, the confidence of investors reduces and the
pointwise Holder exponent declines itself toward 0.5 or toward lower values. This
effect is particularly pronounced in reference to the period of September-October
2008 (Lehman Brother collapse). The great uncertainty of financial market gen-
erated high volatility punctually captured by the estimator with low peaks of
H(t) around the level 0.30.

3.2 Analysis of the volume-volatility relation

We begin our analysis by investigating the simultaneous relation between volatil-
ity and volumes. Fig. 3 presents a scatterplot of (detrended) volumes against the
log-variations of index. The scatterplot shows that, for the most part, large log-
variations are associated with generally high volume. This behavior is consistent
with existing findings on the contemporaneous positive correlation between the
magnitude of price movements and volume. Particularly, the V-shape relation
strongly corroborates the theoretical (see, e.g. [30]) as well as the empirical (see,
e.g. [20]) results achieved in literature.

-0.5~

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Fig. 3. Scatterplot of volumes against log-variations.

To formalize the previous intuition, we examine the simultaneous volume-
volatility relation by running the following simple regression:

ve=qap+a1Hy + e (3)
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The results are reported in table 3 while fig. 4 presents a scatterplot of stock
index volatility versus volume. The pattern in the figure supports the contem-
poraneous positive correlation between the stock index volatility and volume, as
required by the Mixture of Distributions Hypothesis model. In fact, the slope
parameter o is negative and significant at 1% level. This means that when
volatility increases (H (t) decreases) then the volume increases itself, according
to MDH. It is interesting to note in fig. 4 that when H (t) is close to 0.5 (market
efficiency) the relation seems to be less pronounced. This may deserve future
investigations.

Table 3. Linear regression: v; = ag + a1 Hy + €¢

2
o [e%1 sse rmse R

1.115 —2.262 11.950 0.261 0.163
(0.737,1.492) (—3.026, —1.497)

0.8 . + v, vs. H
— Linear fitting

0.6 : : -
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Fig. 4. Dataplot of contemporaneous volume-volatility relation. Blue line represents
the linear interpolation through OLS.

In order to analyze the causal relation between volume and volatility, a vec-
tor autoregressive analysis is performed. In general, denoted by r; and v the
volatility (or return) and volume at time ¢, the following bivariate VAR model
is used for financial applications (see, e.g. [10] and [11]):

vy =a+ Z bivi—; + Z CiTi—i + ey (4)
i i
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re =d+ Zgﬂ"t—i + Z hivi_i + ug (5)
i i

The lag length in equations (4) and (5) is usually chosen according to a
particular information criterion®. For our purpose, using monthly measures, we
set ¢ = 1 and run the following regressions:

vy =a+bvi_1 +c1Hi_q1 + e (6)
Hy=d+giHi—1 +hivimr + (7)

The corresponding outputs are shown in table 4.

Table 4. VAR estimation results

Dep. variable H; Vg

Constant 0.236" 0.335"
(7.24) (2.93)
H; 4 0.520" —0.723"
(7.86) (17.95)

Vi—1 —0.027* 0.793*
(—2.31) (—2.94)

rmse 0.041 0.153

Adj. R? 0.346 0.711
F stat. 47.60 218.00

Notes: 1) t-statistics are reported in parentheses.
2) * indicates significance at the 1% level.

The results indicate that past trading volume and volatility significantly af-
fect the current volatility and current trading volume (bidirectional effect) but
to different extent. In fact, despite the concordance of sign displayed by coeffi-
cients of lagged variables, the capability of past volatility to lead current volume
is greater than viceversa as one can note by looking at the size of corresponding
coefficients. These results corroborate the findings of [25], [32], [33] and [10],
among others.

4 Conclusion

The relation between stock price volatility and trading volume has gained a
remarkable attention over the past three decades in the field of finance. Using

5 The most used are the Akaike information criterion (AIC) and/or Bayesian infor-
mation criterion (BIC).
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data for the Nikkei 225 index from July 2002 to November 2017, we study both
the contemporaneous and causal relation by measuring the market volatility
in a different way with respect to traditional approaches. In fact, assuming the
stock index to follow a multifractional Brownian motion, we estimate the market
volatility by means of the pointwise Holder regularity of the price process.

Our findings reveal a contemporaneous positive correlation between volatility
and volume, according to the Mixture of Distributions Hypothesis theory. In this
regard, further investigations may involve the concept of informational efficiency
at the aim to understand the economic mechanisms that governs the link between
trades and price adjustments to the news.

As to the causal relation, a vector autoregressive analysis has been developed.
Our results show a general bidirectional causal volume-volatility relationship but
to different extent. In particular, the past volatility seems to be more appropriate
in predicting current volume than viceversa.
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