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Abstract. The global energy crisis and rising climate concerns are en-
couraging the transition to a more sustainable economy. Monitoring en-
ergy prices has become increasingly important for analysts, policymakers
and businesses to tackle the current situation by increasing the integra-
tion of renewable energy sources, strengthening the resilience of the en-
ergy system to price shocks and reducing its dependence on fossil fuel
imports, as well as improving the affordability of energy for consumers.
We set up a copula-based ARJI-GARCH model to investigate the time-
varying and non-linear dependence between renewable and non-renewable
asset prices in the European energy market. Our results show that the
ARJI-GARCH specification is able to provide reliable forecasts and an ef-
fective tail risk assessment for the energy sector returns. We then use the
ARJI-GARCH forecasts to analyse the co-movement structure of renew-
able and non-renewable energy asset prices by applying and comparing
different copula specifications.
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1 Introduction

Several researches confirm the predictive power of Autoregressive Jump Intensity-
GARCH (ARJI-GARCH) volatility forecasts within and between the main finan-
cial markets (covering stock, bond, cryptocurrency, and commodity markets).
To better understand the consistency of these models to the features of different
markets, only the most relevant papers will be quoted.
Jumps in asset pricing and their effect on volatility prediction are pointed out
by an increasing number of studies, starting from the seminal work by [4], im-
plemented by [14].
[4] employed the ARJI-GARCH model on daily returns of the Dow Jones In-
dustrial Average price index, to take into account the persistence of conditional
variance, the time variation in volatility and in conditional skewness and kur-
tosis related to the mean and variance of jump size, and jump intensity. The
volatility process is affected by common return shocks, and by unexpected ones
due to extreme price movements because of natural disasters, geopolitical devel-
opments, and strategic actions. Persistent innovation is assessed by the expected
jump component captured by the autoregressive part in volatility, whereas un-
predictable innovation is captured by the conditional variance and affects the
higher-order moments of returns. [4] argued that the intensity of jumps is sensi-
tive to economic states, rising during periods of extreme volatility; [14] improved
the forecasts of volatility after relevant changes in stock returns and argued that
the probability of jumps would increase before market crashes.
Due to the strategic impact and financialization of commodities in the global
economy (see e.g. [15]), a number of studies have applied the ARJI-GARCH
model to forecast the jump diffusion volatility within the energy market and
between the energy and other markets.
Among others, [8] proposed asymmetric GARCH-Jump models that synthesize
autoregressive jump intensities and volatility feedback in the jump component.
Their results indicate that these models provide a better fit for the dynamics of
the equity returns in the US and emerging Asian markets, irrespective of whether
the volatility feedback is generated through a common GARCH multiplier or a
separate measure of volatility in the jump intensity function. Moreover, referring
to specific sample periods, some studies provide empirical evidence that time-
varying jumps are able to capture several distinguishing features of the return
dynamics, such as volatility persistence, leverage effects, fat tails.
Among these articles, [7] implemented the ARJI-GARCH model with structure
changes on daily S&P 500 and West Texas Intermediate (WTI) oil prices, show-
ing that high fluctuations in oil prices have asymmetric unexpected impacts on
S&P 500 returns. Additionally, [12] found that the magnitude of oil price shocks
varies with the fluctuating range of oil returns. [43] and [42] showed that the in-
formation on time-varying jumps in oil prices could predict changes in the price
levels of agriculture. [41] applied the ARJI-GARCH model to three energy com-
modity futures prices (crude oil, natural gas, coal), stressing the importance of
incorporating time-varying jump intensities. [33] analyzed the price movements
in the oil market stimulated by extreme events (such as oil platform explosions,
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geopolitical events, and financial crises) in order to understand the reaction and
the persistence of these effects on the commodity prices. Based on a daily sam-
ple of closing prices of WTI from January 2010 to December 2017 obtained
from NYMEX, the empirical results show that a time-varying conditional jump
process can be specified, but it has little sensitivity to past shocks and very
short-term persistence.
Dependence on fossil fuel for energy generation is a major driver of climate
change and undermines the key objectives of the 2030 Agenda1. The effective-
ness of the integration of renewable energy sources and the dependence among
energy and other markets can be investigated by using copulas (see e.g. [1], [2],
[3], [5], [9], [16],[17], [20], [21], [22],[23], [24], [25], [27], [26], [28], [29], [30], [31],
[32], [38], [39], [34], [35]).
In particular, using several copula models with different conditional dependence
structures and time-varying parameters, [20] examined the relationship between
crude oil prices, showing significant symmetric upper and lower tail dependence.
A mixture copula-based ARJI–GARCH model was properly applied by [5] to
capture the asymmetric dependence between crude oil spot and futures returns.
By applying the copula-GARCH approach, [1] studied the conditional depen-
dence structure between crude oil prices and US dollar exchange rates, in both
bearish and bullish market phases, finding that Student-t copulas best capture
the extreme dependence. In [3], the copula-GARCH approach was applied to
investigate the dependence and extreme dependence of crude oil and natural
gas prices, with applications to portfolio risk management in extreme economic
conditions. The crude oil and gas markets tend to co-move closely together dur-
ing bullish periods, but not at all during bearish periods. Moreover, taking the
extreme co-movement into account leads to an improvement in the accuracy of
the out-of-sample Value-at-Risk forecasts.
Focusing on renewable markets, [25] analyzed the relationship between oil and
renewable return movements, finding significant time-varying average and sym-
metric tail dependence between oil returns and several global and sectoral renew-
able energy indexes. [30] demonstrated that, although the short-run connection
between energy and clean energy stock prices appears to be weak, such a re-
lationship seems strong in the long run. Using bivariate copula functions, [31]
described the interdependence in the European and USA stock markets, to eval-
uate price spillovers, under normal and extreme market scenarios. For the period
2010–2019, European renewable-energy and low-carbon stocks co-move; upward
and downward movements in low-carbon asset prices have sizeable effects on
renewable-energy asset prices, and vice versa. In contrast, no interdependence
occurs for the USA, as no significant upward or downward price spillover effects
between renewable-energy and low-carbon stocks are found (see also [16], [17],
[26], [32], [34], [35], [36]).
This paper contributes to the existing literature in two main directions. First,
while previous studies mainly focused on dependence within the energy market

1 https://sdgs.un.org/2030agenda, Transforming our world: the 2030 Agenda for Sus-
tainable Development”
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and between energy and other markets, we analyse the dynamic relationship be-
tween renewable and non-renewable energy asset price time series. Our modelling
approach relies on the application of an ARJI-GARCH model, which defines an
error correction mechanism between renewable and non-renewable energy prices.
Thus, our findings provide useful insights for the implementation of policies that
support the transition to a more sustainable economy. Then, by applying and
comparing two different copula specifications to the obtained forecasts, we study
the co-movement structure of renewable and non-renewable energy asset prices,
with implications for portfolio risk management and investment strategies.

The paper proceeds as follows: Section 2 describes the model employed to
analyse the dynamic relationship between renewable and non-renewable energy.
Section 3 shows the results obtained by applying the proposed modelling ap-
proach to the returns of renewable (ERIX) and non-renewable (MSCI Europe)
energy indexes. Section 4 concludes.

2 The model

2.1 ARJI-GARCH model

[4] introduced a discrete time jump model for stock returns which combines the
GARCH parameterization of volatility with the specification of a time-varying
conditional jump intensity and jump size distribution:

rt = c+

M∑
m=1

φm + rt−m +
√
htzt +

nt∑
k=1

Yt,k (1)

zt ∼ NID(0, 1), Yt,k ∼ N(θt, δ
2)

where the number of jumps between t−1 and t, conditional on the information
set Ωt, follows a Poisson distribution with time-varying λt intensity:

P (nt = j|Ωt−1) =
exp−λtλjt

j!
(2)

The intensity parameter evolves according to the following process:

λt = λ0 +

r∑
i=1

ρiλt−i +

s∑
i=1

γiξt−i (3)

where ξt−i represents the unpredictable component affecting the inference of
the econometrician about the conditional mean of the counting process, and is
calculated as

ξt−i =

∞∑
j=0

jP (nt−i = j|Φt−1)− λt−i (4)
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[4] show that the ARMA specification of the jump intensity parameter allows
to parsimoniously capture many forms of autocorrelation. The ARJI-GARCH
specification was shown to be suitable to model the dynamics of stock returns,
which are empirically characterized by strong persistence in the jump intensity:
days with high probability of many (few) jumps tend to be followed by other
days with a high probability of many (few) jumps.

2.2 Marginal density specification

The AutoRegressive Jump-Intensity-GARCH (ARJI-GARCH) specification by
[5] extends the ARJI-GARCH model of [4] and defines the following process for
the i asset return:

ri,t = ci +

bm∑
m=1

aimri,t−m +

bn∑
n=1

aknrk,t−n + aiECECt−1 + εi1t + εi2t (5)

where ci is a constant, ri,t−m is the m-order lagged return of i, rk,t−n is
the m-order lagged return of another asset (k), aim and akn are the associated
coefficients.
In our application to the energy market, the two assets are a non-renewable and
a renewable energy index, whose prices in t are denoted as Ptr,t and Pre,t, with
returns defined as rtr,t and rre,t respectively.
The error correction component reflects the deviation from the long-run equilib-
rium between traditional and renewable energy prices and is defined as

ECt−1 = ln(Ptr,t−1 )− ln(Pre,t−1 ). (6)

The two residual components εi1t and εi2t are assumed to be independent.
The first one captures the return innovation related to the persistence of shocks
to volatility, while the second represents the shock arising from large and unex-
pected price changes.
The specification of the first error term εi1t affects volatility through the GARCH
variance factor hit:

εi1t =
√
hitzt zt ∼ NID(0, 1) (7)

where zt is an i.i.d standard normal innovation.
The conditional variance hit has the following dynamics:

hit = αi0 + αi1ε
i
t−1 + αi2h

i
t−1 + αiECEC

2
t−1, (8)

where αi0 is a constant, αi1 and αi2 are the ARCH and GARCH coefficients
respectively, while αiEC expresses the impact of the error correction term on
return volatility.
So far, the model has an AR-GARCH specification. The ARJI-GARCH model
is obtained by adding the second error term, which is defined as the difference
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of the total jump size between t − 1 and t and its expected value, given the
information set Ωt−1:

εi2t =

ni
t∑

j=1

Y it,j − E

 ni
t∑

j=1

Y it,j |Ωt−1

 Y it,j ∼ NID(θi,t, δ
2
i,t). (9)

The jump size is assumed to follow a normal distribution with mean θi,t and
variance δ2i,t, whose dynamics is assumed to be related to the error correction
process:

θi,t = θi0 + θi1ECt−1 (10)

δ2i,t = βi0 + βi1EC
2
t−1. (11)

Given the filtration Ωt−1, the jump number nit follows instead a Poisson
distribution, with density

P
(
nit = j |Ωt−1

)
=

exp(−λit)(−λit)m

m!
m = 0, 1, 2, . . . (12)

where the jump intensity λit is the expected number of jumps from time t−1
to t and is assumed to follow a simil-ARMA process:

λit = φi0 + φi1λ
i
t−1 + φi2ζ

i
t−1 (13)

where φi0 > 0 and φi1 > φi2 to ensure λit > 0.
The ζit−1 component is the forecasting error associated with the updating in the
information set:

ζit−i = E
[
nit−1 |Ωt−1

]
− E

[
nit−1 |Ωt−2

]
= E

[
nit−1 |Ωt−1

]
− λit−1. (14)

2.3 Copula function specification

Drawing now attention to the co-movement structure and possible tail depen-
dence in the energy market, we consider two different copula specifications: the
Normal and the Student’s t one. We recall that Normal and Student’s t copulas
allow for a symmetric tail dependence. More specifically, the Normal copula is
designed to model dependence in the center of the joint distribution, while the
Student’s t copula is suitable to model both lower and upper tail dependence
(see e.g. [19]). As opposite to other types of copula families (e.g. Archimedean
copulas), the dependence parameters of both the Normal and Student’s t copulas
can take positive as well as negative values, allowing them to accommodate for
both positive and negative dependence.
Under the ARJI-GARCH model, the copula functions can be applied to the
transformed series utr,t and ure,t, calculated as follows:
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ui,t = Fi(ri,t|Ωt−1) (15)

=

∞∑
m=0

∫ ri,t

−∞

1√
2π(hit +mδ2i,t)

exp

(
−
ri,t − ci −

∑bm
m=1 aimri,t−m −

∑bn
n=1 aknrk,t−n + aiECECt−1 −mθi,t + θi,tλ

i
t

2(hit +mδ2i,t)

)
.

(16)

The copula ARJI-GARCH log-likelihood function is then composed by the
two marginal density functions and the copula density:

lnL =

T∑
t=1

ln ftr(rre,t |Ωt−1 ) + ln fre(rre,t |Ωt−1 ) +

T∑
t=1

ln c(ure,t, ure,t |Ωt−1 )

(17)
where f(·) and c(·) denote the probability density function and the copula

density function respectively.

From both the Normal and the Student’s t copula we obtain, as a measure
of dependence, the Kendall’s tau:

τ = Pr[(rtr,1−rtr,2)(rre,1−rre,2) > 0]−Pr[(rtr,1−rtr,2)(rre,1−rre,2) < 0]. (18)

The sign of τ represents the direction of co-movements in the energy mar-
ket: if τ is positive (negative), the probability that the two assets move in the
same direction is larger (smaller) than the probability of moving in the opposite
direction. The absolute value of τ measures the magnitude of the estimated de-
pendence.
To take into account the time-changing nature of dependence between traditional
and renewable energies, we assume that τ evolves according to the following pro-
cess:

τ jt = Γ (b0 + b1τt−1 + b2τt−2 + b3|utr,t − ure,t|) (19)

with Γ (z) = 1/(1 + e−z).

3 Empirical study

3.1 Data

Focusing on the European energy market, our study investigates the dependence
between renewables and non-renewable energy using data relative to daily clos-
ing prices of two European stock indexes: the European Renewable Energy index
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(ERIX)2 and the MSCI Europe Energy Index3. The first one tracks the perfor-
mance of the largest companies in the areas of renewable energy such as wind,
solar, biomass and water energy. The second one includes securities classified
in the Energy sector as per the Global Industry Classification Standard (GICS)
in the large and mid cap segments across 15 European countries. The sample
period spans from 22/09/2003 to 04/04/2022, for a total of 4768 observations.
Both series were retrieved from Bloomberg.
Figure 1 plots the ERIX and MSCI price time series analyzed in the paper.

Fig. 1. MSCI and ERIX price time series (scaled values)

The International Paris Agreement adopted at the Paris climate conference
(COP21) in December 2015 underlines the need to convert the EU into a fair,
competitive and sustainable economy reducing greenhouse gas emissions by at
least 40 per cent (compared to 1990 levels), with a renewable energy share of at
least 32 per cent, with at least 32.5 per cent energy efficiency. Based on the Reg-
ulation on the Governance of the Energy Union and Climate Action (September
2020), the EU has adopted integrated rules to ensure planning, monitoring and
reporting of progress towards its 2030 climate and energy target and its inter-
national commitments under the Paris Agreement4. From 2003 to 2008, both

2 https://sgi.sgmarkets.com/en/index-details/TICKER:ERIX/
3 https://www.msci.com/www/fact-sheet/msci-europe-energy-index/08601638
4 https://ec.europa.eu/clima/eu-action/international-action-climate-change/climate-

negotiations/paris-agreement it.
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energy indices tripled in value, essentially following the surge in the price of oil,
which rose from about 33/bar to a peak of 145/bar (as measured by WTI). In
addition, the renewable energy sector continued to break records year after year
from 2004 to 2008, until the impact of the 2008-2009 Global Financial crisis
(GFC). Subsequently, the European sovereign debt crisis (ESDC) from 2010 to
2012 also had a significant impact on new investments in renewable energy sec-
tors negatively affecting the performance of the ERIX until 2012. In the same
period fossil fuel showed a mirror performance, due to the substitution effects
between the ERIX and the MSCI Europe Energy Index. At the end of 2019, the
EU launched the European Green Deal by planning climate-relevant policies.
The sharp drop in the oil prices in the early 2020 stemmed mainly from the
negative impact of the Covid pandemic and the price war crisis between Saudi
Arabia and Russia. The turmoil in the oil markets, demand uncertainty and the
Covid pandemic have prompted a global sector-wide downturn in the oil and gas
industry that has left the oil-dependent economies vulnerable. In addition the
volatility of oil and gas prices was amplified by the Russian invasion of Ukraine
in February 2022 and the related EU policy responses, increasing uncertainty
over oil-sector supply, which made prices more sensitive to changes in the out-
look for energy supply, while the renewable sector has received increased interest
due to regulatory incentives.

3.2 Results for the marginal density specification

Table 1 reports maximum likelihood estimates of parameters for the ARJI-
GARCH, comparing them to their values in the AR-GARCH (with no jumps)
model. The comparison of the proposed specification with the nested AR-GARCH
one allows to better highlight the contribution of the jump innovation part in
improving prediction of returns and tail risk assessment for the energy market.
We use a number of jumps equal to 21, that means we consider, at each time t,
the jump behaviour of energy asset returns in the last trading month. For renew-
able energy, the estimated aEC is negative and statistically significant, while the
same parameter is not significant for the traditional energy index. This means
that returns of renewable energy sector do respond to the error correction term
to adjust to the long-run equilibrium, while returns of traditional energy do not
react, though they are significantly related with lagged returns of the renewable
index. Both the aEC parameters are instead non-significant in the AR-GARCH
model.
The ARCH and GARCH coefficients are positive and statistically significant and
their sum is close to 1 for both markets, indicating high persistence of shocks
to conditional variance in the energy market. The error correction term does
not affect conditional variance in the estimated ARJI-GARCH model, while the
αEC coefficients are significant in the AR-GARCH specification. In the ARJI-
GARCH model, significant error correction terms are rather found in the jump
component, with a positive θ1 parameter for renewable energy and both positive
β1’s, meaning that a significant reaction to disequilibrium is found in the mean
and variance jump size of renewable asset returns and in the variance jump size
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of both markets.
Shocks to the number of jumps are highly persistent (both φ1 parameters are
close to 1) and both series react considerably to the innovation in jump intensity,
being the φ2 parameters highly significant.
Overall, our results reveal that there is a long-run equilibrium relationship be-
tween renewable and non-renewable energy asset prices, sustained by the signif-
icant negative error correction parameter expressing the reaction of the mean of
renewable energy returns to changes in the non-renewable ones. This is in line
with the findings of [37] and [30], amongst the others. The reaction of renewable
energy indexes to changes in the non-renewable ones can be an indication for
policymakers, when defining incentives to green energy consumption. In addi-
tion, a significant and bidirectional positive association is found in the mean and
variance of the jump size: this indicates the presence of tail co-movements in the
renewable and non-renewable energy asset returns, which should be taken into
account by investors when assessing their risks. Table 1 also reports the values
of the Akaike Information Criterion (AIC) and the Bayesian Information Crite-
rion (BIC), which agree in choosing the ARJI-GARCH model as the preferable
specification.
By considering the root mean squared error (RMSE) associated to mean and
volatility predictions, it can be seen from Table 2 that including the jump com-
ponent improves accuracy of both mean and volatility forecasts: in only one
case - the prediction of ERIX volatility - the AR-GARCH specification leads to
a lower error. We then evaluate the ARJI-GARCH model performance from a
risk management point of view, by calculating the failure rate of the in-sample
Value-At-Risk (VaR). Specifically, for a given confidence level (α=95%, 97% and
99%), VaRα is the α-th percentile of losses predicted by the model5. As it can
be seen from Table 2, the frequency of VaR violations is lower with the ARJI-
GARCH model at all considered confidence levels. The VaR failure rate of the
AR-GARCH specification nearly always exceeds the nominal level, meaning that
the model without jumps underestimates the true risk. According to these re-
sults, the ARJI-GARCH specification is more capable of assessing the tail risk
of the energy market.
Figure 2 shows the time series of observed and fitted returns (95% confidence
bands) for the ARJI-GARCH model, which is shown to capture the energy mar-
ket dynamics well.

3.3 Results for the copula specification

We now show the results obtained by applying time-varying Normal and Stu-
dent’s t copulas to the time series of energy market returns estimated through
the ARJI-GARCH model.
As a preliminary analysis, we perform a maximum likelihood-based selection
using the VineCopula R package [18], which chooses the Student’s t bivariate

5 The percentile values are obtained from Monte Carlo simulations. Details are avail-
able upon request.
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Table 1. Maximum likelihood estimates of parameters for the estimated ARJI-GARCH
and AR-GARCH models (standard errors in brackets).

ARJI-GARCH AR-GARCH
Parameter Renewables Traditional Renewables Traditional

a0
-0.0117 0.1153*** 0.0282 0.0360
(0.0924) (0.0492) (0.0605) (0.0390)

are1
-0.0107 -0.0403*** 0.0007 0.1095***
(0.0157) (0.0111) (0.0168) (0.0166)

are2
0.0348** 0.0190* 0.0408*** -0.0255
(0.0158) (0.0112) (0.0167) (0.0164)

are3
-0.0438*** -0.0023 -0.0339*** -0.0326**
(0.0155) (0.0112) (0.0165) (0.0165)

are4
-0.0146 0.0019 0.0030 -0.0308*
(0.0154) (0.0158) (0.0164) (0.0162)

atr1
0.1494*** 0.0777*** 0.1526*** -0.0455***
(0.0182) (0.0177) (0.0191) (0.0112)

atr2
-0.0324* -0.0317* -0.0233 0.0283***
(0.0182) (0.0165) (0.0190) (0.0113)

atr3
0.0197 -0.0416*** 0.0071 -0.0076
(0.0178) (0.0160) (0.0189) (0.0113)

atr4
-0.0112 -0.0105 -0.0224 -0.0089
(0.0181) (0.0112) (0.0187) (0.0114)

aEC
-0.1034* -0.0192 -0.0420 -0.0273
(0.0562) (0.0306) (0.0388) (0.0268)

α0
0.0033*** 0.0068*** 0.0712*** 0.0191***
(0.0133) (0.0027) (0.0143) (0.0049)

α1
0.0030** 0.0425*** 0.1042*** 0.1047***
(0.0014) (0.0064) (0.0098) (0.0087)

α2
0.9893*** 0.9369*** 0.8673*** 0.8783***
(0.0038) (0.0078) (0.0124) (0.0094)

αEC
0.0001 0.0018 0.0076*** 0.0085***
(0.0005) (0.0012) (0.0032) (0.0022)

θ0
0.0547 -0.6284
(0.0927) (0.3103)

θ1
0.1207*** 0.0586
(0.0581) (0.1603)

β0
1.0306*** 0.4594*
(0.2941) (0.2421)

β1
0.4098*** 0.3716***
(0.1088) (0.1340)

φ0
0.0344*** 0.0248*
(0.0079) (0.0137)

φ1
0.9615*** 0.8826***
(0.0088) (0.0570)

φ2
0.6368*** 0.5074***
(0.0858) (0.1521)

Log-likelihood -8802.7 -7690.8 -8939.4 -7808.0
AIC 17647 15424 17907 15644
BIC 17783 15560 17997 15735

Table 2. Predictive accuracy measures and VaR failure rate for the estimated ARJI-
GARCH and AR-GARCH models.

ARJI-GARCH AR-GARCH
Renewables Traditional Renewables Traditional

RMSE (mean) 1.8402 1.5943 1.8416 1.5973
RMSE (volatility) 9.1655 10.1141 9.1082 10.4912
VaR95% failure rate 0.0386 0.0516 0.0493 0.0589
VaR97% failure rate 0.0233 0.0279 0.0371 0.0405
VaR99% failure rate 0.0071 0.0101 0.0216 0.0201
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Fig. 2. Observed and fitted values (95% confidence bands) for the ARJI-GARCH model
applied to the ERIX (top) and MSCI (bottom) series (percentage returns).
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distribution with 10 degrees of freedom as the best one among many well-known
copula specifications. The Student’s t distribution turns out to be preferable to
the Normal one according to both AIC and BIC criteria, as shown in Table 3.

Normal copula Student’s t copula
AIC -839.4 -940.1
BIC -832.9 -927.1

Table 3. Maximum likelihood-based comparison between the Normal and the Stu-
dent’s t copulas with jump process.

Following [5], we then compare the performance of the two copulas using two
portfolio hedging-based criteria: the minimum variance hedging ratio and the
expected utility of the hedged portfolio.
The first one is related to the common strategy of minimizing the variance of
the hedging ratio

HRt =
Cov(rtr,t, rre,t|Ωt−1)

V ar(rtr,t|Ωt−1)
(20)

where, under the ARJI-GARCH model assumptions, V ar(rtr,t|Ωt−1) can be
calculated using the following formula:

V ar(rtr,t|Ωt−1) = htr,t + (θ2tr,t + δ2tr,t)λ
t
tr. (21)

For the covariance calculation, we refer instead to [10] and [11].
The variance of the hedging strategy is then given by

V ar(rre,t −HRt × rtr,t). (22)

Following [10] and [11], the expected utility of the hedging portfolio is calcu-
lated as

EU = E(rre,t −HRt × rtr,t)− κV ar(rre,t −HRt × rtr,t) (23)

where κ is the risk-aversion coefficient. The higher κ, the more the portfolio
return variability is penalized, for a given expected value.
It can be seen from Table 4 that the Normal and Student’s t copulas have similar
hedge ratio mean and standard deviation, but the Student’s t generates a lower
hedging portfolio variance.
Looking then at expected utility, the preferable copula specification is again the
Student’s t one for all considered κ values.
These results show that the traditional Normal copula approach is not flexible
enough to model the dependence between renewable and non-renewable energy
indexes, which is, apparently, stronger in the tails of the return distribution. It
is interesting to note from Table 5, which reports the estimated parameters for
the Kendall’s tau dynamics (19), that the coefficient associated to the difference
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between ure and utr is significant and negative-signed in both cases, meaning
that a negative difference between renewable and non-renewable energy returns
leads to an increase in dependence between the two indexes.

Table 4. Hedging Performance for the Normal and Student’s t copula specifications
with jump process.

Normal copula Student’s t copula
Mean of hedge ratio 0.5249 0.5018
Standard deviation of hedge ratio 0.5343 0.5538
Variance of hedged portfolio 1.6919 1.6799
Utility of hedged portfolio(κ=3) -5.0254 -4.9877
Utility of hedged portfolio(κ=5) -8.4092 -8.3477
Utility of hedged portfolio(κ=10) -16.8689 -16.8679

Table 5. Maximum likelihood estimates of parameters for the time-varying copula
functions (standard errors in brackets).

Parameter Normal Student’s t

b0
3.5172*** 3.5267***
(0.0521) (0.0559)

b1
0.0237 0.0201
(0.0481) (0.0491)

b2
-0.0187 -0.0085
(0.0485) (0.0498)

b3
-7.5739*** -7.8869***
(0.0993) (0.1171)

The Kendall’s tau values estimated by the two copulas are quite similar,
ranging from -0.8072 and 0.7839 in the Normal case, and from -0.8332 to 0.7860
with the Student’s t. The implied average linear correlation coefficients are 0.5248
and 0.5019 (closer to the sample correlation coefficient of 0.4860) respectively.
Overall, the Student’s t copula turns out to be preferable to the Normal one in
driving investment choices in the energy market.

4 Conclusions

Focusing on the European energy market, in this paper we set up a copula-based
ARJI-GARCH model to investigate the dependence between renewable and non-
renewable energy returns.
Our results show that including a jump-type innovation component in an AR-
GARCH model allows to well capture the energy asset dynamics and leads to an
improvement in predictive accuracy and downside risk assessment with respect
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to the only autoregressive specification.
Based on the ARJI-GARCH forecasts, we investigate the co-movement structure
between renewable (ERIX) and non-renewable (MSCI) energy indexes.
Our findings highlight the ability of the Student’s t copula to capture depen-
dence in the tails, making it a more appropriate tool to model the European
energy system in the current situation, characterized by the need for increasing
the integration of renewable energy sources and strengthening the resilience to
future price shocks. As suggested by the range of the estimated Kendall’s tau,
taking both positive and negative values, other choices of copula families allow-
ing parameters which are exclusively positive (e.g. Archimedean copulas) would
be unsuitable and rotations would need to be considered. This will be the object
of future research. In addition, the Student’s t copula turns out to be preferable
to the Normal one in driving investment choices in the energy market.
Investing in clean energy companies is valuable not only for its contribution to a
sustainable energy transition to renewable sources, but also for their attractive-
ness from a financial point of view, with both profitability and risk implications.
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