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Yor processes (DPY). The proposed DPY are represented in terms of a vector of stick-
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computation of the proposed models and illustrate the effectiveness of the method with a 
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BETA-PRODUCT DEPENDENT PITMAN-YOR PROCESSES

FOR BAYESIAN INFERENCE

FEDERICO BASSETTI, ROBERTO CASARIN, AND FABRIZIO LEISEN

Abstract. Multiple time series data may exhibit clustering over time and the clustering effect
may change across different series. This paper is motivated by the Bayesian non–parametric
modelling of the dependence between clustering effects in multiple time series analysis. We
follow a Dirichlet process mixture approach and define a new class of multivariate dependent
Pitman-Yor processes (DPY). The proposed DPY are represented in terms of a vector of stick-
breaking processes which determines dependent clustering structures in the time series. We
follow a hierarchical specification of the DPY base measure to accounts for various degrees of
information pooling across the series. We discuss some theoretical properties of the DPY and

use them to define Bayesian non–parametric repeated measurement and vector autoregressive
models. We provide efficient Monte Carlo Markov Chain algorithms for posterior computation
of the proposed models and illustrate the effectiveness of the method with a simulation study
and an application to the United States and the European Union business cycles.

JEL: C11,C14,C32

Keywords: Bayesian non–parametrics, Dirichlet process, Panel Time-series non–parametrics,
Pitman-Yor process, Stick-breaking process, Vector autoregressive process, Repeated measure-
ments non–parametrics.

1. Introduction

This paper focuses on vectors of dependent Pitman-Yor (PY) processes for Bayesian inference
on repeated measurements and panel data models. The PY process of parameters α > 0, l ∈ [0, 1)
and base measure H0, in short PY (α, l,H0), is defined by

(1) G =
∑

k≥1

Wk δϑ̃k
,

where δx is a point mass at x, (ϑ̃k)k is a sequence of independent random variables (atoms) with
common distribution H0, and the weights Wk’s are defined by the stick-breaking construction:

(2) Wk = Sk

∏

j<k

(1− Sj),

Sk being independent random variables with beta distribution of parameters (1− l, α+ lk). Such
a process has been introduced in Pitman and Yor [1997] and it can be seen as a generalization of
the (one parameter) Dirichlet process (DP) defined in Ferguson [1973]. If l = 0 the Pitman-Yor
process corresponds to a DP and (1) reduces to the well-known Sethuraman [1994] representation.

The Dirichlet process (and the PY process as well) is usually employed as a prior for a mixing
distribution, resulting in the so-called DP mixture model (see for example Lo [1984]). More
specifically, one defines a random density

(3) f(y) =

∫

K(y|ϑ)G(dϑ) =
∑

k≥1

WkK(y|ϑ̃k),

where K is a suitable density kernel. Due to the availability of simple and efficient methods for
posterior computation, starting from Escobar [1994] and Escobar and West [1995], DP mixture
models are now routinely implemented and used in many fields. A recent account of Bayesian
non-parametric inference can be found in Hjort et al. [2010].

Date: November 29, 2012.
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Although DP mixture models are extremely flexible, in many real applications data arise under
different conditions and hence assuming a DP mixture model can be too restrictive. For example,
using covariates, data may be divided into different units. In this case, one would like to consider
different densities for different units instead of a single common density for all the units. For this
reason, mixtures driven by vectors of random probability measures could be used as an alternative
to the DP mixture model. After the seminal papers of MacEachern [1999, 2001], the problem of
modelling a finite number of dependent densities, allowing information pooling across units, has
become an active area of research. For the interested reader, a brief account of the state of the
art is given at the beginning of Section 2.

The first contribution of this paper is to introduce a new class of dependent Pitman-Yor pro-
cesses. We start from the general definition of dependent stick-breaking processes of MacEachern
[1999] and use the multivariate beta distributions of Nadarajah and Kotz [2005] for the stick-
breaking weights to define the beta-product dependent Pitman-Yor (DPY) process. Another
contribution is the derivation of a simple and efficient method for posterior computation that
constitutes a novel extension of the slice sampling algorithm for DP mixture models introduced
in Walker [2007] and Kalli et al. [2011]. Recently, Hatjispyrosa et al. [2011] introduce a different
vector of dependent DP mixture and propose a suitable multidimensional slice sampling algorithm,
which does not apply to our model.

Another contribution of the paper is the definition of two Bayesian non–parametric models for
groups of time series, based on our beta-product DPY processes. The first model is an infinite
mixture Gaussian model for repeated measurements which accounts for different clustering struc-
tures in the series and for dependence between the series-specific clustering effects. The model is
a novel extension of the finite mixture models for repeated measurements which are present in the
literature (e.g., see Früwirth-Schnatter [2006] for a review).

Finally, we contribute to the literature on Bayesian vector autoregressivemodels (VAR) (e.g., see
Sims [1980, 1992] and Sims and Zha [1998]) and introduce a Bayesian non–parametric VAR model.
In time series analysis DP and dependent DP have been employed in different ways. Rodriguez and
ter Horst [2008] used a dependent DP to define an infinite mixture of time series models. Taddy
and Kottas [2009] propose a Markov-switching finite mixture of independent Dirichlet process
mixtures. Jensen and Maheu [2010] consider Dirichlet process mixture of stochastic volatility
models. Griffin [2011] proposed a continuous-time non–parametric model for volatility. Griffin
and Steel [2011] propose a time-varying stick-breaking process to capture time-variations in the
clustering structure of a set of time series. In this paper, we focus on Bayesian VAR models
for time series which are collected from different countries, i.e. a multi-country panel VAR (e.g.,
see Chib and Greenberg [1995] and Canova and Ciccarelli [2004]) and proposed a non–parametric
panel VAR models based on our DPY process prior. Our model accounts for shifts in the intercept,
autoregressive coefficients and covariance matrix of the country-specific equations and for cross-
country dependence through a hierarchical specification of the base measure. We apply the model
to the analysis of two well studied business cycles of the international economic system: the United
States (US) and the European Union (EU) cycles.

The structure of the paper is as follows. Section 2 introduces vectors of dependent stick-breaking
processes for prior modelling in repeated measurements and vector autoregressive models. Section
3 introduces beta-product dependent Pitman-Yor processes and studies their properties. Section 4
discusses the hierarchical specification of the the base measure. Section 5 proposes a Monte Carlo
Markov Chain (MCMC) algorithm for approximated inference for DPY mixture models. Section
6 provides some applications to both simulated and real data. Specifically, we consider a joint
analysis of the United States and the European Union business cycles. Section 7 concludes the
paper.

2. Dependent stick-breaking processes and infinite mixture models

Some of the first developments of vectors of dependent random distributions are in Cifarelli
and Regazzini [1978]. More recently, MacEachern [1999, 2001] introduce the so-called dependent
DP, incorporating dependence on covariates through both the atoms and the weights, although
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these papers mainly consider dependent atoms. In particular, the random variables ϑ̃k’s in the
Sethuraman’s representation (1)-(3) are replaced with stochastic processes ϑ̃zk, z being a set of
covariates. Following this line, De Iorio et al. [2004] propose an ANOVA-type dependence for the
law of the atoms, while Gelfand et al. [2004] introduce a spatial dependence structure. Later,
Griffin and Steel [2006] defined a class of DP with both dependent atoms and weights. Many
alternative constructions that incorporate dependence in the weights have been proposed, see, for
instance Duan et al. [2007], Chung and Dunson [2011], Dunson and Peddada [2008], Dunson et al.
[2008], Rodriguez et al. [2010].

Other approaches to the definition of dependent vectors of random measures rely upon suitable
convex combinations of independent DPs (e.g., Müller et al. [2004], Pennell and Dunson [2006],
Hatjispyrosa et al. [2011], Kolossiatis et al. [2011]), hierarchical structures of stick-breakings (e.g.,
Teh et al. [2006]), normalization of dependent completely random measures (e.g., Ishwaran and
Zarepour [2009], Epifani and Lijoi [2010], Leisen and Lijoi [2011]) or suitable multivariate exten-
sions of the Polya tree prior (e.g., Trippa et al. [2011]).

2.1. Vectors of stick-breaking processes. Following the general definition of dependent stick-
breaking processes, proposed in MacEachern [1999, 2001], we let

(4) Gi(·) =
∑

k≥1

Wik δϑ̃ik
(·) i = 1, . . . , r,

where the weights Wk = (W1k, . . . ,Wrk) and the atoms ϑ̃k = (ϑ̃1k, . . . , ϑ̃rk) satisfy the following
hypotheses:

• (ϑ̃k)k and (Wk)k are stochastically independent;

• (ϑ̃k)k is an i.i.d. sequence of random elements taking values in a product space Θr with
common probability distribution G0;

• the weigths Wiks are determined via the stick-breaking construction

Wik = Sik

∏

j<k

(1− Sij) i = 1, . . . , r,

with
∏

j<1(1−Sij) = 1, where Sk = (S1k, . . . , Srk) are stochastically independent random

vectors taking values in [0, 1]r such that
∑

k≥1Wik = 1 a.s. for every i.

2.2. Infinite mixture models. Modelling based on mixture distributions is nowadays applied
in many areas, especially in economics and finance (see Früwirth-Schnatter [2006] for a review).
Stick-breaking processes can be used to extend finite mixture models to infinite mixture models,
which can capture many specific properties of time series, such as multimodality, skewness, excess
of kurtosis and presence of outliers (e.g., see Griffin [2011] and Griffin and Steel [2011]). Our
interest in dependent stick-breaking processes is related to their use in building dependent infi-
nite mixtures models which allows for modelling information pooling across different time series.
More specifically, we develop non-parametric repeated measurements and panel (or longitudinal)
dynamic models. Both models are widely used in economics for simultaneous inference on a set of
parameters for similar units, e.g. firms or countries, when data are collected on several occasions
or observed on a regular basis for several periods, e.g. years.

2.2.1. Repeated measurements. Consider a set of samples, taking values in an observations space
Y, divided in r sub–samples (groups of observations or units), that is:

Yit i = 1, . . . r, t = 1, . . . , Ti

where Yit is the t-th observation within unit i. In repeated measurements models (see Crowder
and Hand [1990], Davidian and Giltinan [1998]), i may correspond to a space label or predictor,
and the observations of a unit i are independent with the same density fi. In assessing a prior
for (f1, f2, . . . , fr), one aims at borrowing information across units and at assuming for each unit
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an infinite mixture model. To do this, one can first introduce a density kernel K : Y×Θ → [0, 1],
and then define

(5) fi(y) =

∫

K(y|ϑ)Gi(dϑ) i = 1, . . . , r,

where (G1, . . . , Gr) is a vector of dependent stick-breaking processes.
The dependence between the random probability measures affects the dependence structure

underlying the densities f1, . . . , fr, which can be represented as infinite mixtures

(6) fi(y) =
∑

k≥1

Wik K(y|ϑ̃ik) i = 1, . . . , r.

In this paper we focus on one of the most widely used kernel: the Gaussian kernel of parameter
ϑ = (µ, σ2), i.e.

(7) K(y|ϑ) = 1√
2πσ2

exp
{ 1

2σ2
(y − µ)2

}

.

Other kinds of kernels, such as binomial or multinomial, can also be applied within our framework
for qualitative data modelling.

2.2.2. Panel data models. A Vector Autoregressive (VAR) structure allows for handling the dy-
namic properties of multiple time series and is now a standard tool for structural analysis and
forecasting in macroeconomics (see Sims [1980, 1992]). Panel VAR models are used when different
time series are collected from different units (e.g., countries). Such models can capture complex
relationships between countries because they do not impose restrictions on the parameters, but
this requires a large number of parameters and leads to over-parameterization. The resulting po-
tential over-fitting problem calls for the use of a Bayesian approach to inference, which, through
the use of the prior distributions, allows for prior constraints on the VAR parameters. See, e.g.,
Doan et al. [1984], Litterman [1986], Sims and Zha [1998] for Bayesian VAR, Chib and Greenberg
[1995] for Bayesian Seemingly Unrelated Regression and Canova and Ciccarelli [2004] for panel
Bayesian VAR.

In panel VAR model of the order p (VAR(p)), the subset of equations associated with the i-th
unit of the panel is:

(8) Yit = µ+

r
∑

j=1

p
∑

l=1

ΦjlYj t−l + εit,

for i = 1, . . . , r and t = 1, . . . , T , where Yit = (Yi1,t, . . . , Yim,t)
′, µ = (µ1, . . . , µm)′ and Φjl,

j = 1, . . . , r, l = 1, . . . , p, is a sequence of m-dimensional square matrices. Finally, εit =
(εi1,t, . . . , εim,t)

′ follows a Gaussian distribution Nm(0,Σ) with mean 0 and covariance matrix
Σ. We assume that εit and εjt are independent for every i 6= j and t 6= s. As it is common in
Bayesian VAR, the dependence between units is modelled through the dependence between the
random parameters of the different unit-specific subsets equations. In this section, for the sake of
simplicity we dropped the dependence of the parameters µ, Φjl and Σ on the unit index i. We
will discuss later on in the paper possible assumptions on the parameters of the different units
and focus now on the infinite mixture representation of the unit-specific equations. First we write
(8) in a stacked regression form

(9) Yit = (Im ⊗X ′
t)φ + εit,

where Xt = (1, Y ′
1 t−1, . . . , Y

′
r t−1, . . . , Y

′
1 t−p, . . . , Y

′
r t−p)

′ is the vector of predetermined variables,
φ = vec(Φ), Φ = (µ,Φ11, . . . ,Φr1, . . . ,Φr1, . . . ,Φrp)

′, ⊗ denotes the Kronecker product and vec
the column-wise vectorization operator that stacks the column of a matrix in a column vector.

Then we assume a set of dependent infinite mixture priors Gi, i = 1, . . . , r, for the unknown
parameters, φ and Σ, and obtain the following conditional distribution of Yit (given Xt)

(10) fit(y) =
∑

k≥1

WikKt(y|ϑ̃ik, Xt) i = 1, . . . , r
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where

(11) Kt(y|ϑ,Xt) = (2π)−m/2|Σ|−1/2 exp
{

(y − (Im ⊗X ′
t)φ))

′Σ−1(y − (Im ⊗X ′
t)φ)

}

with parameter ϑ = (φ,Σ). In this infinite mixture representation the sources of conditional
dependence between two units, Yit and Yjt, are the random weights, (Wik)k and (Wjk)k, and the

random atoms (ϑ̃ik)k and (ϑ̃jk)k.

3. Beta-Product dependent Pitman–Yor Processes

In this section we propose a new class of dependent stick-breaking processes in such a way
that each marginal random measure Gi is a Pitman–Yor process. This result follows from the
Sethurman’s representation (1) if one considers a multivariate distribution for (S1k, . . . , Srk) such
that Sik ∼ Beta(1− l, αi + lk) for every i and k.

It is worth noticing that there are many possible definitions of multivariate beta distribution
(e.g. Olkin and Liu [2003], Nadarajah and Kotz [2005], Nieto-Barajas and Walker [2007], Taddy
[2010] and Trippa et al. [2011]), but not all of them have a tractable stochastic representation
and lead to simple Bayesian inference procedures. For this reason we follow Nadarajah and Kotz
[2005] and consider a suitable product of independent beta random variables. More specifically
we apply the following result.

Proposition 1 (Rao [1949]). If U1, U2, . . . , Up are independent beta random variables with shape

parameters (ai, bi), i = 1, 2, . . . , p and if ai+1 = ai + bi, i = 1, 2, . . . , p − 1, then the product

U1U2 · · ·Up is a beta random variable with parameters (a1, b1 + · · ·+ bp).

We propose two alternative specifications of the multidimensional beta variables. Specifically,
if we set

(12) (S1k, S2k, . . . , Srk) = (V0kV1k, V0kV2k, . . . , V0kVrk)

with V0k, . . . , Vrk independent, Vik ∼ Beta(α0k+α1k, α2k), i = 1, 2, . . . , r, and V0k ∼ Beta(α0k, α1k),
then Sik ∼ Beta(α0k, α1k + α2k).

As an alternative we consider

(13) (S1k, S2k, . . . , Srk) = (V0kV1k . . . Vr−1k, V0kV1k . . . Vr−2k, . . . , V0k)

with V0k, . . . , Vr−1k independent and Vik ∼ Beta(α0k + · · · + αik, αi+1k), i = 0, . . . , r − 1, that
gives Sik ∼ Beta(α0k, α1k + · · ·+ αr+1−i,k).

If (12) holds, thanks to Lemma 1 in Ishwaran and James [2001], the process (G1, . . . , Gr) is well-
defined, i.e.

∑

k≥1Wik = 1 a.s. for every i = 1, . . . , r, when
∑

k≥1 log(1+α0k/(α1k+α2k)) = +∞.

Analogously, assuming (13), the process is well-defined when
∑

k≥1 log(1 + α0k/α1k) = +∞.

3.1. Pitman-Yor process marginal. In this section we show that by a suitable choice of the
parameters in (12)-(13) we obtain a vector of dependent random measures with Pitman-Yor
marginals.

Consider (12) and set α0k = 1 − l, α1k = α1 and α2k = α2 + lk, with α1 > 0, α2 > 0 and
0 ≤ l < 1. Since the random variables V0k, . . . , Vrk are independent and

(14) V0k ∼ Beta(1− l, α1), Vik ∼ Beta(1− l+ α1, α2 + lk) i = 1, . . . , r,

Proposition 1 yields that Sik ∼ Beta(1− l, α1 + α2 + lk).
Alternatively, in (13) set α0k = 1 − l, α1k = α1 + lk, and αik = αi for i ≥ 2 with αi > 0 and

0 ≤ l < 1. Since, in this case,

V0k ∼ Beta(1− l, α1 + lk), V1k ∼ Beta(1 + α1 + l(k − 1), α2), . . . ,

. . . Vr−1k ∼ Beta(1 + α1 + · · ·+ αr−1 + l(k − 1), αr),
(15)

Sik ∼ Beta(1− l, α1 + · · ·+ αr−i+1 + lk).

Summarizing, if G0i denotes the distribution of ϑ̃ik, we have proved the following

Proposition 2. If (12) and (14) hold true, then Gi is a PY (α1+α2, l, G0i) for every i = 1, . . . , r.
If (13) and (15) hold true, then Gi is a PY (α1 + · · ·+ αr−i+1, l, G0i) for every i = 1, . . . , r.
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It is worth noticing that the idea of using product of beta random variables for the weights of
a dependent Dirichlet process is not new. Similar constructions are detailed and applied in Taddy
[2010] and Griffin and Steel [2011]. For instance, the autoregressive beta stick-breaking process
defined in Taddy [2010] consists in taking S1k ∼ Beta(a, b) for all k ≥ 1, while, for j > 1,

Sjk = 1− Ujk(1−RjkSj−1,k),

where Ujk are i.i.d. Beta(b, a−ρ) and Rjk are i.i.d. Beta(ρ, a−ρ). In this way Sjk turns out to be
Beta(a, b) for all j and k. So that, for a = 1 one gets Dirichlet process marginals. The advantage
of this autoregressive structure for the weights is that it allows for the use of a simple particle filter
algorithm for on-line inference (see Taddy [2010]). Here we choose the different specifications (14)
and (15) essentially for two reasons. First, with (14) and (15) the resulting process has Pitman-
Yor marginals, which can not be obtained with the autoregressive beta stick-breaking structure
given above. Secondly the stochastic representations (14) and (15) allow the derivation of a slice
sampling algorithm in the spirit of Walker [2007] and Kalli et al. [2011]. As a side remark note
that our beta-product models are more parsimonious in terms of number of latent variables. For
constructing an r-dimensional vector of weights Taddy [2010] uses 2r − 1 latent variables while
(14) and (15) require r + 1 and r respectively. This may be computationally useful for large r
although the more complex structure of the autoregressive beta stick-breaking can probably model
in a richer way the dependence between weights.

For the sake of simplicity in what follows we will mainly consider r = 2. According to the above
construction schemes, the two alternative specifications of (S1k, S2k) are:

(H1) (S1k, S2k) = (V0kV1k, V0kV2k), with V0k, V1k, V2k independent, V0k ∼ Beta(1 − l, α1) and

Vik ∼ Beta(1− l + α1, α2 + lk), i = 1, 2, where α1 > 0, α2 > 0 and l ∈ [0, 1);
(H2) (S1k, S2k) = (V0kV1k, V0k), with V0k, V1k independent, V0k ∼ Beta(1 − l, α1 + lk) and

V1k ∼ Beta(1 + α1 + l(k − 1), α2) with α1 > 0, α2 > 0 and l ∈ [0, 1).

Since with this construction the Gi’s are Pitman-Yor processes, we call (G1, G2) Beta-Product
Dependent Pitman-Yor Process, βi−DPY(ψ,G0) for short, of parameters ψ = (α1, α2, l) and base
measure G0, where i = 1 for H1 and i = 2 for H2. If one takes l = 0, the resulting process has
Dirichlet marginals, in this case we shall write βi−DD(ψ,G0).

It should be noted that the two processes have different marginal behaviors. The β1−DPY(ψ,G0)
process has marginals with the same precision parameter and thus should be used as a prior
when the clustering is expected to be similar along the different vector components. In the
β2−DPY(ψ,G0) process, the precision parameter decreases along the vector dimension. This
process should be used when a priori one suspects that the clustering features are different across
units.

We conclude this section with few remarks on the limiting cases that can help in the interpreta-
tion of the parameters. Under H1, (S1k, S2k) converges (in distribution) to (V1k, V2k) as α1 → 0,
where V1k and V2k are independent random variables with distribution Beta(1− l, α2+ lk). While,
under H2, (S11, S21) converges to (V0, V0) as α2 → 0, where V0 is a Beta(1 − l, α1 + lk) random

variable. In particular, if one assumes H2 and ϑ̃1k = ϑ̃2k for all k, when α2 → 0, one gets the limit
situation in which all the observations are sampled from a common mixture of Pitman-Yor pro-
cesses. In other words, in this limit case, one considers the observations (globally) exchangeable,
so no distinction between the two blocks are allowed. The other limiting case is when one assumes
H1 and takes (ϑ̃1k, ϑ̃2k) to be independent random elements with probability distribution G01 and
G02. In the limit for α1 → 0, one obtains two independent Pitman-Yor processes G1 and G2 with
base measures G01 and G02. With this choice, the observations are grouped into two independent
blocks which do not share information.

3.2. Dirichlet Process marginal. For l = 0 in (14) and (15) one gets Dirichlet Process marginals
and, for this special case, it is possible to find an explicit formula for the correlation between Gi

and Gj as a function of the parameters (α1, α2, . . . ). These results can be used for parameter
elicitation purposes.
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Let us assume time- and unit-independent kernels K(y|ϑ), and define, for every y ∈ Y and every
i, j = 1, . . . , r with i 6= j,

κG0i
(y) =

∫

K(y|ϑ)G0i(dϑ), κG0j
(y) =

∫

K(y|ϑ)G0j(dϑ),

κG0ij
(y) =

∫

K(y|ϑi)K(y|ϑj)G0ij(dϑidϑj)

where G0i denotes the distribution of ϑ̃i1 and G0ij the distribution of (ϑ̃i1, ϑ̃j1).

Proposition 3. Let (12) and (14) or (13) and (15) hold with l = 0, then for all measurable sets

A and B and every y in Y

(16) Cor(Gi(A), Gj(B)) = Cij ×
G0ij(A×B)−G0i(A)G0j(B)

√

G0i(A)(1 −G0i(A))G0j(B)(1 −G0j(B))

Cor(fi(y), fj(y)) =Cij ×
κG0ij

(y)− κG0i
(y)κG0j

(y)
√

κG0i
(y)(1− κG0i

(y))κG0j
(y)(1− κG0j

(y))
.(17)

with

Cij =
(1 + α1 + α2)(1 + α1)

(1 + α1)(1 + α1 + α2) + α2

under (12) and (14) and

Cij =
2
√

(1 + α1 + · · ·+ αr−i+1)(1 + α1 + · · ·+ αr−j+1)
3
2

2(1 + α1 + · · ·+ αr−j+1)2 + (2 + α1 + · · ·+ αr−j+1)(αr−j+2 + · · ·+ αr−i+1)
.

under (13) and (15).

Note that the correlation between random measures and densities, given in the above proposi-
tion, has two components. The first one is Cij which is affected by the correlation level between
the stick variables (see proof of the Proposition 3 in Appendix A), and the second one is given
by the remaining term which reflects the dependence level between the atoms. In particular,
if one assumes that the atoms are common to all Gi (see Eq. (18) in the next section) then
Cor(Gi(A), Gj(A)) = Cij , which suggests a possible interpretation for Cij as a correlation and
highlights the contribution of the stick variables to the correlation between random measures. We
will discuss the assumptions on the atoms in the next section and focus, in the rest of this section,
on the effects of the stick-variables correlation on Cij , for different choices of the parameters.
Assuming for simplicity r = 2, in the cases l = 0 one obtains the following correlation between
S1h and S2h

Cor(S11, S21) =







α1(2+α1+α2)
(2+α1)(α1+α2)

for H1
√

α1(2+α1+α2)
(2+α1)(α1+α2)

for H2.

Fig. 1 shows the correlation level between the stick-breaking components (left column) and the
random measures (right column) for different values of α1 and α2. In these graphs, the white color
is used for correlation values equal to one and the black is used for a correlation values equal to
zero. The gray areas represent correlation values in the unit interval. According to the left graphs
of Fig. 1, one can conclude that the two parameterizations used in this paper allows for covering
the whole range of possible correlation values in the unit interval. For instance a low correlation
between the components of the stick-breaking corresponds to low values of α1, say between 0 and
0.1, for any choice of α2. The right graphs of Fig. 1 show the effect of α1 and α2 on C12.

4. A hierarchical structure for the atoms

The simplest assumption for the atoms is that they are common to all the measures Gi. Oth-
erwise stated this means that

(18) (ϑ̃1k, . . . , ϑ̃rk) = (ϑ̃0k, ϑ̃0k, . . . , ϑ̃0k)

with ϑ̃0k distributed according to a given common probability measure on Θ. Although in some
situations it is reasonable to assume that the components of the mixture are the same for all the
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Figure 1. Left column: correlation between S11 and S21 under H1 (first row)
and H2 (second row). Right column: C12, that is correlation between G1 and G2,
assuming common atoms, under H1 (first row) and H2 (second row)

units, the shared atom simplification (18) is a quite severe restriction when the units (or sub-
samples) exhibit a high degree of heterogeneity. For this reason, we consider a more elaborate
hierarchical structure, that could include covariates (or exogenous effects) related to the specific

block i in the law of ϑ̃ik.

4.1. ANOVA-like repeated measure models. Let us cosider the Gaussian repeated measure
model introduced in equations (6)-(7), Section 2.2.1. The components of the parameter ϑ = (µ, σ2)
represent a mean and a variance respectively. To allow for various degrees of pooling of information
across units, one can assume for the parameters of the i-th kernel the ANOVA-like scheme of De
Iorio et al. [2004], i.e. ϑ = (µ0 + µi, σ

2
0σ

2
i ). With this choice, each atom is the vector

(19) ϑ̃ik = (µ̃0k + µ̃ik, σ̃
2
0kσ̃

2
ik)

where µ̃0k, µ̃1k, . . . , µ̃rk and σ̃2
0k, σ̃

2
1k, . . . , σ̃

2
rk are independent random variables. In this case µ̃0k

and σ̃2
0k represent the common mean and variance (of the k-th mixture component) and µ̃ik and

σ̃2
ik the i-th factor-specific mean and variance (of the k-th mixture component).
We complete the hierarchical specification of the base measure G0 by setting

(µ̃ik, σ̃
2
ik) ∼ N (0, s−2

i )IG(λ/2, λ/2) i = 1, 2

(µ̃0k, σ̃
2
0k) ∼ N (0, s−2

0 )IG(ε/2, ε/2)

where N (0, s−2) denotes a Gaussian distribution of mean 0 and precision s2, IG(a, b) denotes an
inverse gamma distribution of parameters (a, b).
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4.2. Hierarchical Bayesian VAR models. In the panel VAR model given in Eq. (8) the
number of parameters, (N2p+N +N(N +1)/2) with N = mr, increases rapidly with the number
of units and variables possibly leading to an overfitting problem. Our Bayesian non–parametric
approach deals with the overfitting problem through a suitable choice of the base measure of the
Pitman-Yor process prior. We follow here a hierarchical specification of the base measure which
can be used to incorporate cross-equation interdependences and various degrees of information
pooling across units (e.g., see Chib and Greenberg [1995] and Min and Zellner [1993]).

For the i-th unit, the first stage equation of our hierarchical model is given by Eq. (9). As
regard the second stage of hierarchy, our prior setting is

ϑ̃ik = (φ̃0k + φ̃ik, σ̃0kΣ̃ik)

i = 1, . . . , r, where φ̃0k and σ̃0k are common factors to all countries, while φ̃ik and Σ̃ik are country-
specific factors. Above φ̃0k,σ̃0k,φ̃ik and Σ̃ik are independent and

(φ̃ik , Σ̃
−1
ik ) ∼ Nm(0, Υ̃ik)W2(λ,Λ) i = 1, 2

(φ̃0k, σ̃
−1
0k ) ∼ Nm(0,Υ0)G(ε/2, ε/2)

(20)

where m = 2(2rp+ 1), W2(λ,Λ) denotes a bivariate Wishart distribution of parameters λ and Λ
and G(ε/2, ε/2) denotes the gamma distribution of parameters ε/2 and ε/2. A third stage of the

hierarchy is imposed by specifying a prior also for all the Υ̃ik, i = 1, 2, k ≥ 1. A specific choice of
such a prior will be presented in Section 6.2.

5. Slice Sampling Algorithm for Posterior Simulation

For posterior computation, we propose an extension of the slice sampling algorithm introduced
in Walker [2007] and Kalli et al. [2011]. For the sake of simplicity we shall describe the sampling
strategy for a vector of Beta-Product DPY with r = 2. The proposed algorithm can be easily
extend to the case r > 2.

Recall that the stick variables in the βi−DPY(ψ,G0) are defined by

(S1k, S2k) = (V0kV1k, V0kV2k)

for a sequence of independent vectors Vk = (V0k, V1k, V2k), with the convention V2k = 1 and
Vk = (V0,k, V1,k) under H2.

In order to deal in the same time with both the repeated measure model of Section 2.2.1 and
the panel VAR model of Section 2.2.2, we assume that for any t ≥ 1 the conditional distribution
of Yit given Zt = [Yis : i = 1, 2, s = 1, . . . , t− 1] is

(21) fit(y) = fit(y|Zt) =
∑

k≥1

WikKt(y|ϑ̃ik, Zt) i = 1, 2

where Kt is a suitable kernel depending on some parameter ϑ̃ and possibly on t and Zt. As we
have seen, both infinite mixtures of repeated measurement models (6)-(7) and infinte mixtures of
panel VAR models (10)-(11) can be written in this way.

Starting from (21), the key idea of the slice sampling is to find a finite number of variables to
be sampled. For each t, we introduce two latent variables (Uit, Dit) in such a way that the joint
density of (Yit, Uit, Dit) given

[

Zt, (Ujs, Djs) : j = 1, 2, s = 1, . . . , t− 1
]

is

(22) fit(y, u, d) = I{u ≤Wi,d}Kt(y|ϑ̃id, Zt).

With this position, the marginal density of Yit given Zt is (21) and the likelihood function for the
augmented variables is available as a simple product of terms. Crucially Dit is finite. Note also
that the Dit’s (i = 1, 2; t = 1, . . . , Ti) are the allocation variables for the observations Yit and that
the slice variables Uit (i = 1, 2; t = 1, . . . , Ti) take values on [0, 1].

We shall use the notation

Y
(Ti)
i = (Yi1, . . . , YiTi

), D
(Ti)
i = (Di1, . . . , DiTi

), U
(Ti)
i = (Ui1, . . . , UiTi

)

and we write: ϑ̃ for (ϑ̃k)k, V for (Vk)k, U for [U
(T1)
1 , U

(T2)
2 ], D for [D

(T1)
1 , D

(T2)
2 ] and Y for

[Y
(T1)
1 , Y

(T2)
2 ].
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In the applications we further assume a prior for ψ = (α1, α2, l). Following the standard practice

for these Bayesian nonparametric models, we let ϑ̃ be independent of ψ̃ = (α̃1, α̃2, l̃), while the

distribution of Vj depends on ψ̃ through H1 or H2, so we shall write P{Vj ∈ dvj |ψ̃}.
For the posterior sampling of [ϑ̃, V, U, ψ̃,D] we propose block Gibbs sampler which iteratively

simulates ϑ̃ given [V, U,D, ψ̃, Y ], [V, U, ψ̃] given [D, ϑ̃, Y ] and D given [V, U, ϑ̃, ψ̃, Y ].
In one dimension this blocking structure has been introduced by Papaspiliopoulos [2008] and

Kalli et al. [2011] as an efficient alternative to the original algorithm of Walker [2007]. A multidi-
mensional slice sampling has been proposed by Hatjispyrosa et al. [2011] for a different dependent
DP mixtures model. In this paper, we follow an alternative route and elaborate further on the
Kalli et al. [2011] blocking strategy by proposing a nested structure for sampling stick variables.
It should be noted that we borrow from Kalli et al. [2011] only the main blocking structure of the
algorithm and let for further research the use of auxiliary weights in the slicing scheme to increase
the sampling efficiency. In order to describe the full-conditionals of our block Gibbs sampler we
introduce some more notation. Define for i = 1, 2 and k ≥ 1,

Di,k = {t ∈ {1, . . . , Ti} : Di,t = k},

Ai,k =

Ti
∑

t=1

I{Di,t = k} = card(Di,k), Bi,k =

Ti
∑

t=1

I{Di,t > k}

and let

(23) D∗ = max
i=1,2

max
1≤t≤Ti

Di,t.

In our MCMC algorithm we shall treat V as three blocks of random length: V = (V ∗, V ∗∗, V ∗∗∗),
where

V ∗ = {Vk : k ∈ D∗}, V ∗∗ = {Vk : k 6∈ D∗, k ≤ D∗}, V ∗∗∗ = {Vk : k > D∗}
and D∗ = {k : D1,k ∪ D2,k 6= ∅}. In what follows, if the kernels Kt depend on [Yjs : j = 1, 2; s =
1, . . . , t−1], as in the case of the panel VAR model, we assume that Ti = T for i = 1, 2. While, if the
kernels Kt depend only on [Yis : s = 1, . . . , t− 1], as in the case of the repeated measurements, we
allow T1 and T2 to be different. All the full conditionals can be deduced from the joint distribution
given in (43). Further details are given in Appendix A and B.

5.1. The full conditional of ϑ̃. The atoms ϑ̃ given [V,D,U, ψ̃, Y ] are conditionally independent
and the full conditionals are:

P{ϑ̃k ∈ dϑk|D,U, V, ψ̃, Y } = P{ϑ̃k ∈ dϑk|D,Y }
∝ G0(dϑk)

∏

t∈D1,k

Kt(Y1,t|ϑ1k, Zt)
∏

t∈D2,k

Kt(Y2,t|ϑ2k, Zt);
(24)

where ϑk = (ϑ1k, ϑ2k). The strategy for sampling from this full conditional depends on the specific
form of Kt and G0. In Appendix B we will discuss a possible strategy for Gaussian kernels.

5.2. The full conditional of [V, U, ψ̃]. In order to sample from the conditional distribution of

[V, U, ψ̃] given [D, ϑ̃, Y ] a further blocking is used:

• [V ∗, ψ̃] given [D, ϑ̃, Y ]. The joint conditional distribution of [V ∗, ψ̃] given [D, ϑ̃, Y ] is

P{V ∗ ∈ dv∗, ψ̃ ∈ (dα1, dα2, dl)|Y, ϑ̃,D} = P{V ∗ ∈ dv∗, ψ̃ ∈ (dα1, dα2, dl)|D}
moreover, under H1,

(25) P{V ∗ ∈ dv∗, ψ̃ ∈ (dα1, dα2, dl)|D} ∝
∏

k∈D∗

Qk(vk|D,ψ)dvkπ(dα1, dα2, dl)

B2(α1 + 1− l, α2 + lk)B(1− l, α1)

with vk = (v0k, v1k, v2k) and

Qk(vk|D,ψ) =v−l+A1k+A2k

0k (1− v0k)
α1−1

∏

i=1,2

vAik+α1−l
ik (1− vik)

α2+lk−1(1− v0kvik)
Bik ,
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while, under H2,

(26) P{V ∗ ∈ dv∗, ψ̃ ∈ (dα1, dα2, dl)|D} ∝
∏

k∈D∗

Qk(vk|D,ψ)dvkπ(dα1, dα2, dl)

B(α1 + 1 + l(k − 1), α2)B(1− l, α1 + lk)

with vk = (v0k, v1k) and

Qk(vk|D,ψ) = vA1k+A2k−l
0k (1 − v0k)

α1+lk+B2k−1v
α1+l(k−1)+A1k

1k (1− v1k)
α2−1(1 − v0kv1k)

B1k ,

and π(dα1, dα2, dl) = P{ψ̃ ∈ (dα1, dα2, dl)} is the prior on the stick-breaking parameters.
To sample from (25)-(26), we iterate a two-step Metropolis-Hastings (M.-H.) within Gibbs
with full conditionals

(27) P{V ∗ ∈ dv∗|ψ̃,D} ∝
∏

k∈D∗

Qk(vk|D, ψ̃)dvk

and

P{ψ̃ ∈ (dα1, dα2, dl)|V ∗, D} ∝
∏

k∈D∗

V −l
0k (1− V0k)

α1

B(1 − l, α1)

∏

i=1,2

V α1−l
ik (1− Vik)

α2+lk

B(α1 + 1− l, α2 + lk)
π(dα1, dα2, dl)

(28)

under H1, and

P{ψ̃ ∈ (dα1, dα2, dl)|V ∗, D} ∝
∏

k∈D∗

V −l
0k (1− V0k)

α1+lk

B(1 − l, α1 + lk)

V
α1+l(k−1)
1k (1− V1k)

α2

B(α1 + 1 + l(k − 1), α2)
π(dα1, dα2, dl)

(29)

under H2. For the elements of V ∗ we consider a multivariate Gaussian random walk
proposal with diagonal scale matrix and with scale parameter in the interval [0.05, 0.3], in
order to have acceptance rates between 0.3 and 0.5 for the elements of V ∗. We generate
samples from the full conditional of ψ̃ by a M.-H. step. As the sampler depends on the
prior specification we refer to Section 6 and Appendix B for further details.

• [V ∗∗, V ∗∗∗] given [D,V ∗, ϑ̃, ψ̃, Y ]. The Vk (with k 6∈ D∗) are conditionally independent

given [D,V ∗, ϑ̃, ψ̃, Y ] with P{Vk ∈ dvk|ψ̃,D, V ∗} ∝ Qk(vk|D, ψ̃)dvk if k ≤ D∗ and P{Vk ∈
dv|V ∗, ϑ̃, D, ψ̃, Y } = P{Vk ∈ dv|ψ̃} if k > D∗. Note that if k 6∈ D∗ and k ≤ D∗, then

Ai,k = 0 in the definition of Qk(vk|D, ψ̃). In order to sample from Qk(vk|D, ψ̃) the same
M.-H. step, used for the full conditional in (27), is employed.

• U given [V,D, ϑ̃, ψ̃, Y ]. The slice variables U are conditionally independent given [V,D, ϑ̃, ψ̃, Y ]
with

(30) P{Ui,t ∈ du|V, Y, ϑ̃,D} = P{Ui,t ∈ du|V,D} =
I{u ≤Wi,Di,t

}
Wi,Di,t

du.

5.3. The full conditional of D. The D’s are conditionally independent given [V, U, ϑ̃, ψ̃, Y ] with

(31) P{Di,t = d|ϑ̃, V, U, ψ̃, Y } ∝ Kt(Yi,t|ϑ̃id, Zt) I{Ui,t ≤Wi,d}.
Here an important remark is in order. As in the slice sampling proposed in Walker [2007] and
Kalli et al. [2011], the full conditional (31) samples, almost surely, from a finite number of terms.
More precisely, d > N∗

i,t ensures that Wi,d < Ui,t where N
∗
i,t (i = 1, 2; t = 1, . . . , Ti) is the smallest

integer such that

(32)

N∗

i,t
∑

k=1

Wi,k > 1− Ui,t.
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6. Illustrations

6.1. DPY(ψ,G0) mixtures of Gaussian distributions. We consider DPY(ψ,G0) Gaussian
mixture model for inference on synthetic data generated from finite Gaussian mixtures. For the
atoms we assume the hierarchical structure described in Section 4.1.

We assume independent gamma priors G(ζ11, ζ21)G(ζ12, ζ22) for the vector α̃ = (α̃1, α̃2) of

precision parameters and uniform prior U[0,1) for the parameter l̃. In summary the Bayesian
non–parametric model is

Yit|(µ∗
it, σ

∗
it
2)

ind∼ N (µ∗
it, σ

∗
it
2) i = 1, 2, t ≥ 1

(µ∗
it, σ

∗
it
2)|G1, G2

iid∼ Gi i = 1, 2

(G1, G2)|ψ̃ ∼ β−DPY(ψ̃, G0)

ψ̃ ∼ G(ζ11, ζ21)G(ζ12, ζ22)U[0,1).

Recall that, as described in Section 4.1, the base measure G0 is such that

(µ∗
it, σ

∗
it
2) = (µ̃0Dit

+ µ̃iDit
, σ̃2

0Dit
σ̃2
iDit

),

where Dit is the allocation variable of the observation Yit, and

(µ̃ik, σ̃
2
ik) ∼ N (0, s−2

i )IG(λ/2, λ/2) i = 1, 2

(µ̃0k, σ̃
2
0k) ∼ N (0, s−2

0 )IG(ε/2, ε/2).
In this example we bring into action the sampling procedure for U and D given in the previous

section. As regard to the sampling strategy for the other variables Appendix B.1 shall describe it
in more details.

We simulate T = 100 independent vectors, (Y1,t, Y2,t) with t = 1, . . . , T , of observations. The
components of the vectors (Y1,t, Y2,t) are independent and alternatively follow one of the following
models.

• The same three-component mixture of normals (model Mix1)

Y1,t ∼
1

3
N (−10, 1) +

1

3
N (0, 1) +

1

3
N (10, 1)

Y2,t ∼
1

3
N (−10, 1) +

1

3
N (0, 1) +

1

3
N (10, 1)

• The same three-component mixture of normals with different component probabilities
(model Mix2)

Y1,t ∼
1

3
N (−10, 1) +

1

3
N (0, 1) +

1

3
N (10, 1)

Y2,t ∼
1

6
N (−10, 1) +

4

6
N (0, 1) +

1

6
N (10, 1)

• Two different mixtures with two common components (model Mix3)

Y1,t ∼
1

4
N (0, 0.5) +

1

4
N (3, 0.25) +

1

4
N (2, 0.25) +

1

4
N (5, 0.5)

Y2,t ∼
1

4
N (0, 0.5) +

1

4
N (3, 0.25) +

1

4
N (−3, 0.25) +

1

4
N (7, 0.5)

• Two different mixtures with two common modes (model Mix4) and small modes in one of
the mixtures

Y1,t ∼
2

9
N (−10, 0.4) +

1

12
N (−5, 0.4) +

1

12
N (−3, 0.4) +

2

9
N (0, 0.4)

+
1

12
N (3, 0.4) +

1

12
N (5, 0.4) +

2

9
N (10, 0.4)

Y2,t ∼
1

3
N (−10, 1) +

1

3
N (0, 1) +

1

3
N (10, 1).
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Figure 2. Predictive for different prior settings (panels β1−DD(ψ,G0) and β2−
DD(ψ,G0)). Data histograms for the first (left column) and second (right column)
component and for the different models: Mix1 (first row), Mix2 (second row),
Mix3 (third row) and Mix4 (fourth row).

The histograms of the simulated data considered in the experiments are given in Fig. 2-3.
We apply the βi−DD(ψ,H0) and the βi−DPY(ψ,H0), i = 1, 2, on the different set of data.

In the inference exercise, we choose a fairly non–informative prior specification for the mean and
precision parameters of the base measure and set s2i = 0.1, λ = 0.5 (see for example Walker
[2007]). Similarly we assume s20 = 0.01 and ε = 1. For the concentration parameters (α1, α2)
of the stick-breaking components, we follow Kalli et al. [2011] and consider weakly informative
prior with hyperparameters (ζ1j = 0.01, ζ2j = 0.01), for j = 1, 2, in all the experiments from Mix1
to Mix4. This setting corresponds to diffuse priors on the concentration parameters, with prior
means E(α̃1) = E(α̃2) = 1 and variances V(α̃1) = V(α̃2) = 100. For each dataset and model,
the Gibbs sampler, presented in the previous section, was run for 20,000 iterations. A burn-in
period of 10,000 samples was discarded and at each Gibbs iteration from 10,000 onwards, a sample
(Y1,T+1, Y2,T+1) from the predictive density was taken. Right and left panels in Fig. 2 show the
histograms of the two components (right and left column of each panel) for each set from Mix1 to
Mix4 of synthetic data (different rows). In the same figures the solid lines represent the estimated
posterior predictive densities for β1−DD(ψ,H0) (left panel) and β2−DD(ψ,H0) (right panel).
Fig. 3 shows data histograms and predictive densities estimated with β1−DPY(ψ,H0) (left panel)
and β2−DPY(ψ,H0) (right panel). For all models and datasets the approximated posterior of
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Figure 3. Predictive for different prior settings (panels β1−DPY(ψ,G0) and
β2−DPY(ψ,G0)). In each panel, data histograms for the first (left column) and
second (right column) component and for the different models: Mix1 (first row),
Mix2 (second row), Mix3 (third row) and Mix4 (fourth row).

the number of clusters is given in Fig. 4. The first and second row in Fig. 2 and 3 show that
dependent Dirichlet and Pitman-Yor process priors have similar predictive densities for Mix1 and
Mix2. The histograms in the first and second rows of each panels of Fig. 4 show that under H1
both the DD and the DPY overestimate the number of clusters, while under H2 they estimate
the exact number of clusters. For Mix3 βi−DPY(ψ,H0), i = 1, 2 have similar predictive densities
and β1−DPY(ψ,H0) is doing better than β1−DD(ψ,H0) in terms of number of clusters. DD and
DPY under H2 give similar results. For dataset Mix4 DD and DPY give different results both
in terms of predictive densities and posterior number of clusters. βi−DD(ψ,H0), i = 1, 2, are
largely under-estimating the number of clusters while βi−DPY(ψ,H0), i = 1, 2, are doing better,
especially β2−DPY(ψ,H0).

The results described above are confirmed in the statistical comparison between the different
nonparametric models. In the comparison we consider a Bayesian model averaging approach
(see Hoeting et al. [1999]). We focus on the predictive densities of the proposed models, due to
the relevance of the density forecasts in many economics applications (e.g., see Granger [2006]).
Although there are many alternative ways to assign to the models a numerical score based on
the ability of the predictive density and to predict the variables of interest (e.g., see Gneiting
and Raftery [2007]), we follow Jensen and Maheu [2010] and apply the model pooling approach
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Figure 4. Number of clusters for different prior settings (panels βi−DD(ψ,G0),
i = 1, 2 and βi−DPY(ψ,G0)). In each panel, histograms for the first (left column)
and second component (right column) and for the different models: Mix1 (first
row), Mix2 (second row), Mix3 (third row) and Mix4 (fourth row).

of Geweke and Amisano [2010] based on log predictive score. Our set of predictive densities is
f(Yt|Y1, . . . , Yt−1,Mj), j = 1, . . . , J , where Y ′

t = (Y ′
1t, Y

′
2t) and Mj indicates model β1−DD(ψ,G0)

(j = 1), β2−DD(ψ,G0) (j = 2), β1−DPY(ψ,G0) (j = 3) and β2−DPY(ψ,G0) (j = 4). We define
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Table 1. In each row: the simulation experiment (first column), the optimal
pooled log-predictive score function (second column) and the associated optimal
combination weights (remaining columns) for β1-DD (w1), β2-DD (w2), β1-DPY
(w3) and β2-DPY (w4).

Dataset Log-score w1 w2 w3 w4

Mix1 -250.25 0.0000 0.0000 0.9087 0.0913
Mix2 -179.61 0.2256 0.0000 0.7744 0.0000
Mix3 -265.00 0.4674 0.0000 0.5326 0.0000
Mix4 -273.25 0.0000 0.0790 0.3827 0.5383

the combined predictive density

f(Yt|Y1, . . . , Yt−1) =

J
∑

j=1

wjf(Yt−1|Y1, . . . , Yt−1,Mj)

with wj ≥ 0 and
∑J

j=1 wj ≤ 1 and choose the combination weights w = (w1, . . . , wJ ) to maximize
the log pooled predictive score function

max
w

τ2
∑

t=τ1

log

J
∑

j=1

wjf(Yt|Y1, . . . , Yt−1,Mj).

The model-specific predictive densities are not available in analytical form, but can be approx-
imated by using the Gibbs sampling scheme given in the previous section. In this application,
for a given dataset, we set τ1 = 50 and τ2 = 100 and for each model Mj, j = 1, . . . , 4, we
use 5,000 MCMC draws to approximate the predictive density f(Yt|Y1, . . . , Yt−1,Mj) at the data
point Yt. We repeated the procedure for t = τ1, . . . , τ2 and obtain a sequence of densities for each
model that can be used to find the optimal combination weights. The results in Tab. 1 show
that for all datasets DPY models have the better predictive ability. More specifically for Mix1
β1−DPY(ψ,H0) has the highest combination weight, while for Mix2 and Mix3 both DD and DPY
under assumption H1 are performing better than DD and DPY under assumption H2. Although,
for both datasets β1−DPY(ψ,H0) has the highest combination weight. Finally on dataset Mix
4, which has a different number of modes for the two components, β2−DPY is performing better
than β1−DPY.

In conclusion, the evidence is in favour of the use of both DD and DPY priors under the
specification H1, with the exception of the cases where there is a strong heterogeneity across
units, in terms of number of clusters. In this case β2−DPY prior should be preferred.

6.2. β2−DPY(ψ,H0) mixtures of vector autoregressive processes. In business cycle
modelling great advances have been made by allowing for separate parameter values in periods
(called regimes) of recession and expansion. The seminal paper of Hamilton [1989] proposes
to use a dynamic mixture model (regime-switching model) with two components for capturing
clustering of observations during the recession and expansion phases in a business cycle. This
simple model has been successfully extended in many directions and the issue of estimating the
number of regimes has been considered in various papers (e.g., Kim and Murray [2002], Kim and
Piger [2000] and Krolzig [2000]) following a parametric approach. Conversely, in this paper, we
follow Otranto and Gallo [2002] and apply a non–parametric approach to the estimation of the
number of regimes or structural breaks. We extend their approach to a multivariate set-up and
propose a joint estimation procedure for the number of regimes or breaks in multiple time series.
We assume a β2−DPY(ψ,H0) prior for the parameters of a two-country panel VAR and apply the
resulting nonparametric model to two well studied business cycles: the United States (US) and
the European Union (EU). Specifically it is interesting to verify whether the strong contraction
in 2009 calls for the use of a higher number of regimes than three or four to achieve a better
modelling of the cycles.



BETA-PRODUCT DEPENDENT PITMAN-YOR PROCESSES FOR BAYESIAN INFERENCE 17

US EU

1971M03 1991M02 2011M01
40

60

80

100

 

 

US IPI

1971M03 1991M02 2011M01
40

60

80

100

 

 

EU IPI

1971M04 1991M02 2011M01

−10

−5

0

5

 

 

Y
1,1t

 (US Business Cycle)

1971M04 1991M02 2011M01

−10

−5

0

5

 

 

Y
1,2t

 (EU Business Cycle)

1971M04 1991M02 2011M01
−4

−2

0

2

4

6

 

 

Y
2,1t

 (US Terms Spread)

1971M04 1991M02 2011M01
−4

−2

0

2

4

6

 

 

Y
2,2t

 (EU Term Spread)

Figure 5. First row: Industrial Production Index (IPI) for the US and the EU
at a monthly frequency for the period: March 1971 to January 2011. Second
row: logarithmic quarterly changes in the US IPI (Y1,1t) and the EU IPI (Y1,2t)
variables and NBER official recession phases (vertical gray bars). Third row: 10-
year and 3-month interest rate spread (term spread) for the US (Y2,1t) and the
EU (Y2,2t).

We consider seasonally and working day adjusted industrial production indexes (IPI), at a
monthly frequency from the time of April 1971 to January 2011, for the US and the EU (see first
row in Fig. 5). We take the quarterly growth rate of US and EU IPI, {Y1,1t}Tt=1 and {Y1,2t}Tt=1

respectively, (see second row in Fig. 5). To achieve a better modelling of the business cycle we
consider the term spread (TS), that is the difference between the 3-month and the 10-year interest
rates for the US and the EU, {Y2,1t}Tt=1 and {Y2,2t}Tt=1 respectively, (see third row in Fig. 5).
As a preliminary analysis of the IPI data we apply the Bry and Boschan [1971] (BB) rule for the
identification of the downward and upward turns of a time series. This nonparametric technique is
now standard in the literature (see for example Billio et al. [2012]) and in the practice of business
cycle analysis. It is currently used by the NBER institute for extracting the reference cycle for the
US. Vertical bars in the second row of Fig. 5 show the time periods from an upturn to a downturn
(recession phases) of the US and the EU economies. Following the BB rule, one can identify, in both
series, many recession periods, and in particular the 2009 recession. This simple procedure lacks of
a strong statistical foundation and cannot be used for forecasting purposes. This call for the use of
suitable stochastic models, which are able to account for the relevant features of these series, such
as skewness, heavy tails and multimodality in the unconditional distribution (see the histograms
in Fig. 6). These departures from the normality (see solid lines in Fig. 6) may be due to the
presence of regimes or breaks in the series, which are usually modelled with shifts in the parameters
of a linear model (see Krolzig [2000] and Clements and Krolzig [1998]). Thus, in our Bayesian
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nonparametric panel VAR model, we consider shifts in intercepts, autoregressive coefficients and
covariance matrices. We assume cross-country conditional independence, as described in Section
2.2.2, and the hierarchical base measure given in Section 4.2 with p = 4. See Hamilton [1989]
and Krolzig [2000] for a discussion on lag selection. In summary, the first stage equations of our
hierarchical Bayesian model are

(33) Yit = (I2 ⊗X ′
t)φ

∗
it + εit

for i = 1, 2 and t = 1, . . . , T , where Yit = (Y1,it, Y2,it)
′, Xt = (1, Y ′

1 t−1, Y
′
2 t−1, . . . , Y

′
1 t−p, Y

′
2 t−p)

′,
εit = (ε1,it, ε2,it)

′ with εit ∼ N2(0,Σ
∗
it). As regard to the second and third stage of hierarchy, the

equations are

φ∗it = φ̃0Dit
+ φ̃iDit

Σ∗
it = σ̃0Dit

Σ̃iDit

(34)

i = 1, 2, where φ̃0k is a common factor to all countries, φ̃ik is a country-specific factor and
Dit ∈ {1, . . . , D∗

i } are the unit-specific allocation variables, which are generated by the Pitman-
Yor model

(φ∗ik,Σ
∗
ik
−1)|G1, G2

i.i.d.∼ Gi i = 1, 2

(G1, G2) ∼ β2−DPY(ψ̃, G0)

ψ̃ ∼ G(ζ11, ζ21)G(ζ12, ζ22)
(35)

with base measure G0 given by the following hierarchical structure

(φ̃ik , Σ̃
−1
ik ) ∼ Nm(0, Υ̃ik)W2(λ,Λ) i = 1, 2

(φ̃0k, σ̃
−1
0k ) ∼ Nm(0,Υ0)G(ε/2, ε/2),

(36)

where m = 2(4p+ 1). In the same spirit of Chib and Greenberg [1995], we further assume that

the hyperparameters λ, Λ, Υ0 and ε are known and that Υ̃ik = τ̃2k Im, i = 1, 2, are random with

(37) τ̃2k ∼ IG(ν0/2, ν0/2).
The Gibbs sampling implementation for the model in Eq. (33)-(37) is given in Appendix B.2.

The charts in the first row of Fig. 6 show the predictive distributions (solid lines) generated by
the non–parametric approach conditioning on all values of Yt = (Y ′

1t, Y
′
2t)

′, t = 1, . . . , T , and the
best normal fits (dashed lines) for the empirical distributions of the two series.

From a comparison with the empirical distribution, we note that the non–parametric approach,
as opposed to the normal model, is able to capture skewness and excess of kurtosis in the data.
The results from our model are in line with the practice of using time-varying parameter models
(e.g., Markov-switching models) to capture asymmetry and non-linearity in both the US and the
EU business cycles. The main results of our non–parametric approach can be summarized through
the implied data clustering and the posterior predictive densities.

As regard to the data clustering, the posterior distribution of the number of clusters is given
in the second row of Fig. 6. The location of the posterior mode of the histograms allows us to
conclude that following our non–parametric approach there is evidence in favour of three clusters
for the US cycle and at least of four clusters for the EU cycle. The result for the US data is coherent
with the results available in the literature where three-regime Markov-switching models (see for
example Krolzig [2000]) are usually considered. The result for the EU cycle is, in a certain way,
coherent with the output of parametric studies which suggest to consider at least three regimes.
Nevertheless, the effects of the 2009 recession on the past empirical findings is an open issue and a
matter of research. The result from our non–parametric approach is interesting because it suggests
a substantial evidence in favour of at least four components in the mixture (see Fig. 6) for the EU.
The identification of the mixture components relies upon the implied data clustering. In order
to estimate the implied data clustering of our DPY mixture model, we apply the least square
clustering method proposed originally in Dahl [2006]. The method has been successfully used in
many applications (see for example Kim et al. [2006] and Rodriguez et al. [2008]) and is based
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Figure 6. First row: IPI log-changes (histogram), predictive distribution (solid
line) and best normal (dashed line) for the US (left column) and the EU (right
column). Second row: posterior distribution of the number of clusters for the US
(left column) and the EU (right column).

on the posterior pairwise probabilities of joint classification P{Dis = Dit|Y }. To estimate this
matrix, one can use the following pairwise probability matrix:

Pi,st =
1

M

M
∑

l=1

δDl
is
(Dl

it)

that is estimated by using every pair of allocation variables Dl
is D

l
it, with s, t = 1, . . . , T and over

all the l = 1, . . . ,M MCMC iterations.
Fig. 7 shows the pairwise posterior probabilities Pi,st, i = 1, 2, of the US and the EU data for

s, t ∈ {1, . . . , T }. The first row (second row) shows the posterior probabilities that two observations
of the US cycle (EU cycle) belong to the same cluster. In the first column, one can detect the
presence of vertical and horizontal dark gray bands. They correspond to observations that do not
cluster frequently together with other observations. A similar remark is true for the light gray
areas. In the second column of Fig. 7, one can see the different behavior of the clustering for the
US and the EU during the 2009 crisis. As the observations about January 2009 group together in
a cluster which excludes other observations of the sample, we can identify this component of the
mixture as the one associated to the 2009 recession. The same interpretation of the implied data
clustering and the identification of the components as the fourth regime for the 2009 recession
can be also achieved through the least square marginal clustering Di,LS , that is the clustering

Dli
i = (Dli

i1, . . . , D
li
iT ) sampled at the li-th iteration which minimizes the sum of squared deviations

from the pairwise posterior probability:

li = argmin
l∈{1,...,M}

T
∑

t=1

T
∑

s=1

(

δDl
is
(Dl

it)− Pi,st

)2

.

As regard to the predictive densities generated by the DPY model, we observe that they have
long left tails (solid lines in Fig. 6), fatter than the tails of the best normal (dashed lines in the



20 FEDERICO BASSETTI, ROBERTO CASARIN, AND FABRIZIO LEISEN

Posterior Clustering for the US data

 

 

1979M11 1988M03 1996M07 2004M11

1979M11

1988M03

1996M07

2004M11

0.75

0.8

0.85

0.9

0.95

1

 

 

2004M11 2007M06 2008M03 2009M11
2004M11

2007M06

2008M03

2009M11

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Posterior Clustering for the EU data
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Figure 7. Pairwise posterior probabilities for the clustering of the US data P1,st

and the EU data P2,st for s, t ∈ {1, . . . , T }

same figure). Thanks to these features the DPY model is suitable for describing and predicting
these data.

Fig. 8 shows the posterior predictive densities for Y1,it, i = 1, 2, estimated on the whole set
of data and evaluated sequentially over time at the current values of the explanatory variables
Yit−1, . . . , Yit−p (i = 1, 2). In the same plot, the gray area represents the heatmap sequence of the
95% high probability density region of the predictive densities (darker colours represent higher
density values).

Fig. 9 shows a typical predictive density approximation of the US (left) and the EU (right)
growth rates from our model during expansion (e.g., observation t = 430) and recession (e.g.,
observation t = 450) periods, where expansion and recession have been identified by applying the
BB rule for business cycle classification. The posterior predictives during expansion phases exhibit
skewness with right tails slightly fatter than left tails. During the recession period the predictives
exhibit multimodality with at least two modes in the negative half. The main differences between
the two cycles are that EU cycle exhibit more pronounced modes in the negative half, say around
-11 and -5, and that the volatility of the mixture components is higher.

In order to asses the predictive ability of the proposed β2−DPY(ψ,H0) two-country panel VAR
model, we compare it with other non–parametric specifications: two unit-specific and indepen-
dent Dirichlet process priors, the dependent Dirichlet process priors, βi−DD(ψ,H0), i = 1, 2
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Figure 8. US (top) and EU (bottom) IPI growth rates (black lines) and heatmap
(gray area) of the 99% high probability density region of the predictive density
functions (darker colours represent higher density values) evaluated at each time
point, for t = 1, . . . , T , at the values of the predictors Yt−1, . . . , Yt−p, for i = 1, 2.

and the dependent Pitman-Yor process prior, β1 −DPY(ψ,H0). We apply, as in the previ-
ous section, the model pooling approach of Geweke and Amisano [2010] based on log predic-
tive score. We consider two alternative set of predictive densities: the joint US-EU IPI density
f(Y1,1t, Y1,2t|Y1, . . . , Yt−1,Mj), j = 1, . . . , J , and the joint US-EU and IPI-TS predictive density
f(Yt|Y1, . . . , Yt−1,Mj), j = 1, . . . , J , where Yt = (Y ′

1t, Y
′
2t)

′. In the previous predictive densi-
ties, Mj indicates the following models: independent Dirichlet (j = 1), β1−DD(ψ,G0) (j = 2),
β2−DD(ψ,G0) (j = 3), β1−DPY(ψ,G0) (j = 4) and β2−DPY(ψ,G0) (j = 5). We define the
combined predictive and the log pooled predictive score function as in the previous section. We
approximated the model-specific predictive densities by using Gibbs sampling scheme given in Ap-
pendix B. We evaluate the log pooled predictive score function on two different subsets of the data
with the aim to check the effect of the 2009 crisis on model selection. More specifically, for the first
sub-sample we consider observations from August 1975 to May 1996 and set τ1 = 50 and τ2 = 200
in the pooled score function, while for the second sub-sample we consider the time period January
1979-December 2010 (i.e., we set τ1 = 50 and τ2 = 474 in the pooled score function). We follow the
same procedure of the previous section to obtain a sequence of predictive densities and an optimal
combination weight for each model. The results in Tab. 2 show that for the two subsamples the
DD and DPY models have the better predictive ability in terms of both US-EU IPI and US-EU
IPI and TS joint predictive densities. As regard to the choice of the model within the class of
vector of dependent Dirichlet, we found that in the first subsample β1−DD(ψ,H0) allows for a
better modelling of the US-EU IPI joint predictive (see Panel (a) of Tab. 2) while on the whole
sample β2−DD(ψ,H0) has better predictive ability. Finally, we note that the β1−DPY(ψ,H0)
VAR for the joint prediction of IPI and TS, for US and EU, has the highest combination weight
on the whole set of data.
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Figure 9. Predictive density approximations of the US (left column) and the
EU (right column) growth rates Y1,1t and Y1,2t during expansion (t = 430) and
recession (t = 450) periods.

In conclusion, the evidence is in favour of the use of both DD and DPY priors in VAR models
to capture multiple breaks or regimes in the parameters of the model. From our experiments,
the DPY is the prior specification for a multi-unit panel VAR that produces the best results in
terms of prediction. The assumption H1 should be preferred to H2 when no prior information is
available on the number of clusters for the different units of the panel. In our application both
assumptions H1 and H2 lead to models with good predictive abilities. In the analysis of the EU
and US IPI growth rates one can expect a priori, from the existing studies, that the number of
clusters differs across the two countries and that the number of clusters for the EU is larger. Thus,
the elicitation of a β2−DPY prior can easily motivated in this example. On the whole sample,
the β2−DPY prior produces better prediction of the IPI growth rates than a β1−DPY prior.

7. Conclusions

We define beta-product dependent Pitman-Yor processes with a hierarchical specification of
the base measure, which allows for heterogeneous clustering effects and for information pooling
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Table 2. In each row: the predictive considered (first column), the optimal
pooled log-predictive score function(second column) and the optimal weights (re-
maining columns) for Independent Dirichlet (w1), β1-DD (w2), β2-DD (w3), β1-
DPY (w4) and β2-DPY (w5), for the periods 1975M08-1996M05 (panel (a)) and
1975M08-2010M12 (panel (b))

Panel (a)
Joint Predictives Log-score w1 w2 w3 w4 w5

US-EU IPI -169.72 0.0000 0.5263 0.0000 0.3619 0.1118
US-EU IPI and TS -350.91 0.0000 0.3203 0.0000 0.6797 0.0000

Panel (b)
Joint Predictives Log-score w1 w2 w3 w4 w5

US-EU IPI -453.44 0.0004 0.1050 0.0000 0.3302 0.5644
US-EU IPI and TS -912.52 0.0000 0.2512 0.0000 0.6275 0.1213

across different groups of time series. We use the proposed process to define new Bayesian non–
parametric models for repeated measurement and multi-unit VAR models. We provide efficient
Monte Carlo Markov Chain algorithms for posterior computation and show the effectiveness of the
algorithm through a comparison, on simulated dataset, of various models in the proposed class of
Pitman-Yor processes. We show the potentiality of our stick-breaking process prior by providing
an original application to the joint analysis of the US and the EU business cycles. We compare
independent Dirichlet processes and different specifications of the dependent Pitman-Yor process
priors and found that the Pitman-Yor class leads to Bayesian non–parametric models with better
prediction abilities. Moreover we found that they can capture some important features of the EU
and US business cycles.



24 FEDERICO BASSETTI, ROBERTO CASARIN, AND FABRIZIO LEISEN

Appendix A. Proofs

Proof of Proposition 3. First of all observe that

E[Gi(A)Gj(B)] =
∑

h≥1,k≥1

E[IA(ϑ̃ik)IB(ϑ̃jh)]E[WikWjh]

= G0,i(A)G0,j(B)
∑

h≥1,k≥1,h 6=k

E[WikWjh] +G0,ij(A×B)
∑

h≥1

E[WihWjh].
(38)

Now note that

∑

h≥1

E[WihWjh] =
∑

h≥1

E



S1hS2h

∏

m≤h−1

(1− S1m)(1 − S2m)





=
E[S11S21]

E[S11] + E[S21]− E[S11S21]

(39)

and

∑

h≥1,k≥1,h 6=k

E[WikWjh] =
∑

h 6=k

E



S1hS2k

∏

m≤h−1

(1− S1m)
∏

l≤k−1

(1− S2l)





=
E[S11] + E[S21]− 2E[S11S21]

E[S11] + E[S21]− E[S11S21]
.

(40)

Combining (38) with (39)-(40) it follows that

E[Gi(A)Gj(B)] = G0,ij(A×B×)
E[Si1Sj1]

E[Si1] + E[Sj1]− E[Si1Sj1]

+G0i(A)G0j(B)
E[Si1] + E[Sj1]− 2E[Si1Sj1]

E[Si1] + E[Sj1]− E[Si1Sj1]
.

Since E[Gi(·)] = G0i(·), i = 1, . . . , r, one gets

(41) Cov[Gi(A), Gj(B)] =
E[Si1Sj1]

E[Si1] + E[Sj1]− E[Si1Sj1]
[G0,ij(A×B)−G0i(A)G0j(B)].

In a similar way, for every i = 1, . . . , r, one has

(42) V ar[Gi(A)] = G0i(A)(1 −G0i(A))
E[S2

i1]

2E[Si1]− E[S2
i1]
.

Hence,

Cor(Gi(A), Gj(A)) = Cij
G0ij(A×B)−G0i(A)G0j(B)

√

G0i(A)(1 −G0i(A))G0j(B)(1 −G0j(B))

with

Cij =
E[Si1Sj1]

1− E[(1− Si1)(1− Sj1)]

√

(2E[Si1]− E[S2
i1])(2E[Sj1]− E[S2

j1])

E[S2
j1]E[S

2
j1]

.

Assuming (14), one gets

E(Si1) =
1

1 + α1 + α2
, E(S2

i1) =
2

(1 + α1 + α2)(2 + α1 + α2)

E(Si1Sj1) =
2(1 + α1)

(2 + α1)(1 + α1 + α2)2

for every i, j = 1, . . . , r and then,

Cij =
(1 + α1 + α2)(1 + α1)

(1 + α1)(1 + α1 + α2) + α2
.
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Let us assume now (15). For the sake of simplicity write Vk in place of Vk1. Recall that V0 ∼
Beta(1, α1) and, for 1 ≤ k ≤ r − 1, Vk ∼ Beta(1 + α1 + · · ·+ αk, αk+1). Let 1 ≤ i < j ≤ r. Since
Si1 = V0V1 . . . Vr−i, one gets

Si1Sj1 = V 2
0 V

2
1 . . . V

2
r−jVr−j+1 . . . Vr−i.

After some computations, using also the fact that the Vjs are independent, one obtains

E[Si1Sj1] =
2

(2 + α1 + · · ·+ αr−j+1)(1 + α1 + · · ·+ αr−i+1)

and

E[Si1] =
1

1 + α1 + · · ·+ αr−i+1
, E[S2

i1] =
2

(1 + α1 + · · ·+ αr−i+1)(2 + α1 + · · ·+ αr−i+1)
.

At this stage, simple algebra gives
√

(2E[Si1]

E[S2
i1]

− 1
)(2E[Sj1]

E[S2
j1]

− 1
)

=
√

(1 + α1 + · · ·+ αr−i+1)(1 + α1 + · · ·+ αr−j+1)

and

E[Si1Sj1]

E[Si1] + E[Sj1]− E[Si1Sj1]

=
2(1 + α1 + · · ·+ αr−j+1)

2(1 + α1 + · · ·+ αr−j+1)2 + (2 + α1 + · · ·+ αr−j+1)(αr−j+2 + · · ·+ αr−i+1)
.

That is

Ci,j =
2
√

(1 + α1 + · · ·+ αr−i+1)(1 + α1 + · · ·+ αr−j+1)
3
2

2(1 + α1 + · · ·+ αr−j+1)2 + (2 + α1 + · · ·+ αr−j+1)(αr−j+2 + · · ·+ αr−i+1)
.

Formula (17) can be proved in an analogous way. �

Proof of (25)-(26). The joint distribution of [V, ϑ̃, U,D, Y, ψ̃] is

P{V ∈ dv, ϑ̃ ∈ dϑ, Y ∈ dy, U ∈ du,D = d, ψ̃ ∈ (dα1, dα2, dl)}

=
[

∏

i=1,2

Ti
∏

t=1

I{uit < wi,di,t
}Kt(yi,t|ϑdi,t

, zt)
]

dydu

×k≥1

[

P{Vk ∈ dvk|ψ̃ = (α1, α2, l)}G0(dϑk)
]

P{ψ̃ ∈ (dα1, dα2, dl)}

(43)

where wi,k = v0kvik
∏

t<k(1 − v0tvit), with the convenction that v2k = 1, for every k, under (H2)
and zt = [yjs : j = 1, 2; s = 1, . . . , t− 1]. From (43) one gets

P{V ∈ dv, ψ̃ ∈ (dα1, dα2l)|Y, ϑ̃,D}

∝
[

∏

i=1,2

Ti
∏

t=1

wi,Dit

]

×t≥1 P{Vt ∈ dvt|ψ̃ = (α1, α2, l)}P{ψ̃ ∈ (dα1, dα2, dl)}.

Now note that

∏

i=1,2

Ti
∏

t=1

wi,Dit
=

D∗

∏

t=1

vA1t+A2t

0t vA1t

1t vA2t

2t

(1− v0tv1t)
B1t(1 − v0tv2t)

B2t .

�

Appendix B. Computational details

In the Block Gibbs Sampler described in Section 5 in principle one needs to sample an infinite
number of Vk and ϑ̃k. But in order to proceed with the chain it suffices to sample a finite number
of Vks to check condition (32) and the finite number of ϑ̃k to be used in (31).
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B.1. Full conditionals for DPY(ψ,G0) mixtures of Gaussian of Section 6.1. For the sake
of simplicity we will omit indicating the dependence of the full conditional on the hyperparameters.
In order to sample from the full-conditional P{ϑ̃k ∈ dϑk|V,D, Y, U}, for k ≥ 1 we consider a Gibbs
sampler with normal and inverse gamma full conditional distributions

P{µ̃ik ∈ dµik|µ̃0k, σ̃
2
ik, σ̃

2
0 , D, Y } ∝

∝ exp

{

− 1

2s−2
i

µ2
ik

}

∏

t∈Di,k

exp

{

− 1

2σ̃2
ikσ̃

2
0k

(Yit − (µ̃0k + µik))
2

}

dµik

∝ exp

{

−1

2
µ2
ik

(

s2i + σ̃−2
ik σ̃

−2
0k Ai,k

)

+ µikσ̃
−2
ik σ̃

−2
0k η

(1)
ik

}

dµik

∝ N
(

σ̃−2
ik σ̃

−2
0k η

(1)
ik

s2i + σ̃−2
ik σ̃

−2
0k Ai,k

,
1

s2i + σ̃−2
ik σ̃

−2
0k Ai,k

)

(44)

and

P{σ̃2
ik ∈ dσ2

ik|µ̃0k, µ̃ik, σ̃
2
0k, D, Y } ∝

∝ exp

{

−λ
2
σ−2
ik

}

(σ−2
ik )

1
2
λ+1

∏

t∈Di,k

(σ−2
ik )1/2 exp

{

− 1

2σ2
ikσ̃

2
0k

(Yit − (µ̃0k + µ̃ik))
2

}

dσ2
ik

∝ exp

{

−
(

λ

2
+

1

2σ̃2
0k

η
(2)
ik

)

σ−2
ik

}

(σ−2
ik )

1
2
λ+ 1

2
Ai,k+1dσ2

ik

∝ IG
(

λ

2
+

1

2
Ai,k,

λ

2
+

1

2σ̃2
0k

η
(2)
ik

)

(45)

i = 1, 2, for the component-specific part of the atoms, where Ai,k, i = 1, 2 have been defined in
Section 5 and

(46) η
(1)
ik =

∑

t∈Di,k

(Yit − µ̃0k) and η
(2)
ik =

∑

t∈Di,k

(

Yit − (µ̃0k + µ̃ik)
)2
.

The part of the atom that is common to all the components has full conditionals

P{µ̃0k ∈ dµ0k|µ̃1k, µ̃2k, σ̃
2
0k, σ̃

2
1k, σ̃

2
2k, D, Y } ∝

∝ exp

{

− 1

2s−2
0

µ2
0k

}

∏

i=1,2

∏

t∈Di,k

exp

{

− 1

2σ̃2
ikσ̃

2
0k

(Yit − (µ0k + µ̃ik))
2

}

dµ0k

∝ N







η
(0)
k

s20 +
∑

i=1,2

σ̃−2
0k σ̃

−2
ik Aik

,
1

s20 +
∑

i=1,2

σ̃−2
0k σ̃

−2
ik Aik







(47)

with

(48) η
(0)
k =

∑

i=1,2

σ̃−2
0k σ̃

−2
ik

∑

t∈Di,k

(Yit − µ̃ik)

and

P{σ̃2
0k ∈ dσ2

0k|σ̃2
1k, σ̃

2
2k, µ̃0, µ̃1, µ̃2, D, Y } ∝

∝ exp
{

−ε
2
σ−2
0k

}

(σ−2
0k )

ε
2
+1
∏

i=1,2

∏

t∈Di,k

(σ2
0k)

− 1
2 exp

{

− 1

2σ̃2
ikσ

2
0k

(Yit − (µ̃0k + µ̃ik))
2

}

dσ2
0k

∝ IG





ε

2
+

1

2

∑

i=1,2

Aik,
ε

2
+

1

2

∑

i=1,2

η
(2)
ik

σ̃2
ik





(49)

respectively.
A sample from the conditional joint distribution of the precision parameters and the stick-

breaking elements can be obtained following the blocking scheme described in Subsection 5.2.
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Since we assume gamma priors, G(ζ11, ζ21) and G(ζ12, ζ22) for α1 and α2 respectively, and standard
uniform prior for l, equations (28)-(29) become

P{ψ̃ ∈ (dα1, dα2, dl)|V ∗, D} ∝
1

C(ψ)
αζ11−1
1 αζ12−1

2 exp
{

−α1ζ̄21 − α2ζ̄22 − lζ̄32
}

dα1dα2dl
(50)

where

ζ̄21 = ζ21 −
∑

k∈D∗

(

log(1− V0k) +
∑

i=1,2

logVik

)

ζ̄22 = ζ22 −
∑

k∈D∗

∑

i=1,2

log(1− Vik)

ζ̄32 =
∑

k∈D∗

(

logV0k +
∑

i=1,2

(logVik − k log(1 − Vik))
)

C(ψ) =
∏

k∈D∗

B(1 − l, α1)B
2(α1 + 1− l, α2 + lk)

(51)

under H1, and

ζ̄21 = ζ21 −
∑

k∈D∗

(

log(1− V0k) + log(V1k)
)

ζ̄22 = ζ22 −
∑

k∈D∗

log(1− V1k)

ζ̄32 =
∑

k∈D∗

(

log(V0k)− k log(1− V0k)− (k − 1) log(V1k)
)

C(ψ) =
∏

k∈D∗

B(1− l, α1 + lk)B(α1 + 1 + l(k − 1), α2)

(52)

under H2.
We simulate from the full conditional by a M.-H. step. We considered a Gaussian random walk

proposal for the transformed parameter vector ξ = (ξ1, ξ2, ξ3) = g(ψ) with g(ψ) = (log(α1), log(α2), log(l/(1−
l))). At the j-th iteration, given ψ(j−1), we simulate

(53) ξ(∗) ∼ N3(ξ
(j−1), κ2I3)

where ξ(j−1) = g(ψ(j−1)) and κ2 represents a scale parameter of random walk. The proposal
ψ(∗) = g−1(ξ(∗)), with g−1 inverse transform of g, is accepted with probability

(54) min

{

1,
P{ψ(∗)|V ∗, D}
P{ψ(j−1)|V ∗, D}

|∇g−1(ψ(∗))|
|∇g−1(ψ(j−1))|

}

where ∇g−1 denotes the Jacobian of g−1, that is a matrix with main diagonal

(55)

(

exp(ξ1), exp(ξ2),
exp(ξ3)

(1 + exp(ξ3))2

)

and null elements out of the main diagonal and |∇g−1| its determinant. We set the scale parameter
κ in order to have acceptance rates close to 0.5.

B.2. Full conditionals for DPY(ψ,G0) mixtures of VAR of Section 6.2. In order to sample

from the full-conditional P{ϑ̃k ∈ dϑk|V,D, Y, U}, for k ≥ 1, we use Gibbs sampling. The hier-
archical structure of the base measure allows us to write the following Gibbs sampling updating
scheme for the elements of ϑ̃k.
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The full conditional of the country-specific VAR coefficients for the i-th unit is

P{φ̃ik ∈ dφik|φ̃0k, Σ̃ik, σ̃
2
0k, Υ̃

2
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∝ exp
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))}
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∝ Nm (mik,Mik)

where E0ikt = Yit − (I2 ⊗X ′
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−1
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ik E0ikt.

The country-specific variance matrix of the VAR equations for the i-th unit has full conditional

P{Σ̃−1
ik ∈ dΣ−1
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where Ai,k = card(Di,k), Eikt = Yit− (I2⊗X ′
t)(φ̃0k+ φ̃ik) and Λ−1

i,T = Λ−1+ σ̃−2
0k

∑

t∈Di,k
EiktE

′
ikt.

The full conditionals of the common components φ̃0k and σ−2
0k are functions of the unit-specific

components. More specifically φ̃0k has full conditional

P{φ̃0k ∈ dφ0k|φ̃ik, Σ̃ik, σ̃
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t) + Υ̃−1
0

)

φ0k+

− 2
∑

i=1,2

∑

t∈Di,k

φ′0k

(

(I2 ⊗Xt)Σ̃
−1
ik σ̃

−2
0k E1ikt

))}

dφ0k

∝ Nm

(

m0k,M0k

)

where E1ikt = Yit − (I2 ⊗X ′
t)φ̃ik , M

−1
0k = σ̃−2

0k

∑

i=1,2

∑

t∈Di,k
(I2 ⊗Xt)Σ̃

−1
ik (I2 ⊗X ′

t) + Υ̃−1
0 and

m0k =M0kσ̃
−2
0k

∑

i=1,2

∑

t∈Di,k
(I2 ⊗Xt)Σ̃

−1
ik E1ikt.

Finally the common factor of the variances, σ−2
0k , has full conditional

P{σ̃−2
0k ∈ dσ−2

0k |φ̃ik, Σ̃ik, φ̃0k, Υ̃
2
ik, D, Y } ∝
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2σ2
0k

∑
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∑

t∈Di,k

(

E′
iktΣ̃

−1
ik Eikt

)}

(σ−2
0k )

A1,k+A2,k
2 (σ−2

0k )
ε−1

2 exp
{

− ε

2
σ−2
0k

}

dσ−2
0k

∝ Ga
((

ε+
∑

i=1,2

Aik

)

/2, εT/2
)
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where εT = ε+
∑

i=1,2

∑

t∈Di,k
E′

iktΣ̃
−1
ik Eikt and
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−2
0k , D, Y } ∝

∝ exp
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− 1

2τ2k
tr
(

∑
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φ̃′ikφ̃ik
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k τ
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(
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(
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)
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