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Abstract. The purpose of this paper is to relate the notion of random-
ness to the granularity of the data sampled over parametrized discrete
time intervals. Indeed, data defined over infinitesimal small time intervals
compared to larger ones affect the randomness due to the information
embedded in their granularity: larger and smaller granular intervals, as
well as limit (and parametrized) intervals necessarily affect data measure-
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on some stochastic processes widely used in finance.
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1 Introduction: Financial modelling and the origins of
randomness

Randomness and its definitions underly a finance seeking to predict the future.
To do so, it nurtures the past, often contributing to a “capital” of experience
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and know-how as well as learning the underlying processes that categorize the
unknown future. Engineering the future of finance is then embedded in our artic-
ulating randomness and its forms. In such contexts, randomness, as for unknown
factors and origins, defines an “uncertainty” completing theories and models of
finance.
The conventional financial theory based on Walras 1877 general theory of eco-
nomic equilibrium [29] (albeit in a deterministic framework) provided non-random
estimates of converging equilibrium prices. Arrow-Debreu extended Walras’ frame-
work to an expected estimate of future prices known as risk neutral pricing.
However, theories that compensate unknown futures are necessarily incomplete,
as revealed by financial data, financial crises and “Gurus”, each pointing to
demise the Complete Markets. Rare and unlikely events are found to be far
more common than presumed, and the unpredictable seems to recur. Soros,
backed by a personal financial success, related markets to nonlinearities, in par-
ticular to reflexivity and the Hola effect. Further, traditional financial systems
based on financial intermediaries, globalization, dominant financial agents and
large firms, among many other elements have challenged fundamental financial
models. More and more, these are perceived as unsatisfactory, and their limits
trace back to the origin itself of the notion of randomness defining stochastic
models of finance. Traditionally, Adam Smith – challenging financial, economic
dogma – prices in terms of Needs, Scarcity and Exchange. These elements have
allowed an individual perspective for the measurement, valuation models and
financial prices. Randomness intruded through the “uncertainty” described by
stable normal distributions, justified by statistical assumptions such as indepen-
dent sampled “errors” aggregated and made tractable by statistical rules. The
current analysis of financial and Big Data awoke an awareness of the unknown,
of a greater complexity raising questions not fully addressed by existing models
[4], [3], [5].
The purpose of this paper is to elaborate a definition of randomness based on
“data granularity”, information and the speed of convergence of parametrized
discrete data intervals, and their statistical limits. For example, data defined
over infinitesimal small time intervals compared to larger ones affect the finan-
cial randomness due to the information that data granularity provides: larger
and smaller granular intervals, as well as limit (and parametrized) intervals nec-
essarily define data measurements. Below, we resume and introduce a partial
number of origins of randomness upended to financial models. Our intent is to
provide an appreciation of both.

2 Brownian Motion randomness

Brownian Motion underlies financial models such as random walks, lognormal
model and others. Randomness is then defined by singular and independent nor-
mal events. They are based on simplifying assumptions, all of which are either
explicit or implicit, expressing two statistical properties: the data drift and its
volatility, with a Brownian Motion randomness. Similarly, the randomness of
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surrogate Poisson jump processes is defined by independent inter-events time
distributions resulting from the time limit of counting discrete Negative Bino-
mial Distributions (NBD). “Randomness” is is therefore the outcome of models
and data defined, measured and manipulated that converge to a modeling dis-
tribution. In this sense, randomness is actually an “artificial, intelligent and
incomplete” measure of randomness. To further complete it, complex and multi-
variable models are used to account and bridge data and models by observations
we fail to better explain. These result in models that assume a recognized ra-
tionality acquired, based on theoretical econometric analyses. Such an approach
is conventional, relatively simple and useful, and provides an ex-ante interpre-
tation of data and of its randomness. However, ex-post, randomness is defined
by a divergence realized by data and its expectation. For example, Bayesian
analysis of stock prices is based on three distributions: a prior distribution ac-
counting for past data, a posterior distribution accounting for an updated prior
distribution by current data, and a future distribution we are mostly concerned
by, which is presumed to be a function of the randomness and the vagaries of
factors we cannot assert for sure. A functional assumption of randomness then
simplifies their treatment. For example, let us say that the randomness of past
data is defined by normal probability distributions, while an updated posterior
distribution is also normal. Such an approach is therefore a simplification and a
stable definition of randomness. In a temporal setting, let the Brownian Motion
definition of randomness, at times t, s, t > s, be defined by two random events
R(t) and R(s), stationary and independently distributed with an expectation at
time t equal to f(t) = E(R(t))− E(R(0)). Stationarity and independence imply
f(t+ s) = f(t) + f(s), whose unique solution is f(t) = tf(1). Explicitly,

f(t+ s) = E(R(t+ s)−R(0))

= E(R(t+ s)−R(t)) + E(R(t)−R(0))

= E(R(t)−R(0)) + E(R(s)−R(0)) = f(t) + f(s).

This functional equation, has a unique time linear solution which proves that
such models have time linear expectations which might not be the case under
alternative definitions of randomness. A similar argument using the variance of
the rates of return provides a similar time linearity in the variance, a property
of Brownian Motion of randomness. Such assumptions are not always confirmed
by assets time series even though they underlie fundamental financial models.
Stocks time series and their rates of return have statistical properties that include
their mean, their volatility but also their skewness and kurtosis. Such moments
negate the assumption that rates of reurns are normally distributed and therefore
data need not be defined only by their mean and volatility. In real terms, this
means that in a normal randomness, information is instantly reflected in the
market price and reflect “all the information” that is relevant to that stock. The
convergence of data to their infinitesimal limit (defining their underlying model)
and its implications is not in such terms accounted for. In this sense, a price is
measured relative to a filtration which changes continuously as new information
access financial markets, the speed with which it converges to a definition of a
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limit randomness, as well as other factors, we shall elaborate in this paper. In
particular, we shall consider the effects of data granularity on randomness. Such
developments are based on prior publications by [26], [27] as well as on the rich
literature on fractional randomness.

3 Financial BM randomness and granularity

Let St be the stock price at time t. Its rate of return over a time interval ∆t is
defined as

R̃t+∆t =
S̃t+∆t − St

St
=
∆S̃t
St

or 1 + R̃t+∆t =
S̃t+∆t
St

,

(we assume t as the current time and ∆t > 0, thus t+∆t is a future time, un-
derlined by the use of the symbol ˜ , denoting a random variable). The standard
model assumes that at all time periods, the return provided by the stock in the
short time period ∆t can be modeled as

∆S̃t
St

= µ∆t+ σε̃
√
∆t, S0 > 0 (1)

where µ is the expected rate of return per unit of time from the stock, σ is the
volatility of the stock price and ε̃ is a random variable drawn from a standard
normal, i.e. ε̃ ∼ N(0, 1). Obviously, the stochastic component σε̃

√
∆t has vari-

ance σ2∆t and hence ∆S̃t
St

is normally distributed with mean µ∆t and variance

σ2∆t. If we set a limit non-adapted normal random process, the Brownian mo-
tion randomness {W (t), t > 0} results, defined by a Itô stochastic differential
equation

dS̃t
St

= µdt+ σdW (t), S0 > 0

which can be written also as

d ln(S̃t) = µdt+ σdW (t), S0 > 0. (2)

Using Itô calculus with Taylor expansion up to order 2, being the terms of order
higher than (dt)2 negligible, we have

d ln(S̃t) =
∂ ln(S̃t)

∂t
dt+

∂ ln(S̃t)

∂St
dS̃t +

1

2

∂2 ln(S̃t)

∂S2
t

(dS̃t)
2 + R2. (3)

Since ∂ ln(S̃t)
∂t = 0, ∂ ln(S̃t)

∂St
= 1

St
and ∂2 ln(S̃t)

∂S2
t

= − 1
S2
t

it readily follows

dS̃t
St

= d ln(S̃t) =
1

St
(µStdt+ StσdWt)−

1

2S2
t

(µStdt+ StσdWt)
2 (4)

=

(
µ− 1

2
σ2

)
dt+ σdWt + R2,
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that is, finally (since R2 is negligible)

dS̃t =

(
µ− 1

2
σ2

)
Stdt+ σStdWt (5)

which is the familiar log-price stochastic model resulting from the application of
Itô’s Lemma. Notice that the volatility embedded in both the drift term and in
the stochastic component “accounts” for a randomness which is not concurrent
with alternative developments. In this sense, the calculus applied to a rate of
return alters the randomness of such a model.

Instead of a discrete time interval (∆t) < 1, let us consider a granular
parametrized interval (∆t)α > (∆t) with 0 < α < 1, pointing to a greater
time interval implied by the granularity (∆t)α (see Figure 1). Such a definition
then relates to a high frequency finance, based on data streams with a granu-
larity greater than the infinitesimal time intervals implied in mathematical and
continuous time finance. For example, a streaming data measured every micro
second is still greater than continuous time finance.
In this granular case, setting ∆αS̃t := S̃t+(∆t)α −St, the discrete time financial

Fig. 1. Granular parametrized intervals (∆t)α > (∆t) with 0 < α < 1.

model defined above becomes, with time intervals (∆t)α:

∆αS̃t
St

= µα(∆t)α + σαε̃t+(∆t)α , S0 > 0
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When (∆t)→ dt→ 0, we note that (∆t)α → (dt)α → 0. In this case, the graular-
ity of data and its theoretical infinitesimal tendency, is based on an approach
that is both granular dependent as well as dependent of the speed of conver-
gence to its infinitesimal limit. The parametric granular time interval 0 < α < 1
is therefore to be accounted for in defining a fractional randomness. Further, the
parameter α has a number of implications. Essentially these include a “gain”
of information as a slower convergence accounts more precisely for the residue
loss which accounts for events that occur when a model is left to converge to
its time limit. This information has a memory effect which contributes to the
autcorrelation of a fractional Brownian motion. Further, note that parameters
are indexed in the fractional parameter α with a mean and volatility µα and σα
replacing µ and σ to reflect their parameter estimates. Thus, a (non-fractional)
normal probability distribution, E(ε̃t) = 0 and E(ε̃tε̃τ ) = 0, expresses statistical
independence, while a fractional normal probability distribution, E(ε̃t+(∆t)α) = 0
and E(ε̃t+(∆t)α ε̃t) 6= 0 implies a time (autocorrelation) dependence which we as-
cribe to a “memory”. This follows the fact that a fractional derivative is defined
by its non-integer (fractional) order, i.e. by the infinite polynomial

dαS =

∞∑
k=0

(−1)k
(
α

k

)
S (t+ (α− i)(∆t)α) .

For example, its first few terms are

dαS =

(
α

0

)
S(t+α(∆t)α)−

(
α

1

)
S(t+(α−1)(∆t)α)+

(
α

2

)
S(t+(α−2)(∆t)α)+. . .

Therefore, for a fractional index 0 < α < 1, the derivative is defined by “past
events” that we may not neglet and thereby its long run memory is a function
of past values

dαS = S(t+α(∆t)α)−
(
α

1

)
S(t− (1−α)(∆t)α) +

(
α

2

)
S(t− (2−α)(∆t)α) + . . .

The fractional index clearly defines the memory effect ascribable to past values
t− (k − α)(∆t)α) for k = 0, 1, 2, . . .. In the limit (∆t)α becomes (dt)α, and the
fact that (dt)α > dt can be interporeted as a “loss of model information” due to
measurements at intervals that would be greater than the presumed reference
model with time intervals dt. This loss of information is compensated by its
accounting of past events.

When α 6= 1
2 , a fractional normal distribution (we call from hereon, a frac-

tional Brownian motion) is obtained.
At the continuous time limit, a fractional lognormal model results with a “frac-
tional stochastic differential equation” with {Wα(t), t > 0} a non-adapted frac-
tional Brownian motion, namely a normal probability distribution with variance
(dt)2α as well as an autocorrelation given by:

E (Wα (t+ (∆t)α)Wα(t)) =
1

2

(
(t+ (∆t))

2α
+ (t)2α − |(∆t)|2α

)
6= 0, for α 6= 1
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leading to
dαS̃t
St

= µα(dt)α + σdWα(t), S0 > 0

where dαS̃t denotes the change in price in a fractional time interval when intro-
ducing the elements of fractional calculus. Note that both dt and (dt)α tend to
an infinitesimal limit. As noted earlier, the “speed” at which they do so differs,
depending on the fractional parameter α. Further, the model parameters (in fact
statistical estimates based on the model we define), say µα, may be specified or
estimated based on the assumption regarding model time interval (which defines
the data granularity). As a result, granularity alters the assumptions we make
about the model parameters.

4 Example: Autoregressive processes and mean reverting
models. Data based models

Financial models are defined often by financial econometric techniques including
linear regression, autoregressive AR models, ARMA, ARIMA as well as ARCH
and GARCH models. In such cases, financial models are based on observed
time series and their models’ econometric performance. For simplicity, we shall
consider below a simple autoregressive AR(1) processes defined by:

Rt = αRt−1 + εt, |α| < 1

where Rt is the rate of return of an asset at time t and εt is assumed i.i.d.
(indipendently and identically distributed) with mean zero and variance σ2. A
general AR(n) model, accounting for past returns as well, is written similarly in
terms of n parameters estimates:

Rt =

n∑
i=1

αiRt−i + εt, |αi| < 1.

Other models can be developed, based on a smaller number of parameters seeks
to increase the explanatory power of parameter estimates. Financial models that
can capture time series properties with the least number of parameters are then
most efficient. The model below will outline such an approach. Say that the
current rate of return Rt of a financial asset is a weighted function of past rate
of return variations which we denote by ∆Rt−i, i = 1, 2, 3, . . . with ∆Rt defined
by a normal linear process. Setting:

Rt =

n∑
i=1

µi∆Rt−i, with ∆Rt−i = δ∆t+ σ∆W (t− i)

where µi, δ and σ are a set of n + 2 parameters. Our intent is to reduce the
number of parameters. For convenience, say that the current rate of return is a
continuous time function exponentially decreasing as a function of all past rate
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of return variations (in discrete time, it corresponds to a geometric probability
distribution):

R(t) =

∫ t

−∞
e−µ(t−τ)dy(τ), with dy(τ) = dR(τ)

An equivalent expression to this equation is found by deriving it with respect to
time t, or:

∆R(t) = −µ∆t
∫ t

−∞
e−µ(t−τ)dy(τ) +∆y(t) = ∆y(t)− µR(t)∆t

Since perturbations in rates of returns are random and given by ∆y(t) = δ∆t+
σ∆W (t), we obtain the following rates of returns process:

∆R(t) = δ∆t+ σ∆W (t)− µR(t)∆t

which we rewrite as a mean reversion (and normally distributed) model:

∆R(t) = µ(λ−R(t))∆t+ σ∆W (t),
δ

µ
= λ

Such models appear in finance in various applications such as modeling interest
rates (the Vasicek model) and others. Other variations of this model can be
derived. If the time scale is changed, then as indicated earlier, we have the
fractional difference equation.

∆αR(t) = µα(λα −Rα(t))(∆t)α + σ∆Wα(t), α < 1, (∆t)α > (∆t),

where meaning of parameters is defined in terms of the fractional parameter as
discussed above for the lognormal model. Their limit differential equations, as
discussed above, differ in the “speed” with which the limits are reached:

dR(t) = µ(λ−R(t))dt+ σdW (t),
δ

µ
= λ

dαR(t) = µα(λα −Rα(t))(dt)α + σdWα(t), α < 1, (dt)α > (dt)

These two models, also called mean reversion models and often used to model
interest rate models (and therefore price bonds with normal and mean reverting
rates of returns), are not providing the same solution for the rate of return (and
therefore are not providing equivalent bond prices). Both the model parameters
as well as the fractional and non-fractional process evolutions will point out to
different outcomes. An exercise considers the deterministic part of the equation
above:

dαR(t)

(dt)α
= µα(λα −Rα(t));
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R(0) with the Laplace Transform solution

sαR∗(s)− sα−1R(0) =
µαλα
s
− µαR∗(s)

or

R∗(s) =
sα−1R(0)

sα + µα
+

µαλα
s(sα + µα)

=

(
R(0)

s1−α
+
µαλα
s

)
1

(sα + µα)

which is a convolution of L−1
(
R(0)
s1−α + µαλα

s

)
and L−1

(
1

sα+µα

)
where

L−1
(
R(0)

s1−α
+
µαλα
s

)
= µαλα +R(0)

t−α

Γ (1− α)

and

L−1
(

1

sα + µα

)
= tα−1Eα,α(−µαtα)

where Eα,α(−µαtα) =
∑∞
k=0

(−µαtα)k
Γ ((1+k)α)) is the Mittag-Leffler function. Thus,

R(t) =

∫ t

0

(
µαλα +R(0)

t− τ−α

Γ (1− α)

)
τα−1Eα,α(−µατα)dτ

=

∫ t

0

(
µαλατ

α−1 +R(0)
τα−1(t− τ)−α

Γ (1− α)

) ∞∑
k=0

(−µαtα)k

Γ ((1 + k)α)
dτ

If R(0) = 0, then elementary manipulations yield

R(t) = µαλα

∞∑
k=0

(−µα)ktα(k+1)

Γ (1 + (1 + k)α)

Let α = 1, then R∗(s) =
(
R(0) + µλ

s

)
1

s+µ and therefore:

R(t) = R(0)e−µt + µλ

∫ t

0

e−µτdτ = R(0)e−µt + λ
(
1− e−µt

)
Of course, if we consider random variations due to the fractional Brownian mo-
tion σdWα(t), the result is more complex.

5 The Poisson randomness and its fractional definition

The Poisson process is based on assumptions justified often in practice and used
to characterize the mathematical representation of such processes. These are,
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(1) events are independent and, (2) events occur one at a time. If the event rate
(i.e. the number of events occurring in a given time interval) is also constant,
the Poisson probability distribution results. Consider two subsequent instants
of time [t, t+ dt] and calculate the number of events that occurs at time t. Say
that we are at [t, t+ dt] with a count of n events. Given the Poisson process hy-
potheses stated above, this count can be reached if at time t there was already
a count of n− 1 occurrences and one more event was added, or if at time t there
was already n event occurrences and in the subsequent time interval no event
has occurred. This is represented graphically in figure 2.
If the event probability is known and given by λdt in [t, t+ dt], then the probabil-
ity that there are n event occurrences at t+dt is explicitly given by Pn(t+dt) =
Pn(t)(1− λdt) + Pn−1(t)λdt, n = 1, 2, 3, . . . and P0(t+ dt) = P0(t)(1− λdt).
These equations can be written as a systems of linear differential equations :

dPn(t)

dt
= −Pn(t)λ+ Pn−1(t)λ, n = 1, 2, 3, . . . , and

dP0(t)

dt
= −P0(t)λ.

It is a simple exercise to show that the solution of these equations is given by

Pn(t) = e−λt(λt)n

n! with cumulative distribution,

Fm(t) =

m∑
n=0

Pn(t) =

m∑
n=0

e−λt
(λt)n

n!
= 1−

∫ λt

0

xme−x

m!
dx

with mean and variance E(n) = V ar(n) = λt. Further,
∫ λt
0

xme−x

m! dx a Gamma
integral.
As a result, a Poisson process concludes that it is a memoryless process since:

– At any time, after an event has occurred, the residual time for the next event
to occur, has an exponential probability distribution.

– The mean residual time is equal to 1
λ .

– This residual time is independent of the event which has occurred at time
previously.

A fractional development due to Busani and Merzbach provides a kernel based
approach.

5.1 The Busani-Leonenko-Merzbach fractional jump process kernel

Busani [6] and Leonenko and Merzbach [17] have proved and provided a kernel to
calculate the probability of fractional distributions for a jump process. Say that
Pn(t) is the Poisson distribution of n events occurring in a time interval (0, t)
and let Pn,α(t) be the probability of a fractional Poisson probability distribution.
Then

Pn,α(t) =

∫ t

0

Pn(t− τ)fB(τ)dτ,
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Fig. 2. Above: Example of a path of a standard Poisson process. Below: Example of
superposition of Brownian motion and a compound Poisson process

or, in Laplace Transform

P ∗n,α(s) = P ∗n(s)f∗B′(s)

where fB′(t− τ) is the probability measure, a Beta Prime Probability Distribu-
tion. For example, consider the counting Poisson jump process

P frk (t, k) =

∫ t

0

Pk(t− τ)fB′(τ)dτ =

∫ t

0

(λ(t− τ))k
e−λ(t−τ)

k!
fB′(τ)dτ
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where P frk (t, k) is the fractional probability of the Poisson event k at time t. In
particular, at k = 0, we have:

P frk (t, 0) =

∫ t

0

e−λ(t−τ)fB′(τ)dτ

However, the fractional probability of e−λt is the Mittag-Leffler function Eα(−λtα)

defined for example, by setting h = λtα, Eα(h) =
∑∞
k=0

hk

Γ (1+αk) with the La-

pace Transform L∗ (Eα(−λtα)) = pα−1

pα+λ = 1
p1−α(pα+λ) . Using the Mittag Leffler

function

L∗ (Eα(−λtα)) =

∞∑
k=0

(−λ)kL∗(tαk)

Γ (1 + αk)
=

∞∑
k=0

(−λ)k

Γ (1 + αk)

Γ (1 + αk)

p1+αk
=

1

p

∞∑
k=0

(
−λ
pα

)k
=

1

p1−α(pα + λ)

Of course, when α = 1, L∗ (Eα(−λt)) = 1
p+λ , L−1(·) = e−λt. As a result, the

Laplace Transform is

P ∗frk (s, 0) =
sα−1

sα + λ

Since the Laplace Transform of e−λt is 1
s+λ , by the convolution theorem we have

necessarily:

P ∗frk (s, 0) =
1

s+ λ
f∗B′(s) or (s+ λ)

sα−1

sα + λ
= f∗B′(s).

Since for any n, we have P ∗frn,α (s) = P ∗n(s)f∗B′(s), we have also

P ∗frn,α (s)

P ∗frk (s, 0)
= (s+ λ)P ∗n(s) and P ∗frn,α (s) = (s+ λ)

(
sα−1

sα + λ

)
P ∗n(s).

In particular, for n = 1, P ∗1 (s) = λ
(s+λ)2 and

P ∗fr1,α (s)

P ∗frk (s, 0)
= (s+ λ)P ∗1 (s) =

λ

s+ λ
, or P ∗fr1,α (s) =

(
λ

s+ λ

)(
sα−1

sα + λ

)
.

Generally, since in this particular case, P ∗n(s) =
(

λ
s+λ

)n+1

, the Laplace Trans-

form of the Beta Prime probability distribution is f∗B′(s) =
P∗n,α(s)

P∗n(s)
, and therefore

f∗B′(s) =
λnα
λn+1

(sα−1 + λα)(s+ λ)n+1

(sα + λα)n+1

Letting λ = λα, this is reduced to

f∗B′(s) =
1

λ

(
s+ λ

sα + λ

)n+1

(sα−1 + λ)
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Therefore, its first two moments are defined by the following at s = 0:

∂f∗B′(s)

∂s
=

1

λ

∂

∂s

(
1

λ

(
s+ λ

sα + λ

)n+1

(sα−1 + λ)

)

∂2f∗B′(s)

∂s2
=

1

λ

∂2

∂s2

(
1

λ

(
s+ λ

sα + λ

)n+1

(sα−1 + λ)

)
Alternatively,

P ∗n(s) =

(
λ

s+ λ

)n+1

, f∗B′(s) =
est0Γ (α, st0)

Γ (α)
, Γ (α, st0) =

∫ ∞
st0

τα−1e−τdτ

and therefore,

P ∗n,fr(s) =
est0Γ (a, st0)

Γ (α)

(
λ

s+ λ

)n+1

.

These two moments can be used to derive the parameters of the Beta Prime
generalized distribution specified below.

The Gamma probability distribution (G) is the inverse counting time distri-
bution for n events to occur in a Poisson process. Their n+ 1 convolutions have
the Laplace Transform:

λ

∫ ∞
0

e−(s+λ)xdx =
λ

s+ λ
and therefore L∗(G) =

(
λ

s+ λ

)n+1

As a result, its fractional randomness (its distribution) is as stated above:

P ∗G,fr(s) =
est0Γ (α, st0)

Γ (α)

(
λ

s+ λ

)n+1

6 The Beta Prime probability distribution and its
fractional randomness

The Beta Prime distribution is defined as the odds of a Beta probability distri-
bution. Explicitly, let the Beta probability distribution be fB(y;α, β), the Beta
Prime distribution, also called the inverted Beta or Beta of the second kind, is
then defined by the probability distribution of x = y

1−y :

fB′(x;α, β) =
xα−1(1 + x)−(α+β)

B(α, β)

while the mean and the variance are

EB′(x) =
α

β − 1
; VarB′(x) =

(
α

β − 1

)(
α+ β − 1

(β − 1)(β − 2)

)
, β > 2
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The k-th moment is defined for −α < k < β by

EB′(xk) =

k∏
i=1

(
α+ i− 1

β − i

)
.

The cumulative distribution is also given in terms of a Gauss hypergeometric
function. A generalized Beta Prime distribution can be generalized further by
setting:

fB′(x;α, β, h) =
p
(
x
h

)αp−1 (
1 +

(
x
h

)p)−(α+β)
hB(α, β)

with

EB′(x) =
hΓ
(
α+ 1

p

)
Γ
(
β − 1

p

)
Γ (α)Γ (β)

, βp > 1

The fractional kernel for a jump process is then given for p = 1 by:

Pn,α(t) =
1

hB(α, β)

∫ t

0

Pn(t− τ)
( τ
h

)α−1 (
1 +

τ

h

)−(α+β)
dτ

while its Laplace Transform is given by∫ ∞
0

e−sxfB′(x;α, β, h)dx =
p

hB(α, β)

∫ ∞
0

esx
(x
h

)αp−1 (
1 +

(x
h

)p)−(α+β)
dx

Consider the integral∫ ∞
0

e−sx
(x
h

)αp−1 (
1 +

(x
h

)p)−(α+β)
dx

which is a confluent hypergeomeric function (see [1]). A development by Ofer
Busani indicates then that the Laplace Transform is

f∗B′(s) =
esTΓ (α, sT )

Γ (α)
, with lim

α→1

esTΓ (α, sT )

Γ (α)
= 1

where Γ (α, sT ) is the incomplete Gamma function: Γ (α, sT ) =
∫∞
sT
e−ττα−1dτ ,

with

∂Γ (α, sT )

∂s
= −Tαsα−1e−sT , and

∂2Γ (α, sT )

∂s2
= (1− α+ sT )Tαsα−2e−sT

which we use to calculate the mean, the second moment and the third moment
of the fractional distribution.
For the exponential function λe−λt, whose Laplace Transform is λ

s+λ , we have
its fractional Laplace Transform:

f∗Exp,α(s) =
λ

s+ λ

esTΓ (α, sT )

Γ (α)
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By the same token, the fractional Transform of the Gamma distribution is:

f∗G,α(s) =

(
λ

s+ λ

)m
esTΓ (α, sT )

Γ (α)

Therefore

∂f∗G,α(s)

∂s
=
λmesT

Γ (α)

(
1

s+ λ

)m [
−m

(
1

s+ λ

)
+ T +

∂Γ (α, sT )

Γ (α, sT )∂s

]
or

∂f∗G,α(s)

∂s
=
λmesT

Γ (α)

(
1

s+ λ

)m [
−m

(
1

s+ λ

)
+ T − Tαsα−1e−sT

Γ (α, sT )

]
with

∂f∗G,α(0)

∂s
=

1

Γ (α)

(
−m
λ

+ T
)

7 The origins of the Brownian fractional bridge
randomness

Brownian Motion anomalous models properties have been observed in many ar-
eas and applications. In financial trading and pricing models, models’ granularity
and its implications are often neglected, including the financial risks they entail.
For example, models risks measurements based on High Frequency models or on
Day data models that do not imply the same risks. This is due to the effects
of the fractional operators applied that alters the definition of their underly-
ing probability distribution as well as their associated risks. In [25], [26], [27]
we demonstrated that fractional probability distributions need be complete and
therefore leading for the most part to fat tail distributions.
Mandelbrot in many applications suggested and applied a fractional Brownian
Motion defined by its fractional variance [19], [20]. In [26] and [27] we demon-
strated that fractional randomness depending on its fractional index may lead
instead to a randomness defined by a fractional bridge when its indexH is defined
in 1

2 < H < 1 while randomness is defined by alpha stable distributions defined
in 0 < H < 1

2 . These results have proved that randomness has its origin in the
granularity of models and thus the granularity of data. These results are practi-
cally important as they imply that financial models may mislead investors and
high frequency traders (or traders in general), as they depend on the granularity
of the models and the data they access to. For example, a common High Fre-
quency trading strategy may have access to data that other traders may not, due
to their trading granularity. Providing thereby opportunities for arbitrage. In a
non-fractional environment, statistical arguments and Kolmogorov-Smirnov the-
orem, led to a Brownian Motion randomness while in a fractional model and data
environment, we have shown that randomness is far more varied, and a function
of the fractional index. The financial mathematical literature has emphasized the
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definition of randomness by a Brownian Motion while Mandelbrot, in a multi-
tude of studies (for example, [20] and others) has pointed to fractional volatility
Brownian Motion. It has led to numerous opportunities to financial traders. For
example, [7], [8], [9] indicates that granularity introduces in financial models a
potential for arbitrage, [12] provided a solution to a fractional Black and Scholes
model to be a pricing martingale and therefore complete since future prices are
always known (and under the martingale probability measure, equal the current
price). While this is an appropriate mathematical result, it is not clear whether
this martingale is also a true market pricing martingale as in any model, there
may be several martingales but only one may be a pricing martingale. Further,
martingale pricing defines a current price based on the expectation of a future
price defined by appropriate (and price relative) probability measures. In a fi-
nancial context, both the future distribution and the probability measure have
to account for their granularity that renders the definition of a fractional finan-
cial pricing model far more questionable. Other developments are due to [10].
[11] provide a general fractional white-noise randomness based on the Wicks-
Itô-Skorohod (WIS) calculus resulting in integrating the Itô and Stratonovich
calculus. [13], [16] and [15] instead applies and modifies the Riemann-Liouville
derivative and fractional Taylor series to non-differentiable functions ([14], [18]).
A statistical and fractional development ([26] and [27]) application to granular
data leads to alternative measures of randomness. As a reference, we outline the
Riemann-Liouville fractional operators (1832) to a PDF, f(τ) at time τ over a
time interval [0, t] applied to a probability distribution ([25]). Define a distribu-
tion FCDF and its FPDF with the notations CDF be F (t), FCDF be FH(t) and
fH(t) the FPDF, defined by the Riemann-Liouville convolution integrals:

fH(t) =
1

Γ (1−H)

∫ t

0

f(τ)(t− τ)−Hdτ

=
1

Γ (1−H)

d

dt

∫ t

0

f(τ)(t− τ)1−Hdτ, t ≥ 0, or

fH(t) =
1

Γ (1−H)
(f ∗ g)(t); g = τ−H1τ≥0

FH(t) = IHf(t) =
1

Γ (H)

∫ t

0

f(τ)(t− τ)H−1dτ, t ≥ 0.

with (f ∗ g) denoiting the convolution operator.
We let 0 < H < 1 and F : [0,∞[→ [0,∞[, a fractional probability distribution is
then defined by the fractional derivative of its Cumulative Distribution Function
(CDF): fH := DHF . Application of the Liouville operator points as well to the
following definition: fH := DHI1f = DH(IHI1−H)f = I1−Hf . The fractional
distribution that results then, is not as stated previously, a conventional dis-
tribution since

∫∞
0
g(τ)dτ = +∞. While the fractional cumulative distribution

function (FCDF) is defined by the fractional integration of its density func-
tion f(t) (FDF). It is easy to prove that limt→∞ FH(t) 6= 1 and therefore the
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fractional distribution is not a conventional one. A statistical approach to a frac-
tional distribution will provide instead a fractional randomness, a function of the
fractional index.

8 The Fractional Brownian Bridge and randomness

Assume the PDF f(τ) and τ a random variable. In a time interval [0, t], the
probability of such events occurring is F (t) while its FCDF is defined as stated
above by the convolution integral (2.3). Let τ be defined in 1τ≥0, then:

(t− τ)H−1+ =

{
(t− τ)H−1, if t > τ

0, otherwise

while its truncated expectation with respect to the PDF f(τ) is:

FH(t) = E{(t− τ)H−1+ }, t ≥ τ ≥ 0

Consider a large population of events (τi), all of which are identically and in-
dependently distributed. Then, under the Kolmogorov-Smirnov theorem for a
Central Limit Convergence and since samples (t− τi)H−1+ , i = 1, 2, . . . , n is inte-
grable, we have:

1

nΓ (H)

n∑
i=1

(
(t− τi)H−1+

) a.s.−−−−−→
n→+∞

FH(t)

Several limit cases arise corresponding to the fractional index H. The standard,
non-fractional case H = 1 with τk defined by a uniform distribution in [0, 1], and

i.i.d. events at time, (τk)k≥1. Then, τ1
d
= τ , 1{τ1≤t} defines a random variable

denoting the probability of an event occurring at time τ1. Its CDF in a time
interval [0, t] has thus a Bernoulli probability F1(t) given by:

lim
n→∞

(
1

n

n∑
i=1

1{τ1≤t}

)
a.s.−−→ P (τ1 ≤ t) = F1(t), 0 ≤ t ≤ 1.

In other words, 1{τ1≤t} =⇒ F1(t). As a result, the central limit of its sum leads
to a Binomial distribution:

n∑
i=1

1{τ1≤t} ∼ B(n, F1(t)), t ≥ 0

while its central limit leads to a normal probability distribution with Bernoulli
variance F1(t)(1− F1(t))

Λ1,n(t) =

∑n
i=1 1{τ1≤t} − nF1(t)

√
n

, t ≥ 0, and

Var(Λ1,n(t)) =
1

n
Var

(
n∑
i=1

1{τ1≤t} − nF1(t)

)
=

1

n
Var

(
n∑
i=1

1{τ1≤t}

)
= F1(t)(1− F1(t))
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Two cases arise, 1
2 < H < 1 and 0 < H < 1

2 .

8.1 The Fractional Brownian Bridge, 1
2
< H < 1

Let U be a uniform random distribution in 0 ≤ t ≤ 1. Then the standardized
limit ΛUn (t) has in law, a Brownian Bridge distribution, BBn(t), where t →
BBn(t) is a function of its finite variation and by definition BBn(t) → W (t) −
tW (1) : ΛUn (t) = 1√

n
(
∑n
k=1 1Uk≤t − t) where at the limit, ΛUn (t) ∼ BBn(t) with

a variance and covariance: Var(BB(t)) = t(1 − t) and Cov(BB(t)BB(τ)) = tτ .
For its fractional distribution, we have:

ΛUH,n(t) =
1√
n

{
n∑
k=1

(t− Uk)H−1+ − ntH

H

}
, t ∈ [0, 1]

At the limit it admits a normal probability distribution with mean null and

variance t2H−1
(

1
2H−1 −

t
H2

)
and

ΛUH(t) ∼ N
(

0, t2H−1
(

1

2H − 1
− t

H2

))
Proof in [26].

The implication of this result, indicates that for 1
2 < H < 1, the variance is

nonlinear while at H = 1, it is reduced to the variance of the standard Brownian
Bridge t(1 − t). Further, for H = 0.6, t0.2

(
5− t

0.36

)
> t(1 − t), t ∈ [0, 1] (see

Figure 3), which points to a substantial increase in the variance compared to the
case H = 1. In other words, a fractional random distribution has a far greater
variance. By the same token, we note that the fractional uniform distribution is
in fact auto-correlated as it is the case for Fractional Brownian Motion (which
has also a self similar distribution).
Further, the Covariation of a Fractional Uniform Distribution ΛUH(t)

defined above is autocorrelated with an autocovariance given by:

Cov(ΛUH(t), ΛUH(s)) =
1

[Γ (H)]2

(
Ψ(s, t)− sH

H

tH

H

)
, 0 < s ≤ t ≤ 1

where Ψ(s, t) is given by

Ψ(s, t) =

∫ s

0

(t− τ)H−1+ (s− τ)H−1+ dτ

= sH(t− s)H−1 Γ (H)

Γ (1 +H)
F

(
1−H,H; 1 +H;

−s
t− s

)

with

F

(
1−H,H; 1 +H;

zk

Γ (1 + k)

)
=

1

Γ (1−H)

∑
k≥0

Γ (1−H + k)

H + k

zk

Γ (1 + k)
, z =

−s
t− s
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Fig. 3. Variance of the limit fractional normal distribution t2H−1
(

1
2H−1

− t
H2

)
com-

pared with the non fractional case t(1− t) (blue surface), for H ∈ (0.6, 0.7)

Again, for H = 1, Cov(ΛU1 (t), ΛU1 (s)) = s(1− t); 0 < s ≤ t ≤ 1 (proof in [25]).
Thus, the case 1

2 < H < 1 implies that randomness is defined by a Brownian
Bridge and therefore the events and their outcomes described by a financial
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granular model (or its data granularity) with a fractional index in this interval
are defined by such a randomness.

9 Conclusion

Randomness origins are many, we have considered in this paper the effects of data
granularity, information and speed of convergence, all three factors dependent
on one another. The standard case led to the Fractional Brownian Motion while
the fractional index defined in 0 < H < 1

2 implies an α-stable randomness while
for 1

2 < H < 1 implies a Brownian Bridge randomness. Much further research
is needed however to assess the implications of the origins of randomness and
their implications to the models we constructs as theoretical guides to the study
of stochastic processes.
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