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Abstract. The mathematical problem in this article is originally from
the finance topic of bond duration. With one notable exception, avail-
able published proofs for the problem seem unsuitable for coverage in un-
dergraduate investment courses. However, the proof in the exceptional
case is unfinished from a mathematical standpoint. We provide two new
proofs and complete the unfinished proof, without assuming any prior
knowledge of the financial concepts involved. All these proofs require
only mathematical tools that are familiar to students in undergraduate
economics and finance programs.
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1 Introduction

This article considers a mathematical problem originally from the finance topic
of bond duration, which is about the price sensitivity of a bond to changes in
interest rates. When introduced by Macaulay [4] in 1938, bond duration was
formulated as a weighted average of the arrival times of investment income, with
a lower weighted average implying sooner payoff. Given this intuitive perspec-
tive, bond duration has remained relevant in the financial world today; it is part
of routinely reported bond data.

We use Macaulay’s formulation to state a mathematical problem, without
assuming any prior knowledge of the financial concepts involved. The problem
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is on a nontrivial issue of whether a longer life of a bond necessarily corresponds
to a greater bond duration. There have been several proofs for the problem, as
published in various academic journals and conference proceedings from 1984 to
2017. With one notable exception, these proofs seem unsuitable for coverage in
undergraduate investment courses. However, the proof in the exceptional case,
which relies on a numerical example for its completion, is unfinished from a
mathematical standpoint.

Given the pedagogic objective of this article, we first state the above math-
ematical problem in Section 2 and provide the context and the background,
including a brief description of various published proofs, in Section 3. We then
present two new proofs, including a direct proof and an induction proof, in Sec-
tions 4 and 5. Finally, we complete the above unfinished proof in Section 6.

As the individual proofs in Sections 4-6 require only mathematical tools
that are familiar to students in undergraduate economics and finance programs,
they are all suitable for pedagogic purposes. At the beginning of each section
containing a specific proof, we also briefly indicate its contribution, as well as
the key feature of the approach involved. Such proofs are intended to serve
as a catalyst for others to explore alternative proofs for similar mathematical
problems.

2 A mathematical problem

Given
Dn =

wn

pn
, for n = 1, 2, 3, . . . , (1)

wn = c
∑n

h=1

h

(1 + r)h
+

n

(1 + r)n
, (2)

and

pn = c
∑n

h=1

1

(1 + r)h
+

1

(1 + r)n
, (3)

prove that
Dn+1 −Dn > 0, for n = 1, 2, 3, . . . , if c ≥ r > 0.

Prove also that, if r > c > 0 instead, there exists a positive integer n̂ such that

Dn+1 −Dn > 0, for n = 1, 2, 3, . . . , n̂− 1,

and
Dn+1 −Dn < 0, for n = n̂, n̂+ 1, n̂+ 2, . . .

3 Context and background

In the above mathematical problem, Dn is the duration of a bond that matures
in n periods, r is the bond yield, and c is the coupon rate.1 Illustrations in

1 Investors of a default-free bond will receive periodic coupon payments until the
maturity date and also the face value of the bond on the maturity date. The bond
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investment textbooks typically include various graphs of bond duration versus
maturity (see, for example, Reilly and Brown [6, Chapter 18]). In such graphs,
how Dn varies with n — in the current notation for ease of exposition throughout
this article — depends on the relative values of c and r. If c ≥ r > 0, Dn always
increases with n. However, if r > c > 0 instead, the graph of Dn versus n shows
a single maximum.

The earliest published proof of the above property of bond duration, as pro-
vided by Hawawini [2] in 1984, is calculus-based; it treats n as a continuous
variable. After deriving a closed-form expression of Dn, it confirms the signs
of the first partial derivative of Dn with respect to n. Another calculus-based
proof, as provided by Pianca [5], is confined to the case of r > c > 0; it de-
termines the specific value of n corresponding to the single maximum of Dn in
terms of c and r by using the Lambert W function.2

All remaining published proofs have kept n as a positive integer, as specified
in the bond model. The earliest of such proofs is a direct proof, as provided
by Smith [7] in 1988. By treating Dn as a fulcrum — which is the point of
balance for the arrival times of investment income — the proof hinges on how
the fulcrum moves on the timeline as n increases. If c ≥ r > 0 and Dn < n
(which is true for n > 1), Dn always increases with n. The case of r > c > 0
is less obvious, as how Dn varies with n depends on the values of c, r, n, and
Dn. The proof of the existence of a single maximum in the graph of Dn versus
n for the latter case in [7] is via a numerical example. Thus, the proof in [7],
though innovative for pedagogic purposes, is incomplete from a mathematical
standpoint.

The direct proof by Kojić and Lukač [3] also requires only algebraic tools to
confirm that Dn always increases with n if c ≥ r > 0. However, as the expression
of Dn+1 − Dn in [3] is in terms of c, r, n, and Dn+1, how Dn varies with n if
r > c > 0 is not easily discernible. The proof of a single maximum in the graph
of Dn versus n for the case of r > c > 0 has turned out to be a major task in
[3]; there is a separate section just to rule out the existence of multiple extrema
in the graph.

The induction proof for c ≥ r > 0 by Feng and Kwan [1] — which keeps n
as a positive integer and can be extended to accommodate r > c > 0 as well
— requires only familiar algebraic tools. Unlike the algebraic approach in [3],
as the expression of Dn+1 − Dn in [1] is in terms of c, r, and n only, how Dn

varies with n is easily recognizable. The proof in [1] can potentially fill the
void left by the unfinished proof in [7]. Its pedagogic appeal as compared to
the calculus-based approach in [2] is that there is no need for any digressions to

yield — which is a shorter version of the term “yield to maturity of the bond” — is
investors’ required rate of return each period, such as every six months, for holding
the bond. The coupon rate is the coupon payment each period as a proportion of
the face value of the bond.

2 The Lambert W function is named after Johann Heirich Lambert (1728-1777).
By definition, it is the multivalued function W (z) that satisfies the equation
z = W (z) exp[W (z)] for any complex number z. Equivalently, it can also be de-
fined as the inverse function of f(W ) = W exp(W ).
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justify the substitution of a continuous variable for the positive integer n there.
However, as the preparation for the induction proof itself in [1] requires some
tedious algebraic steps, improvements to the approach are still warranted.

This article originated from two assignments for new finance Ph.D. students
in a graduate course during the Fall Term of 2020. The assignments were in-
tended to provide different proofs for the part of the above mathematical problem
where c ≥ r > 0. A student in the class completed a direct proof, which re-
quires only familiar algebraic tools. Another student derived the closed-form
expression of Dn in terms of c, r, and n, as reported originally by Macaulay [4]
without any accompanying analytical details. The latter student also completed
an induction proof that is simpler than that in [1]. The subsequent collaboration
of the instructor and the above two students has led to this article. It covers a
direct proof and an induction proof, now extended to the case of r > c > 0 as
well. It also completes the unfinished proof in [7] for r > c > 0.

4 A direct proof

The direct proof in this section uses the same closed-form expressions of
∑n

h=1(1+
r)−h and

∑n
h=1 h/(1 + r)−h in Feng and Kwan [1]. The contribution here is

in reducing the equivalent of Dn+1 − Dn (for its sign only) to an analytically
convenient form, for which the arithmetic mean and geometric mean inequality
is applicable for the completion of the proof.

4.1 Some Preliminary Algebraic Steps

Given how Dn, wn, and pn are defined in equations (1)-(3), as

Dn+1 =
(1 + r)wn+1

(1 + r)pn+1
=
c+ c

∑n
h=1

h+1
(1+r)h

+ n+1
(1+r)n

c+ c
∑n

h=1
1

(1+r)h
+ 1

(1+r)n

=
c+ pn + wn

c+ pn
,

we can write
Dn+1 −Dn =

wn+1

pn+1
− wn

pn
= 1− cwn

pn(c+ pn)
. (4)

Thus, to prove that
Dn+1 −Dn > 0, for c ≥ r > 0

is equivalent to proving

pn(c+ pn)− cwn > 0, for c ≥ r > 0.

The proof here requires the closed-form expressions∑n

h=1

1

(1 + r)h
=

1

r

[
1− (1 + r)−n

]
(5)

and ∑n

h=1

h

(1 + r)h
=

1

r2
[
(1 + r)− (1 + r + nr)(1 + r)−n

]
(6)
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from equations (B4) and (B8), respectively, in Feng and Kwan [1, Appendix B].
Letting kn = (1 + r)−n, we can write

pn =
c

r
(1− kn) + kn =

c

r
+
(

1− c

r

)
kn (7)

and
wn =

c

r2
[(1 + r)− (1 + r + nr)kn] + nkn. (8)

It follows that

pn(c+ pn) =
c2

r
+
c2

r2
+

(
c

r
− c2

r2

)
kn +

(
c+

c

r
− c2

r
− c2

r2

)
kn +

(
1− c

r

)2
k2n

=
c2

r
+
c2

r2
+

c

r2
(
r2 + 2r − cr − 2c

)
kn +

(
1− c

r

)2
k2n

and

pn(c+ pn)− cwn =
c

r2
[r(1 + r) + (c− r)(nr − 1)] kn +

(
1− c

r

)2
k2n. (9)

For analytical convenience, let q = c− r, which is non-negative for c ≥ r, and
write

pn(c+pn)−cwn =
[(1 + r)n(nr − 1) + 1]q2 + (1 + r)nr2(n+ 1)q + (1 + r)n+1r2

r2(1 + r)2n
.

As r > 0, n ≥ 1, and (1 + r)n > 0, to reach pn(c + pn) − cwn > 0, a sufficient
condition is

(1 + r)n(nr − 1) + 1 ≥ 0.

If nr ≥ 1, the positive sign of pn(c+ pn)− cwn is obvious. If nr < 1 instead, let
us write the same sufficient condition as

(1− nr)(1 + r)n ≤ 1.

4.2 The Arithmetic Mean and Geometric Mean Inequality

The arithmetic mean of any positive numbers can never be less than their ge-
ometric mean. For a set of n positive numbers denoted as x1, x2, . . . , xn, the
corresponding inequality

n
√
x1x2 · · ·xn ≤

1

n
(x1 + x2 + · · ·+ xn)

is known as the arithmetic mean and geometric mean inequality. We now apply
it to a set of n+1 positive numbers, which specifically includes a positive number
1− nr and n positive numbers, with each being 1 + r. As

n+1
√

(1− nr)(1 + r)n ≤ 1

n+ 1
[(1− nr) + n(1 + r)] = 1,
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we have
(1− nr)(1 + r)n ≤ 1n+1 = 1,

thus confirming the positive sign of pn(c+ pn)− cwn. As n can be any positive
integer, this result implies directly that

Dn+1 −Dn > 0, for c ≥ r > 0,

thus completing a part of the proof.
For the proof where r > c > 0, let us write equation (9) as

pn(c+pn)−cwn =
1

(1 + r)2n

{
c(1 + r)n

r2
[r(1 + r) + (c− r)(nr − 1)] +

(
1− c

r

)2}
.

As c < r, the term

c(1 + r)n

r2
[r(1 + r) + (c− r)(nr − 1)] ,

which starts for small n as being positive when nr < 1 — thus corresponding
to pn(c+ pn)− cwn > 0 — decreases monotonically as n increases. Eventually,
there will be a value of n that makes this term negative enough to result in

pn(c+ pn)− cwn < 0.

Let us label this specific value of n as n̂. For n ≥ n̂, Dn will decrease with
increasing n. Thus, there exists a positive integer n̂ such that

Dn+1 −Dn > 0, for n = 1, 2, 3, . . . , n̂− 1,

and
Dn+1 −Dn < 0, for n = n̂, n̂+ 1, n̂+ 2, . . .

4.3 The Exclusion of Dn+1 = Dn

The exclusion of the strict equality of Dn+1 and Dn in the above proof requires
an explanation. For r > c > 0, the strict equality requires nr > 1 on the
right hand side of equation (9) as a necessary condition. With c treated as an
unknown variable, its values satisfying the condition of

pn(c+ pn) = cwn

can be solved in terms of r and n via equation (9). This is equivalent to solving
the quadratic equation

αc2 + βc+ r2 = 0

for c, where
α = (nr − 1)(1 + r)n + 1

and
β = [(2− nr + r)(1 + r)n − 2]r.



A mathematical problem based on a property of bond duration . . . 59

The two roots are

c =
−β ±

√
β2 − 4αr2

2α
. (10)

For a set of given values of c, r, and n, the strict equality of Dn+1 and Dn

requires that one of the two roots of c in equation (10) match exactly the given
value of c.

If a positive integer m is a perfect square,
√
m is also a positive integer;

otherwise,
√
m is not a rational number. A positive rational number s can be

expressed as the ratio of two coprime positive integers. If either integer is not
a perfect square,

√
s is not a rational number and its decimal equivalent will

have an infinite number of decimals. Given how α and β are defined under the
condition of nr > 1, the term β2−4αr2 under the square root is always a rational
number. However, it is highly unlikely that the two coprime integers in the ratio

are both perfect squares to ensure that
√
β2 − 4αr2 (for a positive β2 − 4αr2)

be a rational number. As explained below, even if it turns out that
√
β2 − 4αr2

is a rational number, it is impossible that one of the two roots of c in equation
(10) can match exactly the given value of c.

In practice, given values of c seldom go beyond a few decimal places. For
values of r and n satisfying the condition of nr > 1, suppose that the precision
in the measurement of r is only one-tenth of 1% and the corresponding n exceeds
10. Then, the precise value of (1+r)n in α and β and the precise value of (1+r)2n

in β2−4αr2 will have no fewer than 30 and 60 decimal places, respectively. Any
higher precision in the measurement of r will result in many more decimal places
in the precise values of (1 + r)n and (1 + r)2n.

In an unlikely scenario that
√
β2 − 4αr2 is a rational number, each of the two

coprime integers involved must have a large number of digits and, accordingly,
the decimal equivalent of either root of c in equation (10) must also have a large
number of decimals. Thus, it is impossible to achieve an exact match between
such a decimal equivalent and the given value of c. Further, any rounding errors
in the numerical computation of the two root of c will render the strict equality
of Dn+1 and Dn unachievable. An implication is that, for any positive integer n,
as the given value of c has only a small number of decimals in practical settings,
the computed value of the right hand side of equation (9) will never be strictly
zero.

The strict equality of Dn+1 and Dn for r > c > 0 is also ruled out in the
proofs in the next two sections. This is because all proofs here are based on
the same bond model for which the closed-form expressions of Dn involved are
equivalent. Their equivalence will allow equation (9) and its implications to
remain applicable if the feasibility of Dn+1 = Dn is also explicitly considered in
the remaining proofs.

5 An induction proof

To prepare for the induction proof in this section, we also use closed-form expres-
sions of

∑n
h=1(1 + r)−h and

∑n
h=1 h/(1 + r)−h in Feng and Kwan [1]. We then
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use equations (5) and (6) at the start of Section 4 to replicate the closed-form
expression of Dn in Macaulay [4]. The contribution here is in using Macaulay’s
expression of Dn in the induction proof that follows.

5.1 Replication of Macaulay’s Expression of Dn

Given equations (5) and (6) in Section 4, we can write

pn =
c

r

[
1− (1 + r)−n

]
+ (1 + r)−n =

c

r
− c− r

r
(1 + r)−n

and

wn =
c

r2
[
(1 + r)− (1 + r + nr)(1 + r)−n

]
+ n(1 + r)−n

=
c(1 + r)

r2
− c

r2(1 + r)n−1
− (c− r)n
r(1 + r)n

.

It follows that

Dn =
wn

pn
· r

2(1 + r)n

r2(1 + r)n
=
c(1 + r)n+1 − c(1 + r)− (c− r)rn

−(c− r)r + cr(1 + r)n

=
1 + r

r
· [c(1 + r)n − c]
c(1 + r)n − (c− r)

− (c− r)n
c(1 + r)n − (c− r)

=
1 + r

r
· [c(1 + r)n − (c− r)]
c(1 + r)n − (c− r)

− (c− r)n+ (1 + r)

c(1 + r)n − (c− r)
,

which leads to

Dn =
1 + r

r
− (c− r)n+ (1 + r)

c(1 + r)n − (c− r)
. (11)

This is an expression equivalent to that in Macaulay [4, Chapter 2], page 49,
but in the current notation.

5.2 Some Preliminary Algebraic Steps

Letting a = c/r or, equivalently, c = ar, we can write

Dn −
1 + r

r
= − (a− 1)rn+ (1 + r)

ar(1 + r)n − (a− 1)r

and

Dn+1 −
1 + r

r
= − (a− 1)r(n+ 1) + (1 + r)

ar(1 + r)n+1 − (a− 1)r
,

for r > 0. It follows that

r(Dn+1 −Dn) =
(a− 1)rn+ (1 + r)

a(1 + r)n − (a− 1)
− (a− 1)rn+ (1 + r) + (a− 1)r

a(1 + r)n − (a− 1) + ar(1 + r)n
,
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which leads to

r(Dn+1 −Dn) =
An

[a(1 + r)n − (a− 1)][a(1 + r)n − (a− 1) + ar(1 + r)n]
, (12)

where

An = [(a− 1)rn+ (1 + r)][a(1 + r)n − (a− 1) + ar(1 + r)n]

−[(a− 1)rn+ (1 + r) + (a− 1)r][a(1 + r)n − (a− 1)]

= [(a− 1)rn+ (1 + r)]ar(1 + r)n − (a− 1)ar(1 + r)n + (a− 1)2r

= r{a[(a− 1)(rn− 1) + (1 + r)](1 + r)n + (a− 1)2}.

Now, let

Bn =
An

r
= a[(a− 1)(rn− 1) + (1 + r)](1 + r)n + (a− 1)2.

As a(1+ r)n > a > a−1, the denominator in the expression of r(Dn+1−Dn) on
the right hand side of equation (12) is positive. Then, Bn, An, and Dn+1 −Dn

must be of the same sign. Thus, what needs to be confirmed here is that

Bn > 0, for n = 1, 2, 3, . . . , if c ≥ r > 0.

5.3 The Induction Proof Itself

For an induction proof, the base case is n = 1. As

B1 = a[(a− 1)(r − 1) + (1 + r)](1 + r) + (a− 1)2

= (a2r − a2 + 2a)(1 + r) + (a2 − 2a+ 1)

= a2r2 + 2ar + 1 = (ar + 1)2 > 0,

the base case is confirmed. By the induction hypothesis, suppose that Bn > 0
for n = k; that is,

Bk = a[(a− 1)(rk − 1) + (1 + r)](1 + r)k + (a− 1)2 > 0.

For n = k + 1, let us write

Bk+1 = a{(a− 1)[r(k + 1)− 1] + (1 + r)}(1 + r)k+1 + (a− 1)2

= a[(a− 1)(rk − 1) + (1 + r)](1 + r)(1 + r)k + (a− 1)2

+a(a− 1)r(1 + r)(1 + r)k

= a[(a− 1)(rk − 1) + (1 + r)](1 + r)k + (a− 1)2

+a[(a− 1)(rk − 1) + (1 + r)]r(1 + r)k + a(a− 1)r(1 + r)(1 + r)k,

which is equivalent to

Bk+1 = Bk + a[(a− 1)(rk − 1) + (1 + r)]r(1 + r)k + a(a− 1)r(1 + r)(1 + r)k

= Bk + ar[(a− 1)(rk − 1) + (1 + r) + (a− 1)(1 + r)](1 + r)k

= Bk + ar[(a− 1)rk + ar + 1](1 + r)k.
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As a ≥ 1 and r > 0, we always have Bk+1 > 0, thus completing the induction
proof.

The case of 1 > a > 0 is where r > c > 0. In such a case, even if Bk > 0,
the term ar[(a− 1)rk+ ar+ 1](1 + r)k can be negative. If this term is negative
enough to cause

Bk + ar[(a− 1)rk + ar + 1](1 + r)k < 0,

then we have Bk > 0 and Bk+1 < 0. As long as Bk+1 < 0, we also have

Bk+2 = Bk+1 + ar[(a− 1)(r)(k + 1) + ar + 1](1 + r)k+1

< Bk + ar[(a− 1)rk + ar + 1](1 + r)k < 0.

Once we have Bk+1 < 0, we also have Bk+2 < 0, Bk+3 < 0, and so on. As
Bn and Dn+1 − Dn have the same sign, the graph of Dn versus n will have a
single maximum. That is, Dn increases with n for n = 1, 2, 3, and so on, but
when Dn starts to decrease at some value of n, it will continue to decrease as n
increases. Thus, there exists a positive integer n̂ such that

Dn+1 −Dn > 0, for n = 1, 2, 3, . . . , n̂− 1,

and
Dn+1 −Dn < 0, for n = n̂, n̂+ 1, n̂+ 2, . . .

6 Completion of an unfinished proof

The contribution of this section is in the completion of the unfinished proof in
Smith [7]. To facilitate the task involved, we first replicate some key materials
there, but in the current notation. As the proof hinges on how n−Dn varies with
n, we present two alternative approaches for its verification, with and without
relying on differential calculus tools.

6.1 Replication of Some Key Materials in the Fulcrum Approach

Given how Dn is defined, as wn − pnDn = 0, we can write∑n

h=1

(h−Dn)c

(1 + r)h
+
n−Dn

(1 + r)n
= 0, for n = 1, 2, 3, . . . ,

which is equation (12) in Smith [7], page 30. With Dn being the fulcrum on the
timeline, we can write the same equation as∑k

h=1

(Dn − h)c

(1 + r)h
=
∑n

h=k+1

(h−Dn)c

(1 + r)h
+
n−Dn

(1 + r)n
, (13)

where k < Dn < k + 1. Let

H =
n−Dn

(1 + r)n
,
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which is the last term on the right hand side of equation (13).
While maintaining the same fulcrum Dn on the timeline, let us increase n to

n+ 1 and replace H with

K =
(n+ 1−Dn)c

(1 + r)n+1
+
n+ 1−Dn

(1 + r)n+1
=

[(n−Dn) + 1](1 + c)

(1 + r)n+1
.

This substitution will lead to the imbalance of the two sides of equation (13).
To regain the balance requires a movement of the fulcrum on the timeline. If
K > H, we have Dn+1 > Dn, where Dn+1 is the new fulcrum on the timeline;
if K < H, we have Dn+1 < Dn instead.

As n−Dn > 0, for n > 1, the condition for Dn+1 > Dn, when simplified as

[(n−Dn) + 1](1 + c)

1 + r
> n−Dn,

will lead to
1 + c

n−Dn
> r − c. (14)

Likewise, the condition for Dn+1 < Dn can be stated as

1 + c

n−Dn
< r − c. (15)

Smith [7] has shown that Dn+1 > Dn for c ≥ r > 0, as inequality (14) always
holds. For the case of r > c > 0, we prove below that n−Dn — which is positive
for n > 1 — increases with n. Given such an analytical property, there will be
a value of n beyond which inequality (15) is satisfied. As soon as this specific
value of n is reached, we have Dn+1 < Dn instead. Thus, for r > c > 0, there
is a single maximum in the Dn versus n graph.

6.2 A Calculus-Based Proof

To prove that n−Dn increases with n, we first write

n−Dn = n− 1 + r

r
+

(c− r)n+ (1 + r)

c(1 + r)n − (c− r)
, (16)

by using the closed-form expression of Dn in Macaulay [4], as replicated in
equation (11) of Section 5.3 We then substitute a continuous variable x for the
positive integer n in equation (16) and define

f(x) = x− 1 + r

r
+

(c− r)x+ (1 + r)

c(1 + r)x − (c− r)
,

3 Smith [7] has also replicated Macaulay’s expression of Dn in his equation (8) on
page 29 there. However, the same equation has not been used analytically in his
unfinished proof.
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where c and r are constants satisfying the condition of r > c > 0. Implicitly, we
have f(n) = n−Dn, for n = 1, 2, 3, . . .

The first-order derivative of f(x) is

d

dx
f(x) =

g(x)

[c(1 + r)x − (c− r)]2
,

where

g(x) = [c(1 + r)x − (c− r)]2 + [c(1 + r)x − (c− r)](c− r)
−[(c− r)x+ (1 + r)]c(1 + r)x ln(1 + r)

= c(1 + r)x{c(1 + r)x + (r − c) + [(r − c)x− (1 + r)] ln(1 + r)}.

For df(x)/dx > 0, we need g(x) > 0. We have

g(1) = c(1 + r){c(1 + r) + (r − c) + [(r − c)− (1 + r)] ln(1 + r)}
= c(1 + c)(1 + r)[r − ln(1 + r)] > 0,

as r > ln(1 + r) for r > 0. As both (1 + r)x and (r − c)x increase with x for
r > c > 0, so does g(x). Thus, we confirm that g(x) > 0 and df(x)/dx > 0
for all x ≥ 1. Letting x = 1, 2, 3, . . . , we have f(1) < f(2) < f(3) < · · · or,
equivalently, 1−D1 < 2−D2 < 3−D3 < · · · , confirming that n−Dn increases
with n for r > c > 0.

6.3 An Alternative Proof

We can also prove that n−Dn increases with n without using any calculus tools.
The proof here starts with equation (4) in Section 4. As

cwn

pn(c+ pn)
> 0,

equation (4) implies that

Dn+1 −Dn < 1, for n ≥ 1.

Rearranging the terms in the inequality

Dn+1 −Dn + n < 1 + n

leads to

n−Dn < (n+ 1)−Dn+1, for n ≥ 1.

As n is an integer, this inequality implies that n−Dn increases with n. Notice
that, in the proof here, whether c ≥ r > 0 or r > c > 0 is irrelevant.
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