Migration-induced Transfers of Norms. The case of Female Political Empowerment

Elisabetta Lodigiani
and Sara Salomone
Migration-induced Transfers of Norms.
The case of Female Political Empowerment

Elisabetta Lodigiani
Ca’ Foscari University of Venice
and
Sara Salomone
IRES, Louvain-la-Neuve

Abstract
This paper empirically investigates the effect of transnational migrants on gender equality in the country of origin measured by the share of women enrolled in the lower chamber of National Parliaments. We test for a 'migration-induced transfer of norm' using panel data from 1960 to 2010 in ten-year intervals. Total international migration has a significant effect on female political empowerment in countries of origin conditional on the initial female parliamentary participation in both origin and destination countries. Reverse causality issues are taken into account and results are tested under specific geo-political and temporal subsamples.

Keywords
International Migration, Gender Discrimination, Panel Data, Endogeneity

JEL Codes
F22, J16, D72, C33

Address for correspondence:
Sara Salomone
IRES, Université catholique de Louvain
College L. H. Dupriez
3 Place Montesquieu
B-1348 Louvain-la-Neuve (Belgium)
Tel: +32(0)1047413512
Fax: +32(0)10473945
E-mail: sara.salomone@uclouvain.be

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character.
Migration-induced Transfers of Norms. The case of Female Political Empowerment

Elisabetta Lodigiani∗

Sara Salomone†

June 23, 2015

Abstract

This paper empirically investigates the effect of transnational migrants on gender equality in the country of origin measured by the share of women enrolled in the lower chamber of National Parliaments. We test for a ‘migration-induced transfer of norm’ using panel data from 1960 to 2010 in ten-year intervals. Total international migration has a significant effect on female political empowerment in countries of origin conditional on the initial female parliamentary participation in both origin and destination countries. Reverse causality issues are taken into account and results are tested under specific geo-political and temporal subsamples. (JEL F22, J16, D72, C33)

Keywords: International Migration, Gender Discrimination, Panel Data, Endogeneity

∗University of Venice Ca’ Foscari and Centro Studi Luca d’Agliano, Cannaregio, S. Giobbe 873 , 30121 Venezia, Italy. Tel. +39(0)412349621. E-mail address: elisabetta.lodigiani@unive.it

†Corresponding author. IRES, Universite catholique de Louvain, College L. H. Dupriez, 3 Place Montesquieu, B-1348 Louvain-la-Neuve (Belgium). Tel.: +32(0)1047413512; fax: +32(0)10473945. E-mail address: sara.salomone@uclouvain.be
1 Introduction

In countries where women have minimal control over resources and a limited voice in decision-making, the exposure to new ideas through international migration can set off, facilitate or catalyse gender parity (Hugo, 2000). By looking at the shares of women enrolled in the lower chamber of National Parliaments, as far as we know, this is the first paper to explore the role of international migration as a measure of exposure to foreign practices related to female political empowerment. During their stay abroad, migrants familiarize with different values, norms, and other forms of behaviours which are specific to the host country. They form networks of relationships and acquire knowledge on new economic and institutional conditions. Socialization is likely to occur and migrants accommodate to new practices which can have a substantial impact on their countries of origin.\footnote{1See Gordon (1964) for cultural assimilation.}

An increasing number of papers have investigated the role of migration in diffusing norms and values of different natures. Spilimbergo (2009) has shown, for example, the role of foreign students in promoting democracy in their home country, provided that the foreign education has been acquired in democratic countries. Docquier et al. (2014) has shown that international migration is an important determinant of institutional quality, as measured by democracy and economic freedom. Focusing on returnees, Mercier (2014) recognizes the positive role of international migration on the quality of the leadership and the emergence of the elites. Analogously, a few micro studies have contributed to the literature on the transfer of political norms through migration. Chauvet and Mercier (2014) find a positive effect of Malian returnees from non African destinations on origin country’s participation rates and electoral competitiveness; Omar Mahmoud et al. (2011) shown how Westward migrants contributed to overthrowing the Communist party in Moldova; and finally, Batista and Vicente (2011) show how migration to countries with better governance has increased the demand for political accountability in Cape Verde. The same mechanism has been also applied to attitudes towards fertility. Focusing on Egypt, Morocco and Turkey, Fargues (2007)
shows that fertility rates in sending countries are affected by the rates prevailing in their migrants’ host countries. Beine et al. (2013) extend Fargues’ conclusions providing evidence of a transfer of fertility norms from international migrants to 208 countries of origin. In a micro setting, Bertoli and Marchetta (2015) finds that return migration to Egypt from other Arab countries characterized by higher fertility rates, has had a significant and positive influence on the total number of children.

Our study belongs and contributes to this strand of literature raising the possibility that international migrants transmit back home through various channels attitudes towards gender parity. This issue is explored by looking at the ten-yearly change in the share of female parliamentary participation between 1960 and 2010. The identification of the exact way through which migration affects attitudes towards women in the countries of origin is difficult both at macro and micro level unless suitable data are available and it goes beyond the scope of this paper. Our empirical analysis addresses whether a ‘transfer of norms’ mechanism is in place and its causal direction. In particular, we show that total international migration to countries where the share of female parliamentary seats is higher increases source country female parliamentary participation in the lower chamber of National Parliament.

There is strong anecdotal evidence on the role of international migration in shaping female political empowerment in the countries of origin. Correa (1998), for example, finds how the involvement of Puerto Rican female migrants in the New York political arena changed the social role of women as well as their husbands’ viewpoint concerning their wives at origin. When Nydia Velasquez won the Puerto Rican primary elections and ended up being elected as the first Puerto Rican congresswoman in the US, she was strongly supported by Latino voters willing to accommodate themselves to the idea of female leadership.

2 Also the study by Neumayer and De Soysa (2011) focuses on attitudes towards gender parity but in a different environment. An analysis of spatial dependence puts forward the role of trade and FDI in fostering the empowerment of women. The authors test for the propagation of women’s economic and social rights through trade and FDI. Specifically, it is suggested that the incentive to raise women’s rights is stronger where, firstly, major trading partners and secondly, the major source countries for FDI themselves provide strong rights. Economic and social rights are taken from the Cingranelli and Richards’ 2009 Human Rights Database. Among the economic rights the ‘free choice of profession’ as well as the ‘equality in hiring and promotion practices’ are listed but there is no direct reference to political rights. Nonetheless, the role of other globalized outcomes such as migration has not been touched.

3 In Latin America men were always the leaders. Women in politics were seen as strange’, p. 343.
Pessar (2001) studied the behaviour of Guatemalans emigrated to Mexico and then returned to their country. She finds that in 1995, on the occasion of a meeting with returnee leaders, Guatemalans were persuaded to sign a document affirming the desirability of making women and men equal owners of the land and the equal accessibility to the community governing directorates. Return migration has also transformed life in the Dominican village of Miraflores. Young women no longer want to marry men who have never migrated because they wish their husbands to share the housekeeping and childcare as men who have been to the United States do.\(^4\)

Migrants also keep strong links with their family back home. In Africa, where migration of women is mainly circular, migrants do not break away permanently from their places of origin (Poir, 1979). They maintain contacts with their families and communities by correspondence or regular visits for important events such as Christmas and festivals. The 2011 Nobel Peace Prize Leymah Roberta Gbowee\(^5\) while visiting regularly her origin country, Liberia, where her children used to live, struggled for the safety of women and for women’s right. She led the women’s peace movement that brought an end to the Second Liberian Civil War in 2003 and contributed then to the election of Ellen Johnson Sirleaf, the first African female President.

Migrants frequently contribute to the development of their village of origin through Home Town Associations (HTAs). The HTAs are immigrant informal organizations, based in a common hometown, that bring members together for social, cultural, political empowerment and economic development goals. The Centro Romero is an HTA made up of Latino migrants and set up in 1984 in Chicago, which offers women’s empowerment projects. Under the so-called Women Leadership Project, the centro Romero organizes workshops, trainings, activities and community events to increase the leadership potential of the Latino women. Analogously, the *Initiatives de Femmes Africaines de France et d’Europe* (IFAFE) is an HTA funded in 1993 which pursues home country development objectives linked to female political empowerment.

Similarly, the South Sudan Women’s Empowerment Network (SSWEN), created by Sudanese

\(^4\)http://www.migrationinformation.org/feature/display.cfm?id=261.

\(^5\)Mrs Leymah Roberta Gbowee spent some time in Virginia where she received a Master’s Degree in Peace Building at the Eastern Mennonite University (EMU). She has then resided in Ghana where she moved before the independence of Liberia.
United States-based migrants, has been deeply involved in building the new South Sudanese National State, whose independence dates back to the 9th of July 2011. The role of the Sudanese diaspora has been so relevant for the involvement of women in development programs (with particular emphasis on political decision-making), that Erickson and Faria (2011) describe diasporic Sudanese women as ‘new and increasingly important citizens and activists in the post-CPA (Comprehensive Peace Agreement) era’.

Finally, external voting\(^6\) also helps in transferring new political values in countries of origin. In 1916, the province of British Columbia in Canada enabled military personnel overseas to vote in a referendum on women’s suffrage which became effective then.\(^7\)

The choice of female parliamentary participation is important for many reasons. Women constitute more than half of the global population. However, female electorate continues to be underrepresented in economic and political decision-making bodies at all levels. According to 2010’s Inter-Parliamentary Union (IPU) data, the international average representation of women in parliaments has increased slowly from 11 to 19% between 1995 and 2010 but this is far short of gender parity. Parliamentary elections in 2009 contributed to rising women parliamentary shares in sub-Saharan Africa and Latin America and the Caribbean, where 29% and 25% of the renewed seats went to women, respectively. However, 58 countries still have less than 10 per cent of female members in the parliament. Moreover, the gap in women parliamentary participation among countries is high, with the Swedish, Dutch and Belgian Chambers being the most ‘feminized’ with 45%, 40.7% and 39.3% of women in the Parliament, respectively. The lowest shares belong to Arab Countries with 11.7%.

\(^6\)External voting refers to the right that enables migrants to vote from abroad. Even if the constitutions of many countries guarantee the right to vote for everybody, voters who are outside their home country are often disenfranchised because of a lack of procedures enabling them to exercise the right to vote. According to the voting operations data from Ace (The Electoral Knowledge Network-http://aceproject.org/ace-en/topics/va/external-voting-a-world-survey-of-214-countries), voting outside the boundaries is not permitted for 27.8% countries against 50.6% cases in which citizens residing outside the country can vote and 21.6% cases under which voting is permitted under special conditions (being member of the armed forces, diplomatic staff, students,..). Moreover, even where admitted, external voting is associated with low participation rates and this can be due to security concerns, voter disinterest, difficult access to registration and voting facilities, and documentation issues. When considering the gender dimension of external voting, women and men participated to almost the same extent. In comparing our dataset with that of Ace, we find that 30% of the origin/year couples contained in the sample are covered by external voting rights.

When revising the relationship between gender empowerment and economic development, Duflot (2012) states that there are two rationales for supporting active policies to promote women. The first is equity: women are currently worse-off than men, and this inequality between genders is unfair in its own right. The second regards the fundamental role women play for development. This is a central issue in policy makers’ debates.

Thomas (1991) shows that States in US with a higher female representation have introduced and passed more priority bills dealing with issues of women, children and families compared to States with a lower female representation. Besley and Case (2000) find that female legislators apply pressure to increase family assistance and to strengthen child support. When considering Indian data, Clots-Figueras (2011) finds that women have a differential impact on public goods, policy and expenditure decisions compared to the male counterparts. Female political leaders invest more than men in schools, female teachers, primary education and beds in hospitals and dispensaries. Moreover, female legislators invest more in health and early education and favor ‘women-friendly’ laws. Along the same lines, Iyer et al. (2011) find that an increase in female representation in local government induces large and significant effects on reporting of crimes against women in India, thus favoring access to justice for women. On the theoretical side, De la Croix and Vander Donckt (2010) recognize the importance of female empowerment as a multidimensional concept which includes economic participation and opportunity, educational attainment, political empowerment, health and survival. They argue that a range of socioeconomic outcomes are attached to gender equality, including improved children’s development (through better health and education) and growth.

The rest of the paper is structured as follows. Section 2 describes the empirical model implemented to identify the impact of migration on the propagation of female political values at home. Section 3 deals with the datasets used to conduct the empirical analysis. A comprehensive database on female parliamentary representation (WDI, 2014; Paxton et al., 2006) and Ozden et al. (2011)’s bilateral migration database going from 1960 to 2010 are used. Section 4 goes through the main challenges to be addressed in the empirical analysis. Endogeneity between international
migration and political environment is accounted for thanks to a rigorous instrumentation strategy which exploits fixed effects, 2SLS and system GMM estimation techniques. Section 5 provides the empirical results and some robustness checks. Finally, Section 7 concludes.

2 The Empirical Model

To test for the impact of international migration on the change in female parliamentary seats in the country of origin \((seats^F_{i,t})\) through a ‘transfer of norms’ mechanism, we consider the following specification by decade\(^8\):

\[
\Delta seats^F_{i,t} = \beta \sum_j \left[\frac{migij,t-10}{popi,t-10} \times (seats^F_{j,t-10} - seats^F_{i,t-10}) \right] + \sum_{i=1}^n \rho_i R_{i,t} + \mu_i + \varphi_t + \epsilon_{i,t} \quad (1)
\]

which can be re-written as:

\[
seats^F_{i,t} = \alpha seats^F_{i,t-10} + \beta \sum_j \left[\frac{migij,t-10}{popi,t-10} \times (seats^F_{j,t-10} - seats^F_{i,t-10}) \right] + \sum_{i=1}^n \rho_i R_{i,t} + \mu_i + \varphi_t + \epsilon_{i,t} \quad (2)
\]

where:

- \(t\) refers to the year of interest and goes from 1970 to 2010; \(i\) refers to the country of origin and \(j\) to the country of destination.\(^9\)
- \(seats^F_{i,t}\) represents the female parliamentary share at time \(t\) in country of origin \(i\).
- \(seats^F_{i,t-10}\) represents the female parliamentary share at time \((t-10)\) in country of origin \(i\).
- \(migij,t-10\) is the bilateral total migration stock from \(i\) to \(j\) at time \((t-10)\). The reason why we consider total migration instead of female migration is threefold. First, according to the message given on the occasion of the 100th International Women’s Day by the Director of the Secretariat of the International Strategy for Disaster Reduction (UN/ISDR) Salvano Briceno,\(^8\)

\(^8\)The time lag is equal to 10 years because migration data from Ozden et al. (2011) is only available by decade.

\(^9\)See Appendix A for the list of countries in the sample.
‘Advancing gender perspectives and women’s rights is not just a job for women, more men must advocate at a high level for the empowerment of women, and for the incorporation of gender budgeting into national and local development plans’. Secondly, if we look at the gender composition of HTAs there is no evidence that efforts to improve females’ conditions are just pursued by female migrants. Recent developments have shown that policies and work towards gender equality face new challenges related to men’s role and demands.10 Thirdly, according to Doepke and Tertilt (2009), men care about the other gender in facing a trade-off between the rights they want for their own wives (namely none) and the rights of other women in the economy.

- \(\text{pop}_{i,t-10} \) is the total population at time \((t - 10)\) in country \(i\).

\[
\left[\frac{\text{mig}_{ij,t-10}}{\text{pop}_{i,t-10}} \times (\text{seats}_{F,j,t-10} - \text{seats}_{F,i,t-10}) \right]
\]

is the ‘norm’ at time \((t - 10)\) through which foreign female parliamentary participation is propagated in the country of origin. Unlike previous works, we multiply the migration rate component \(\frac{\text{mig}_{ij,t-10}}{\text{pop}_{i,t-10}} \) with the difference between the parliamentary share at destination and that in the country of origin. We expect a positive effect if \(\text{seats}_{F,j} > \text{seats}_{F,i} \). In other terms, the origin country takes advantage of the political environment at destination just if the female political conditions at destination are better than those at origin (we will have instead a ‘negative transfer of norm’ if \(\text{seats}_{F,j} < \text{seats}_{F,i} \) and no transfer if \(\text{seats}_{F,j} = \text{seats}_{F,i} \)). Moreover, the greater the difference, the stronger the effect.

- \(\sum_{i=1}^{n} R_{i,t} \) contains other traditional covariates of interest. In the baseline model, we control for political exogenous variables such as the presence of de jure democratic values in the country of origin \(i\) at time \(t\); the occurrence of legal elections at time \(t\) in country \(i\) and the nature of country \(i\)’s electoral system at time \(t\). Then in the extended specification, we account for the female skill ratio in country \(i\) at time \(t - 10\) computed as the ratio of tertiary educated over illiterate females; the CEDAW (Convention on the Elimination of all Forms of Discrimination against Women) ratification, GDP and trade data, and female population

10\text{Website: http://www.womenlobby.org (Brussels, 7th October 2011).}
at time $t - 10$ in country i.

- μ_i and φ_t are country of origin and time fixed effects.

The main references are the studies of Spilimbergo (2009) and Beine et al. (2013). To determine the impact of students’ migration on democracy at origin, Spilimbergo (2009) regresses the index of democracy at time t in country i over the five years’ lagged value of democracy in country i, the number of students abroad as a share of total population in the sending country, the average level of democracy in the host countries, and the interaction between the two latter terms. The average level of democracy in the host countries is constructed as the weighted average of the institution in the host countries where the weights are given by the share of students from country i to country j over all students from country i. Beine et al. (2013), also apply the same specification in a cross section setting to assess the impact of migration on source country fertility. The norm is constructed as the interaction between the (log of) fertility rate at destination with the size of the diaspora. With respect to previous studies, our norm differs in two aspects. First, it is able to control for asymmetries between source country and destination’s female political empowerment. Secondly, its weights are given by emigration rates in order to test whether the transmission of the norm depends on the intensity of migration. Spilimbergo (2009) and Beine et al. (2013) are prevented from doing it because of collinearity problems. The correlation between the norm, the migration rate and the interaction term between the two is so high that they cannot infer anything on the intensity of migration. In Beine et al. (2013), in particular, this lack of significance is justified by the complexity of the transfer of norms’ mechanism.\footnote{See Appendix C for a more detailed description of the differences with previous studies.}
3 Data

3.1 Political Data

Political data on the proportion of seats held by women in national parliaments12 covers the time span 1960-2010 and relies on two different datasets. Between 1960 and 2003 the database by Paxton, Green and Hughes (2006) titled ‘Women in Parliament, 1945-2003: Cross-National Dataset’ is used.13 This data collection provides yearly information on women’s inclusion in parliamentary bodies in 204 countries from 1945 to 2003. The dataset allows for extensive, large-scale, cross-national investigation of the factors that explain women’s attainment of political power over time and provides comprehensive international and historical information on women in a variety of political positions. Information is provided on female suffrage, the first female member of parliament, yearly percentages of women in parliaments (data refers to the percent of parliamentary women in the lower or single house of each country’s national legislature), when women reached important representational milestones, such as 10 percent, 20 percent, and 30 percent of a legislature, and when women achieved highly-visible political positions, such as prime minister, president, or head of parliament. Political information for the remaining 7 years (from 2004 to 2010) have been taken from the World Development Indicators (WDI) 2014. Either Paxton et al. (2006) and WDI (2014) rely on Inter-Parliamentary Union (IPU) (www.ipu.org) data which make them compatible with each other.

In order to be consistent with migration data, we consider political data by decade for 1960, 1970, 1980, 1990, 2000 and 2010.14

In the political database by decade, there are some missing values due to the absence of the

12The exact definition of the variable is ‘Women in parliaments as the percentage of parliamentary seats in a single or lower chamber held by women’.
13http://www.icpsr.umich.edu.
14Preferring 10 years data to yearly data is important for at least three reasons. It avoids migration and human capital data interpolation; the persistence due to political legislatures is reduced and a longer period for the occurrence of a ‘transfer of norm’ mechanism is taken into account. It might be indeed the case that migrants require more than one year before integrating and then transmit new values in their home country.
parliament (i.e. coup d’etat, dictatorship war, ‘false elections’, no sovereignty or colonialism).15 For the empirical analysis and the construction of the norm, we consider both the reduced sample (when female parliamentary participation is missing because the Parliament is absent) and the whole sample (setting to zero those cases in which the parliament is absent). Under the assumption that when a parliament is absent it is as if women could not be elected (i.e. female political eligibility equals zero).

3.2 Migration Data

Migration information relies on the recently released bilateral database described in Ozden et al. (2011).16 They provide bilateral migration stocks disaggregated by gender by decades for 232 countries, relying primarily on the foreign-born concept. Over one thousand census and population register records are combined to construct decennial matrices corresponding to census rounds for the entire period. In doing so, the authors provide for the first time, a complete picture of bilateral global migration over the second half of the twentieth century, including for the first time also South-South migration.

When combining migration with political data, the geographical dimension of the initial migration dataset has been complemented, reconstructing data for Czechoslovakia, the Socialist Federal Republic of Yugoslavia and USSR for which data were available following their political split.17

3.3 Other Data

Additional explanatory variables have been collected using the following databases.

Data on total population and female population is provided by the World Population Prospects

15In the original Paxton et al. (2006) political database, there are indeed three types of missing values. The so-called ‘true missing’ due to the fact that the authors could not find positive data, a second type of missing due to coup d’etat, and a third type of missing due to the absence of the Parliament. The absence of the parliament can be due in turn to several factors: the presence of a dictatorship, ‘false elections’ or the absence of sovereignty, i.e. colonial reasons. Concerning ‘true missing’ values, we have transformed them in a historical/political compatible way into either missing values, zeroes or positive observed values using an additional political dataset from Armingeon and Careja (2008) as explained in Appendix D.

17See Appendix B for the detailed reconstruction of these cells.
of the United Nations (2012). GDP per capita comes from the World Bank Development Indicators 2014. Female human capital indicators used to construct the female skill ratio are taken from Barro and Lee (2013). Barro and Lee’s data is available every five years. The indicator for the *de jure* democratic values is from the POLITY IV data set while data on legal elections and electoral systems (proportional, majoritarian, mixed and multi-tier) is from Golder (2005). Data on CEDAW (Convention on the Elimination of all Forms of Discrimination against Women) ratification has been collected by ourselves. We construct a dummy variable which assumes value 1 for the year in which the convention has been ratified by the country, 0 otherwise.\(^{18}\) Data about religion which identifies countries with more than 80 percent of Muslim population is taken from La Porta et al. (1999). Data on trade is taken from Feenstra et al. (2004) who provide yearly World trade flows in the time span 1962-2010.

4 **Econometric issues**

Eq.(1) and (2) have been estimated adopting several techniques. We first estimate Eq.(1) using standard OLS cross-country regressions. However OLS can generate inconsistent estimates in presence of omitted variables, reverse causality, reflection problems and other endogeneity issues. We address all these issues by including fixed effects, instrumenting the main regressor of interest with an external instrument in a standard 2SLS. Then we consider a standard dynamic panel specification as Eq. (2), and we use SYS-GMM dynamic panel estimations using a combination of internal and external instruments in order to account for persistency and endogeneity.

4.1 **Omitted Variables and sample selection bias**

First we estimate Eq.(1) with pooled OLS, considering the change in the number of seats as dependent variable. The pooled OLS provides a rough idea of the correlation among the variables of

\(^{18}\)The Convention was opened for signature at the United Nations Headquarters on 1 March 1980. Although the United States never ratified the convention, CEDAW has become the main international legal document on women’s rights.
interest. However in the pooled OLS we do not control for possible mis-specifications due to unobserved characteristics, which may jointly affect international migration and the share of female parliamentary seats. We address this issue by introducing country fixed effects. Although country fixed effects cannot capture determinants that are both country- and time-specific, they account for many unobservable characteristics. However, it should be noticed that other factors which may affect female parliamentary seats, such as female education, or the quality of political institutions or female population, are very persistent. Therefore, the inclusion of country fixed effects in the regression model mostly account for them.

Another econometric issue refers to the nature of the dependent variable. We observe (non-negative) values for the female parliamentary share when parliamentary sessions exist in the country and women have the right to stand for office (i.e. women are eligible).\footnote{The female parliamentary share can also be zero when there are parliamentary sessions but women do not run for any political position. Since we do not have data on female political entry, we assume that there are some women who run for the position in any case.} We observe missing values for the female parliamentary share when the Parliament is absent (i.e. coup d’état, dictatorship war, ‘false elections’, no sovereignty or colonialism) or when women do not have the right to be elected yet. In order to control for sample selection bias due to the nature of our dependent variable, we run alternative regressions setting the missing values to zeroes. Similar estimated results are observed when using OLS and fixed effect regressions, thus suggesting that sample selection is of minor concern.

4.2 Reverse causality

A key issue when using pooled OLS and fixed effect regressions to study the relationship between international migration and political environment is the endogeneity of ‘the norm’ \(\left(\sum_j \frac{mig_{j,t-10}}{pop_{j,t-10}} \times (seats_{j,t-10}^F - seats_{i,t-10}^F) \right) \) due to a reverse causality issue. If international migrants move to countries with better prospects for women (Ferrant and Tuccio, 2015; Nejad and Young, 2012) or if international migration acts as a way out of political discrimination (Hugo, 2000), an external instrumentation strategy is required in order for the coefficient of the ‘norm’ to be unbiased.
The same argument holds for reflection issues (Manski, 1993). The ‘norm’ can be endogenous because if the equations for each country \(i\) were written in a system, the female parliamentary share would appear either as regressand for country \(i\) and as regressor within the norm for country \(i + 1, i + 2, \text{etc.}\)

We instrument the norm addressing separately the migration and the political component. Concerning the former \(\left(\sum_j \frac{mig_{ij,t-10}}{\text{pop}_{i,t-10}}\right)\) we follow Ortega and Peri (2014). They use a gravity-type equation model based on exogenous geographical and cultural bilateral distances (while controlling for country size) to estimate predicted bilateral migration rates, in line with gravity-type equation used to predict trade bilateral pairs (e.g. Frankel and Romer, 1999).\(^{20}\) As in Feyrer (2009), who builds a time-varying geographic instrument for trade based on a gravity-type equation, distances are interacted with time dummies. This introduced time variation captures common shocks in the changes in transportation technology over time which occur at the global level (distances are shorter and shorter time goes by). The following gravity model is estimated:

\[
\text{mig}_{ij,t} = \alpha + \gamma t + \delta \log(\text{distance})_{ij,t} + \beta_1 \text{area}_i + \beta_2 \text{area}_j + \beta_3 \text{common border}_{ij} + \beta_4 \text{language}_{ij} + \\
+ \beta_5 \text{colony}_{ij} + \beta_6 \text{same country}_{ij} + \beta_7 \text{pop}_i + \beta_8 \text{pop}_j + \beta_9 \text{landlocked}_i + \beta_{10} \text{landlocked}_j + \\
+ \beta_{11} \text{distance}_{ij} + \beta_{12} \text{bord} \ast \text{landlocked}_i + \beta_{13} \text{bord} \ast \text{landlocked}_j + \\
+ \beta_{14} \text{bord} \ast \text{area}_i + \beta_{15} \text{bord} \ast \text{area}_j + \beta_{16} \text{bord} \ast \text{distance}_{ij} + \beta_{17} \text{bord} \ast \text{pop}_i + \\
+ \beta_{18} \text{bord} \ast \text{pop}_j + \epsilon_{ijt}
\]

Where the dependent variable \(\text{mig}_{ij,t}\) is the stock of immigrants from country \(i\) to country \(j\) relative to the population of country \(i\). The explanatory variables from the CEPII database are the distance between the two countries, the population and area of each country, the number of countries in the pair that is landlocked, a dummy for whether country \(i\) and \(j\) share a common border, a dummy for having been the same country in the past, a dummy for speaking a common language and a dummy for shared colonial past. The interactions of the border dummies with the distance, population area,

\(^{20}\)This method is now standard in the recent migration literature. See also Beine et al. 2013, Alesina, Harnoss and Rapoport, 2013.
and landlocked dummies are also included to increase the predictive power of the regression. We do not include origin and destination dummy variables, which absorb the origin-specific and the destination-specific regressors, but we control for area, population and the landlocked dummies that only vary by origin or by destination. Time-varying distances as in Feyrer (2009) are also considered.

The presence of a large number of zeroes in bilateral migration stocks gives rise to econometric concerns about possible inconsistent OLS estimates. We estimate the above model using the Poisson regression by pseudo-maximum likelihood. We use the PPML command in Stata which implements the method of Santos Silva and Tenreyro (2011) to identify and drop regressors that may cause the non-existence of the (pseudo-) maximum likelihood estimates. Standard errors are robust and clustered by country pairs.

The predicted emigration rates are then interacted with the exogenous political component of the norm. The destination country’s share of females in Parliament in year 1948 is used to proxy the endogenous ‘political’ part of the norm which consists in the difference between the observed female parliamentary seats between country j and i. In doing so, we avoid origin country political data in order to keep our instrument the most exogenous as possible. Then the arbitrary choice of year 1948 is threefold. First, there are 12 historical years before the starting period (year 1960) of our base empirical analysis. Secondly, it avoids Second War World’ imminent repercussions. Thirdly, it captures the first political transformations initiated by the post-war reconstruction. However, for robustness, the average value for the period 1945-1950 is also used.

The resulting exogenous norm to be used as external instrument is: $\sum_j \left[\frac{mig_{j,t-10}}{pop_{j,t-10}} \times (seats^F_{j,1948}) \right]$, or alternatively $\sum_j \left[\frac{mig_{j,t-10}}{pop_{j,t-10}} \times (seats^F_{j,1945–1950}) \right]$.

4.3 Endogeneity of other regressors.

Although the instrumental variable strategy previously described corrects for the endogeneity of the ‘norm’, it does not account for the endogeneity of other regressors. For example, female human capital can be an important determinant for female political participation, however it could
be that women in parliament affect the incentives of women to acquire education. In addition, female parliamentary share is very persistent. A standard panel dynamic framework (with the female parliamentary participation at time t regressed over its ten years lag) is required (Eq.(2)). The introduction of the lagged dependent variable induces potential biases in the estimation. In order to overcome endogeneity issues due to the lagged dependent and other lagged explanatory variables, we consider a SYS-GMM technique.

The system GMM estimator accounts for unobservable heterogeneity and it is preferable to a standard fixed-effects estimator since the inclusion of the lagged dependent variable in a fixed effects model would lead to the so-called Nickell (1981) bias because the lagged dependent variable is correlated with the error term. In addition, the fixed effect estimator is not recommended when data is very persistent as it exacerbates measurement error bias (Hauk and Wacziarg, 2009), whereas the system GMM is the most appropriate estimator when time series are very persistent as in our case (see Bond et al., 2001). In addition, it allows us to estimate our model either only with internal instruments, or with a combination of external and internal instruments.

The system GMM estimator combines the regression in differences with the regression in levels in a single system. The instruments used in the first differentiated equation are the same as in Arellano-Bond (1991), but the instruments for the equation in level are the lagged differences of the corresponding variables. In order to use these additional instruments, a moment condition for the level equation, which implies that first differences of pre-determined explanatory variables are orthogonal to the country fixed effects, must be satisfied.

We test the validity of moments conditions by using the test of overidentifying restrictions proposed by Hansen and by testing the null hypothesis that the error term is not second order serially correlated. Furthermore, we test the validity of the additional moment conditions associated with the level equation using the Hansen difference test for all GMM instruments.

A particular concern related to this method is the risk of instrument proliferation. Using too many instruments can bias the GMM estimation results and weaken the Hansen test of the instruments’ joint validity (Roodman, 2009). We have, therefore, kept the number of instruments lower
than the number of groups (as Roodman, 2009, suggests).

The SYS-GMM estimator provides consistent and unbiased estimates but it depends on the particular set of instruments used. However, it is recognized that, with very conservative data, it is the best available estimator (Blundell and Bond, 1998; Arellano and Bover, 1995).21

Finally, a sensitivity analysis will also be conducted to check the robustness of the results to the exclusion of certain countries (e.g., socialist countries, Sub-Saharan African countries and Muslim countries) whose characteristics may exacerbate reverse causality problems.

5 Estimation Results

The results are organized in sub-sections. We first provide OLS and FE results estimating the relationship between the lagged value of female parliamentary share (i.e. the ‘norm’) and the change in female parliamentary seats departing from Eq.(1). Secondly, a two-step procedure is implemented in order to account for endogeneity bias. Subsection 5.2 presents the pseudo-gravity types results, while subsection 5.3 presents 2SLS-FE regressions results using the external instrument. Thirdly, we estimate the dynamic specification as in Eq.(2) using the SYS-GMM technique, combining external and internal instruments. Fourth, we conduct a sensitivity analysis to check the robustness of our results to the exclusion of certain groups of countries (socialist countries, sub-Saharan African countries and Muslim countries). Fifth, we test the robustness of our results considering annual data in order to take into account the complete political evolution of each country.

5.1 Panel analysis with Pooled OLS and FE results

Table 1 reports OLS and FE estimates from Eq.(1) where the dependent variable is computed as the change in female parliamentary seats. No additional controls other than the lagged index of female parliamentary share (i.e. the ‘norm’) are considered. Standard errors are robust and clustered by

21Several robustnesses are performed on the internal set of instruments. Moreover, an external instrumentation strategy due to reverse causality between the main regressor (i.e. ‘the norm’) and the dependent variable (i.e. female parliamentary participation) corrects for possible bias due to the exclusive use of internal instruments.
country of origin. In columns (1) and (2), observations of female parliamentary seats in the case of the lack of parliamentary sessions or non eligibility of women are considered as missing. In columns (3) and (4) these observations are set to zero. We observe that in OLS (columns (1) and (3)) and FE regressions (columns (2) and (4)), the estimated coefficient of the norm is positive and statistically significant in all the cases. A similar magnitude of the estimated coefficient is also observed when setting the missing values of female parliamentary seats to zero. In our context, sample selection bias seems to be a minor concern, henceforth we will consider in our sample only the observations for which we observe a non-negative value for female parliamentary seats (i.e. considering the cases in which women are not eligible as missing).

For comparison with previous studies, columns (5)-(8) instead report OLS and FE results for the base model without additional controls following the Spilimbergo (2009)’s specification, which includes the total emigration rate, an index for institutional quality in host countries, and an interaction between the two terms. The new index of female parliamentary share is positive and statistically significant. The total emigration rate (which measures the direct effect of migration) is not statistically significant as in Spilimbergo (2009), as well as the interaction term, which captures the intensity of emigration with respect to the origin population in the transfer of female political values. Following Spilimbergo ’s specification, the lagged migration rate has no impact on female parliamentary seats at home while the quality of political institutions in host countries has a strong impact on political institutions at home. It is unclear whether this effect increases with the number of migrants abroad (so as in the original work by Spilimbergo (2009) and Beine et al. (2013). As the index of female parliamentary share and the interaction term are highly correlated, low significance levels could be due to collinearity problems. Our alternative specification directly captures the intensity of migration in transferring the norm, thus overcoming this concern. We can therefore say, that the quality of female political participation in host countries has a positive correlation with female parliamentary share in the country of origin, which increases with the share of migrants abroad with respect to the total population in the country of origin.

\[22\] See Appendix C for a detailed description of the Spilimbergo (2009)’s set up.
Table 1: Estimations: OLS and FE

<table>
<thead>
<tr>
<th></th>
<th>(1) OLS</th>
<th>(2) FE</th>
<th>(3) OLS</th>
<th>(4) FE</th>
<th>(5) OLS</th>
<th>(6) FE</th>
<th>(7) OLS</th>
<th>(8) FE</th>
</tr>
</thead>
<tbody>
<tr>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
<td>share</td>
</tr>
<tr>
<td>Norm of fem. parl. share (lagged)</td>
<td>.7278*</td>
<td>2.197***</td>
<td>[.414]</td>
<td>[.745]</td>
<td>.8596**</td>
<td>1.986***</td>
<td>[.416]</td>
<td>[.642]</td>
</tr>
<tr>
<td>Total migration rate (lagged)</td>
<td>-.1132</td>
<td>10.08</td>
<td>-.7623</td>
<td>3.534</td>
<td>[-.303]</td>
<td>[.724]</td>
<td>[-.328]</td>
<td>[.437]</td>
</tr>
<tr>
<td>Norm of fem parl share (a la Spil.) (lagged)</td>
<td>.1726***</td>
<td>.5963***</td>
<td>[.049]</td>
<td>[.063]</td>
<td>1.248</td>
<td>1.304</td>
<td>[.807]</td>
<td>[1.1]</td>
</tr>
<tr>
<td>Interaction term (a la Spil.) (lagged)</td>
<td>(1.248)</td>
<td>1.304</td>
<td>(1.248)</td>
<td>1.304</td>
<td>(1.248)</td>
<td>1.304</td>
<td>(1.248)</td>
<td>1.304</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>565</td>
<td>565</td>
<td>798</td>
<td>798</td>
<td>593</td>
<td>593</td>
<td>848</td>
<td>848</td>
</tr>
<tr>
<td>Number of countries</td>
<td>170</td>
<td>170</td>
<td>179</td>
<td>179</td>
<td>180</td>
<td>180</td>
<td>180</td>
<td>180</td>
</tr>
<tr>
<td>R-squared</td>
<td>.1017</td>
<td>.1553</td>
<td>.0925</td>
<td>.1293</td>
<td>.1224</td>
<td>.2794</td>
<td>.1154</td>
<td>.2353</td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses. Columns (1), (3), (5), (7) OLS estimations. Columns (2), (4), (6), (8) FE estimations.

5.2 Instrumentation for the norm

Table 2 presents estimation results from the gravity Eq. (3) used to predict the bilateral exogenous migration component of the ‘norm’. Not surprisingly, geographic characteristics are strong determinants of bilateral migration rates. As proxies of migration costs, contiguity, colonial and linguistic links favor migration while geographical distance is negatively correlated to those rates. Population size at origin has a negative impact on bilateral migration rates (bigger countries simply have more migrants in absolute terms, but less in relative terms), while more populated countries are more likely to attract foreign people relative to native population.

5.3 Panel analysis with 2SLS

In tables 3 and 4 we correct for endogeneity using 2SLS regressions with country fixed effects.

Columns (1) and (2) of table 3 show both the first and second stage when instrumenting the norm with \(\sum_j \left[\frac{mig_{i,t}}{pop_{i,t-1}} \times (seats_{j,1948}) \right] \). The estimated coefficient of the ‘norm’ is positive and statistical significant. Columns (3) and (4) show instead results when exogenous control variables (which we will better explain in the following paragraphs) are added to the previous specifica-
Table 2: Gravity regressions (dep = bilateral migration rates)

<table>
<thead>
<tr>
<th></th>
<th>PPML</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area_or (log)</td>
<td>-0.124**</td>
</tr>
<tr>
<td></td>
<td>(0.061)</td>
</tr>
<tr>
<td>Area_dest (log)</td>
<td>0.375***</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
</tr>
<tr>
<td>CommonBorder</td>
<td>-3.57</td>
</tr>
<tr>
<td></td>
<td>(2.00)</td>
</tr>
<tr>
<td>Common official language</td>
<td>1.382***</td>
</tr>
<tr>
<td></td>
<td>(0.112)</td>
</tr>
<tr>
<td>Common colonizer</td>
<td>2.007***</td>
</tr>
<tr>
<td></td>
<td>(0.2004)</td>
</tr>
<tr>
<td>Same country in the past</td>
<td>0.455**</td>
</tr>
<tr>
<td></td>
<td>(0.213)</td>
</tr>
<tr>
<td>Pop_or (log)</td>
<td>-0.217**</td>
</tr>
<tr>
<td></td>
<td>(0.077)</td>
</tr>
<tr>
<td>Pop_dest (log)</td>
<td>0.361***</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
</tr>
<tr>
<td>Landlocked_or</td>
<td>-0.618***</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
</tr>
<tr>
<td>Landlocked_dest</td>
<td>-1.117***</td>
</tr>
<tr>
<td></td>
<td>(0.175)</td>
</tr>
<tr>
<td>Bord*landlocked_or</td>
<td>0.932***</td>
</tr>
<tr>
<td></td>
<td>(0.307)</td>
</tr>
<tr>
<td>Bord*landlocked_dest</td>
<td>1.009**</td>
</tr>
<tr>
<td></td>
<td>(0.382)</td>
</tr>
<tr>
<td>Bord*Area_or</td>
<td>-0.0479</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
</tr>
<tr>
<td>Bord*Area_dest</td>
<td>-0.303**</td>
</tr>
<tr>
<td></td>
<td>(0.116)</td>
</tr>
<tr>
<td>Bord*distance</td>
<td>1.109***</td>
</tr>
<tr>
<td></td>
<td>(0.154)</td>
</tr>
<tr>
<td>Bord*pop_or</td>
<td>0.086</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
</tr>
<tr>
<td>Bord*pop_dest</td>
<td>-0.019</td>
</tr>
<tr>
<td></td>
<td>(0.122)</td>
</tr>
<tr>
<td>Constant</td>
<td>-3.396***</td>
</tr>
<tr>
<td></td>
<td>(1.347)</td>
</tr>
</tbody>
</table>

10years*Distance (log)	yes
Origin fixed effects	no
Dest. Fixed effects	no
Year fixed effects	yes
Observations	128768
Pseudo log-likelihood	-321.5206
R-squared	0.1425

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country pairs in parentheses.
tion. Results are confirmed. For robustness, we also present alternative regressions, where the ‘norm’ is instrumented by \(\sum_j \left[\frac{m_{ij,t}}{p_{ij,t-1}} \times (seats_{j,1945-1950}) \right] \). Similar results are obtained with this alternative instrument.

Table 4 adds traditional political and non-political covariates to the above specification. In particular, column 1 refers to the model which we will consider as our baseline specification henceforth. It contains the lagged ‘norm’ of female parliamentary share and other exogenous control variables. We consider a measure of female human capital, a measure of *de jure* democracy, a variable called legal election which indicates the number of elections to national lower chamber occurred in the year of the same legislature \(^{23}\) and a dummy equal to 1 if the electoral system is proportional.

Female human capital can be important in explaining female political empowerment: women need human and financial capital (gained through education and work experience) to stand for office (Paxton and Kunovich, 2003).\(^{24}\) As a proxy for female human capital, we generate the ratio between the number of females aged more than 25 years old with tertiary completed education and females with no schooling. In 2SLS regressions with country fixed effects, the estimated coefficient is positive, but not statistically significant.

An indicator of democracy is also considered. Indicators of democracy measure the general openness of political institutions and combine several aspects such as: the presence of institutions and procedures through which citizens can express effective preferences about alternative policies and leaders; the existence of institutionalized constraints to the exercise of power by the executive power; and the guarantee of civil liberties to all citizens in their daily lives and in acts of political participation. In our case, we consider a composite index called Polity2 that ranges from -10 to +10, with 10 corresponding to the most democratic set of institutions. It is worth reminding that Polity 2 captures the quality of ‘de jure’ institutions, and it is not based on perceptions (not capturing the quality of de facto institutions). The effect of democracy on women’s political rep-

\(^{23}\)It takes value equal to 1 if one legal election occurs and 0 otherwise.

\(^{24}\)Women’s workforce participation may also favor women’s political participation. We indirectly control for workforce participation through human capital (of course, the two variables are highly correlated). We cannot introduce female labor force participation rate as a control variable, as data are available only from the 80’s.
presentation, may be ambiguous. On the one hand, it may be easy for women to be elected to a powerless parliament or under an authoritarian system, built on egalitarian ideologies such as ex-communist countries where female parliamentary participation was high. On the other hand, more democratic countries may favor women’s political participation. In 2SLS regressions with fixed effects, Polity2 is not statistically significant.

Finally, we control for legal election and for a dummy variable for the electoral system being proportional. It is recognized in the political science literature that proportional systems, rather than majority ones, help women to access the political system (e.g., Paxton et al., 2010, Jalalzai and Krook, 2010). Proportional systems make use of multi-member districts, which implies that more than one candidate can be elected from a particular district, and often have closed party lists, which means that citizens vote for the party lists of candidates rather than individual candidates. Under a list system, parties may feel compelled to nominate women in order to balance the list. Moreover, the higher the district magnitude the greater the probability for a woman to be nominated, if the political party is expecting to win several seats in the district. The election variable is generally positive, but not significant as well as the proportional nature of the electoral system. It should be noted that here we are considering 10 years data, therefore we lose some information regarding the political evolution of the countries (for instance, there are countries where political elections occur 6 times in 10 years). The relevance of legal election and proportional electoral system data would definitely be more important in an annual data setting.

From columns (2)-(5), other potential traditional explanatory variables are added to the baseline specification. In particular, we consider the CEDAW (Convention on the Elimination of all Forms of Discrimination against Women) ratification, GDP per capita (in log), female popula-

\[\text{22} \]

\[^{22}\text{Of course, concerning electoral system’s characteristics, the introduction of an electoral gender quota may encourage greater representation of women. Unfortunately, we cannot directly control for quotas, as data is available only for the most recent election years (see the Global Database of Quotas for Women at http://www.quotaproject.org/ by the International Institute for Democracy and Electoral Assistance-IDEA). The rapid diffusion of gender quota across countries has indeed occurred within the last 15 years. The inclusion of time dummies in our specification should capture the general increase in female representation due to the contemporaneous introduction of gender quotas in political systems. In addition, as many studies find that the greatest impact of quotas occurs under electoral systems with closed list and higher district magnitude (see Jalalzai and Krook, 2010), controlling for the proportional nature of electoral system means also indirectly controlling for the implementation of gender quotas.} \]
tion (in log) and a trade variable. The CEDAW ratification implies that countries, which ratified the convention, should meet the minimum standards to reach equal women rights. Moreover, the countries involved should regularly provide the measures they have taken to reach this goal. As in True and Mintrom (2001), CEDAW is not significant (column 2) and this can be due to two reasons. First, some countries decide to ratify just because of international visibility with little intention to change gender relation, secondly some countries ratify later as a consequence of lack of bureaucratic conditions. In column 3, we control for (the logarithm of) GDP per capita. From one side, development itself matters for women (Burn, 2005), from the other side, the correlation between GDP per capita and women’s presence in parliament is not clear cut, depending whether women have effective power in the country. For instance, in Central America, where quota laws are less common, there exists a positive, and strong correlation between GDP per capita and female politicians in parliament. In South America, where quotas predominate, the opposite occurs: GDP per capita and women in parliament are negatively correlated (Mala and Piscopo, 2010). In our estimations, GDP per capita turns out to be negative and statistically significant. It should also be noted that the estimated coefficient is biased, due to reverse causality (women in power promote development). In column 4 we control for the size of female population at origin in order to take into account the direct effect of female migration on total female population (e.g. female migration within total migration can lower the active and passive female electorate). Female population, which is presumably highly correlated with total population in the migration rate, is not statistically significant. In column 5, we finally control for a trade as a percentage of GDP, as a measure of the general openness of the country. In the last column, we include all the explanatory variables. Our main results do not change again. It should also be noticed that most of the control variables are highly persistent, therefore their effects can be captured by the inclusion of country fixed effects.

Finally, the bottom of the tables report information regarding the performance of the external instrument we are using. For each specification we report the Kleibergen-Papp F test (KP), which allows us to test the null hypothesis of weak instruments. Generally, we can reject the less stringent

26 As explained in Bertocchi (2011), the logarithm of GDP per capita can be also considered as a proxy for the gender wage gap, given the strong negative correlation between the two measures.
critical values but not the most demanding ones.

Table 3: Estimations 2SLS-FE

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First Stage</td>
<td>IV-FE</td>
<td>First Stage</td>
<td>IV-FE</td>
<td>First Stage</td>
<td>IV-FE</td>
<td>First Stage</td>
<td>IV-FE</td>
</tr>
<tr>
<td></td>
<td>Norm of fem. parl. share (lag.)</td>
</tr>
<tr>
<td>Norm of fem. parl. share (lag.)</td>
<td>5.982** (2.87)</td>
<td>8.483** (3.52)</td>
<td>5.661** (2.82)</td>
<td>8.411** (3.53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Democracy Index</td>
<td>.0249** (.012)</td>
<td>-.184 (.132)</td>
<td>.0249** (.012)</td>
<td>-.182 (.132)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal election</td>
<td>.0376 (.108)</td>
<td>-.9187 (1.13)</td>
<td>.0376 (.108)</td>
<td>-.9151 (1.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional electoral system</td>
<td>-.3207* (.178)</td>
<td>2.66 (2.05)</td>
<td>-.32* (.178)</td>
<td>2.639 (2.05)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm of fem. parl. share 1948 (lagged)</td>
<td>1.966** (.902)</td>
<td>1.071** (.429)</td>
<td>2.075** (1.01)</td>
<td>1.998** (.468)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm of fem. parl. share 1945-50 (lagged)</td>
<td>5.982** (2.87)</td>
<td>8.483** (3.52)</td>
<td>5.661** (2.82)</td>
<td>8.411** (3.53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses. Kleibergen-Paap rk Wald F statistics to be compared with the Stock-Yogo critical values for weak instrumentation.

5.4 Panel analysis with SYS-GMM

Table 5 reports estimation results in system GMM (the most appropriate estimator in this context).

Our dependent variable is the share of seats held by women in the lower or single house in National Parliament. In particular, column 1 refers to our baseline specification which contains the lagged female parliamentary share, the lagged norm of female parliamentary share and the other traditional control variables (a measure of female human capital, a measure of democracy, a variable called legal election which indicates the number of elections to national lower chamber occurred in the year of the same legislature, and a dummy equal to 1 if the electoral system is proportional).

Column 2 considers the same specification than column 1, but adds external instrument (i.e., we use the emigration rate generated by the gravity model as instrument) to the internal ones. Columns 3 to 6 add additional controls as in the previous sub-section, and consider internal plus external instruments. Standard errors are robust and clustered by country group. The coefficient for the lagged dependent is positive and statistically significant, and it ranges between .84 and .87.

In general, results are fairly similar to 2SLS-FE estimations. With respect to previous regres-
Table 4: Estimations 2SLS-FE

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.Fem. Parl. share</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm of fem. parl. share (lagged)</td>
<td>9.841***</td>
<td>9.854***</td>
<td>11.04***</td>
<td>10.31***</td>
<td>10.17***</td>
<td>16.51***</td>
</tr>
<tr>
<td>Skill ratio for females (lagged)</td>
<td>.0123</td>
<td>.0128</td>
<td>.01</td>
<td>.0131</td>
<td>.0149</td>
<td>.0235</td>
</tr>
<tr>
<td>Democracy Index</td>
<td>-0.0872</td>
<td>-0.0971</td>
<td>-1.184</td>
<td>-0.0837</td>
<td>-1.218</td>
<td>-1.2125</td>
</tr>
<tr>
<td>Legal election</td>
<td>.2137</td>
<td>.1557</td>
<td>-0.0446</td>
<td>.2555</td>
<td>.4191</td>
<td>.2259</td>
</tr>
<tr>
<td>Proportional electoral system</td>
<td>1.496</td>
<td>1.422</td>
<td>1.995</td>
<td>1.597</td>
<td>1.269</td>
<td>2.18</td>
</tr>
<tr>
<td>CEDAW</td>
<td>1.567</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP per capita in log (lagged)</td>
<td></td>
<td>-3.588*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female population in log (lagged)</td>
<td>-0.6458</td>
<td></td>
<td></td>
<td>-2.815</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trade as a percentage of GDP (lagged)</td>
<td></td>
<td></td>
<td>-10.33**</td>
<td>-11.2**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>252</td>
<td>252</td>
<td>243</td>
<td>252</td>
<td>244</td>
<td>235</td>
</tr>
<tr>
<td>Number of countries</td>
<td>65</td>
<td>65</td>
<td>64</td>
<td>65</td>
<td>62</td>
<td>61</td>
</tr>
<tr>
<td>Kleibergen-Paap rk Wald F statistic</td>
<td>6.415</td>
<td>6.393</td>
<td>4.628</td>
<td>7.79</td>
<td>5.305</td>
<td>5.927</td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses. Kleibergen-Paap rk Wald F statistics to be compared with the Stock-Yogo critical values for weak instrumentation.

sions, the estimated coefficient of Polity II is now positive and statistically significant, indicating that the average level of democracy enhances female political conditions.

In addition, endogenous variables can be instrumented using their own lagged values. For this reason, two alternative norms are included in these specifications. Column (6) considers a trade index, because economic integration may also convey cultural norms, supporting women’s political participation. The trade norm is built in a symmetrical way to the migration one, constructing a weighted average of the difference in female parliamentary share with trading partners where the weights are given by the share of trade between the country of origin and the trading partner over total trade (e.g., $\sum_j \frac{\text{trade}_{ij,t-1}}{\text{Trade}_{i,t-1}} \times (\text{seats}_{j,F}^{F} - \text{seats}_{i,F}^{F})$). Our estimated coefficient is negative, meaning that trade is a measure of openness that goes in the opposite direction to migration, and not statistically significant.27 In column (5), we also control for the risk that the positive and significant

27This result has to be taken with caution. We have indeed to notice that the trade dataset has much more missing values than the migration dataset. It could be also the case that when considering trade, the ‘negative’ transfer is prevailing. In unreported robustness checks, we first control for the general openness of the country, using trade/gdp (lagged) as control variable and then for the updated version of Sachs and Warner’s trade policy openness indicator of Wacziarg and Welch (2008). In both cases, the openness indicators are not statistically significant. Finally, plugging all the trade controls together, we do not find any different results.
effect of the migration norm could be driven by the fact that what matters is only migration towards richer countries. An alternative norm, based on bilateral migration weights and the difference between GDP per capita at destination and origin, has been constructed. This alternative norm is positive, but not statistically significant in our baseline regressions.\footnote{Remember also that the relationship between GDP per capita and female parliamentary seats is not clear cut.}

Importantly, in all the specifications the norm remains positive and statistically significant, implying that total migration is a positive and important channel through which female parliamentary share in the origin country raises.\footnote{In order to assess the importance of this effect at country-specific level, in Appendix 6 we simulate the counterfactual female parliamentary share obtained in two extreme cases.}

In all the empirical specifications just mentioned, we also take into account country and time fixed effects, therefore the results are robust to all country-specific time-invariant characteristics which may influence female political representation. They encounter religion\footnote{Conservative religious ideologies usually prevent women from public activities. Islamic law, for example, is typically acknowledged for its limited women’s role in public; or catholicism which has been historically in opposition to women’s enfranchisement, a first step in the achievement of equal political rights (Bertocchi, 2011).}, colonial history\footnote{Since a country with a history of colonialism may exhibit slower incorporation of women into the political realm than countries that never were colonized (Paxton et al., 2006).} and many other unobservable characteristics.

In the SYS-GMM estimations, the instruments used in the first differentiated equation are the same as in Arellano-Bond (1991), but the instruments for the equation in level are the lagged differences of the corresponding variables.\footnote{In order to use these additional instruments, a moment condition for the level equation, which implies that first differences of pre-determined explanatory variables are orthogonal to the country fixed effects, must be satisfied.} In our specifications, the lagged dependent variable is instrumented using from its own first to fifth lags. Our variable of interest, i.e. the lagged index of female parliamentary share, the lagged female human capital, the lagged index in trading partners, the lagged index of GDP per capita, female population are instrumented using from their own first to fifth lags. The legal election variable, the proportional system dummy, the democracy indicator and the CEDAW variable are considered as exogenous. The external instrument, when it is introduced, is: \[\sum_j \left[\frac{mig_{ij,t}}{pop_{i,t-1}} \times (seats_{F,j,1948}) \right]. \]

We test the validity of moment conditions by using the test of overidentifying restrictions proposed by Hansen and by testing the null hypothesis that the error term is not second order serially
correlated. Furthermore, we test the validity of the additional moment conditions associated with the level equation using the Hansen difference test for all GMM instruments. The tests confirm the validity of our instruments.

Table 5: Estimations with SYS-GMM

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fem. parliamentary share (lagged)</td>
<td>.8291***</td>
<td>.8494***</td>
<td>.8391***</td>
<td>.8413***</td>
<td>.8637***</td>
<td>.8341***</td>
</tr>
<tr>
<td>Norm of fem. parl. share (lagged)</td>
<td>1.631***</td>
<td>1.708***</td>
<td>1.687***</td>
<td>1.577***</td>
<td>1.892***</td>
<td>1.846***</td>
</tr>
<tr>
<td>Skill ratio for females (lagged)</td>
<td>.0135</td>
<td>.0129</td>
<td>.0138*</td>
<td>.0125</td>
<td>.0127</td>
<td>.0132*</td>
</tr>
<tr>
<td>Democracy Index</td>
<td>.1454**</td>
<td>.1527**</td>
<td>.1493***</td>
<td>.1786**</td>
<td>.1696**</td>
<td>.1923*</td>
</tr>
<tr>
<td>Legal election</td>
<td>-.4905</td>
<td>-.5412</td>
<td>-.5569</td>
<td>-.9811</td>
<td>-.817</td>
<td>-.7683</td>
</tr>
<tr>
<td>Proportional electoral system</td>
<td>.9439</td>
<td>.8999</td>
<td>.7952</td>
<td>.9069</td>
<td>.626</td>
<td>.5157</td>
</tr>
<tr>
<td>CEDAW</td>
<td>1.568</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female population in log (lagged)</td>
<td>.1391</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm in GDP per capita (lagged)</td>
<td>1.6e-04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norm in trading partner (lagged)</td>
<td>-.0696</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>External Instrument</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>275</td>
<td>266</td>
<td>223</td>
</tr>
<tr>
<td>Number of countries</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>88</td>
<td>87</td>
<td>83</td>
</tr>
<tr>
<td>Number of Instruments</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>65</td>
<td>65</td>
<td>56</td>
</tr>
<tr>
<td>Arellano-Bond test for AR(2)</td>
<td>.3711</td>
<td>.3688</td>
<td>.3192</td>
<td>.4116</td>
<td>.1761</td>
<td>.7881</td>
</tr>
<tr>
<td>Hansen test p-value</td>
<td>.2012</td>
<td>.2332</td>
<td>.2241</td>
<td>.2158</td>
<td>.1735</td>
<td>.1807</td>
</tr>
<tr>
<td>Difference Hansen test p-value</td>
<td>0.328</td>
<td>0.346</td>
<td>0.329</td>
<td>0.26</td>
<td>0.184</td>
<td>0.017</td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses. SYS-GMM estimations.
Table 6: Estimations with SYS-GMM: Sample heterogeneity

<table>
<thead>
<tr>
<th></th>
<th>No socialist countries</th>
<th>No Muslim countries</th>
<th>No SSA countries</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Fem parl. share</td>
<td>.9948***</td>
<td>.8339***</td>
<td>.8529***</td>
</tr>
<tr>
<td></td>
<td>(.065)</td>
<td>(.123)</td>
<td>(.128)</td>
</tr>
<tr>
<td>Norm of fem parl. share (lagged)</td>
<td>2.266***</td>
<td>1.741***</td>
<td>1.716***</td>
</tr>
<tr>
<td></td>
<td>(.35)</td>
<td>(.549)</td>
<td>(.577)</td>
</tr>
<tr>
<td>Skilled ratio for females (lagged)</td>
<td>.0048</td>
<td>.0127</td>
<td>.0128</td>
</tr>
<tr>
<td></td>
<td>(8.7e-03)</td>
<td>(8.5e-03)</td>
<td>(8.4e-03)</td>
</tr>
<tr>
<td>Democracy index</td>
<td>.0799</td>
<td>.1457**</td>
<td>.2137**</td>
</tr>
<tr>
<td></td>
<td>(.05)</td>
<td>(.073)</td>
<td>(.095)</td>
</tr>
<tr>
<td>Legal election</td>
<td>.016</td>
<td>-.5903</td>
<td>-.3326</td>
</tr>
<tr>
<td></td>
<td>(.716)</td>
<td>(.796)</td>
<td>(.83)</td>
</tr>
<tr>
<td>Proportional electoral system</td>
<td>1.221*</td>
<td>.9061</td>
<td>1.115</td>
</tr>
<tr>
<td></td>
<td>(.693)</td>
<td>(.731)</td>
<td>(.753)</td>
</tr>
<tr>
<td>Country fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Year fixed effects</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>External instruments</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>251</td>
<td>265</td>
<td>251</td>
</tr>
<tr>
<td>Number of countries</td>
<td>72</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>Number of instruments</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Arellano-Bond test for AR(2)</td>
<td>.3874</td>
<td>.3985</td>
<td>.3531</td>
</tr>
<tr>
<td>Hansen test p-value</td>
<td>.4215</td>
<td>.2559</td>
<td>.29</td>
</tr>
<tr>
<td>Difference Hansen test p-value</td>
<td>0.944</td>
<td>0.404</td>
<td>0.397</td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses. SYS-GMM estimations.
5.5 Robustness tests: Heterogeneity in sample

In order to test for the robustness of our empirical results, we estimate our baseline specification (with internal and external instruments) in selected sub-samples. First of all, we exclude socialist countries (i.e. countries which belonged to the Iron Curtain) to be sure that their presence does not boost estimation results. In the former Communist Bloc, indeed, the proportion of women in parliaments was very high, given the fact that these authoritarian systems were built on egalitarian ideologies. After the fall of Communism, as parliaments in post-communist countries gained real power, the percentage of female seats sharply fell. Table 6 shows that our main results are preserved when excluding socialist countries. Another concern is whether Muslim countries, where women are sometimes prevented from public activities, may affect our results. Countries with more than 80 percent of Muslim population are excluded from our sample.\[^{34}\] Again, there is no evidence that heterogeneity plays any role in explaining our results. The last concern refers to the presence of Sub-Saharan Africa countries. Looking at the Global Gender Gap Index 2010 (Hausmann et al., 2010), which considers how equitably the available income, resources and opportunities are distributed between women and men, Sub-Saharan African countries have the lowest value after Mena countries. As in our sample, we do not have Mena countries, we exclude Sub-Saharan African countries. Our results are preserved.\[^{35}\]

5.6 Robustness tests: Annual data

In this section previous results are tested using annual instead of ten-year data. The latter have been chosen in the benchmark analysis for two reasons. First of all, because migration data are

\[^{33}\]A particular concern related to this method is the risk of instrument proliferation. Indeed, if on the one hand the use of the entire set of instruments in a GMM context gives significant efficiency gains, on the other hand, a large collection of instruments could overfit endogenous variables as well as weaken the Hansen test of the instruments’ joint validity. The instrument proliferation problem is particularly important in small samples, but unfortunately there is no formal test to detect it, even if a possible rule of thumb is to keep the number of instruments lower than or equal to the number of groups.

\[^{34}\]We exclude from the sample: Bangladesh, Mali, Niger, Pakistan, Senegal, Turkey.

\[^{35}\]Sub-Saharan African countries which have been excluded: Benin, Burundi, Central African Republic, Congo, Ghana, Kenya, Malawi, Mali, Mauritius, Namibia, Niger, Senegal, South Africa, Sudan, Zambia
only available by decade. Secondly, migrants need to live in the host country for a certain period of time before assimilating and being able to transmit new values to their country. In other words, using ten-year data allows for a longer period of the occurrence of a ‘transfer of norm’ mechanism.

However, in doing so, some important information regarding the annual political evolution by country is not taken into account. This can be particularly relevant if political legislatures lasts less than five years because of political instability or historical events such as geographical split or internal conflicts. This being said, previous estimation results have been tested using yearly data.

Two important changes were required. First of all, since migration data are available by decade, while political data contains yearly observations, the original migration decennial matrix has been extended by interpolation. Missing migration yearly data have been computed applying a constant annual rate of growth within each decade. This strategy looks globally reasonable because of two reasons. Bilateral migration stocks are very persistent which means that they vary slowly and smoothly over time. Bilateral migration stocks are used as weights in the norm whose temporal variability depends on two sources: heterogeneous bilateral migration stocks and country-specific change in the difference in the actual proportion of female parliamentary seats.\(^{36}\) Secondly, also the Barro and Lee dataset, which is available every five years, has been interpolated using the same technique as for migration data.\(^{37}\)

Table 7 shows estimation results using annual data across different econometric specifications.

Columns (1) and (3), and columns (2) and (4) show OLS and FE results, respectively. The norm of female parliamentary share is always positive and significant. Column (5) shows SYS-GMM results using internal instruments. In SYS-GMM estimation the lagged dependent variable is instrumented using from its own fifth to sixth lag. As on average new elections occur every five years, the fifth and the sixth lags allow to consider as instruments the parliamentary shares of previous elections (in other terms, this allows to take into account the political change of each legislature). Our variable of interest, i.e. the lagged norm of female parliamentary share is treated

\(^{36}\)A similar strategy has been applied by Docquier et al. (2014).

\(^{37}\)We basically computed a five-yearly growth rate and apply it as constant to each missing human capital yearly observation.
as endogenous and instrumented using from its own second to sixth lags. Again, our variable of interest is positive and statistically significant with a lower coefficient with respect to the ten years data analysis.

Table 7: Estimations with Annual data

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>FE</td>
<td>OLS</td>
<td>FE</td>
<td>SYS-GMM</td>
</tr>
<tr>
<td>Female parl.</td>
<td>D.Fem. Parl. share</td>
<td>.9831***</td>
<td>(.043)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>share</td>
<td></td>
<td></td>
<td>Norm of female parl. share</td>
<td>.4184***</td>
<td>.4194***</td>
</tr>
<tr>
<td></td>
<td>(.06)</td>
<td>.043</td>
<td>(.122)</td>
<td>(.057)</td>
<td>(.174)</td>
</tr>
<tr>
<td>Skilled ratio</td>
<td>.0012</td>
<td>.0017</td>
<td>.0037</td>
<td>(9.2e-04)</td>
<td>(1.4e-03)</td>
</tr>
<tr>
<td>for females</td>
<td></td>
<td></td>
<td></td>
<td>(6.8e-03)</td>
<td>(.015)</td>
</tr>
<tr>
<td>Democracy</td>
<td>.0056</td>
<td>-.0086</td>
<td>.0978</td>
<td>(6.8e-03)</td>
<td>(.015)</td>
</tr>
<tr>
<td>election</td>
<td></td>
<td></td>
<td></td>
<td>(1.22)</td>
<td>(.117)</td>
</tr>
<tr>
<td>Proportional</td>
<td>.0778</td>
<td>.4066</td>
<td>.0858</td>
<td>(.087)</td>
<td>(.387)</td>
</tr>
<tr>
<td>electoral</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country fixed</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year fixed</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6415</td>
<td>6415</td>
<td>2902</td>
<td>2902</td>
<td>2902</td>
</tr>
<tr>
<td>Number of</td>
<td>178</td>
<td>93</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>countries</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of</td>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instruments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arellano-Bond</td>
<td>.5225</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>test for AR(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen test p-value</td>
<td>.6315</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>0.718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Significant at the 10% level ** 5% level *** 1% level. Robust standard errors clustered by country in parentheses.

6 Counterfactual analysis

In the main text of the paper, we found that the impact of migration in transferring political norms appears to be statistically relevant. In order to further investigate and assess the importance of this effect at country-specific level, we simulate the counterfactual female parliamentary share obtained in two extreme cases. We consider first a simulated scenario in which migration is set equal to 0 (i.e. no transfers of norms occur). Secondly, we consider another scenario where we assume that all migrants are sent to the destination country with the highest female parliamentary share in our sample (Sweden). The latter case allows us to assess the possible maximum effect of the norm in

38Human capital is also treated as endogenous, while democracy is considered as predetermined. All the other covariates are treated as exogenous. It should be noted that the matrix of instruments is collapsed to avoid instrument proliferation.
transferring political values.

To set up the two environments, we start from our empirical model, and we consider the estimated coefficients in the baseline regression in SYS-GMM regressions (column 2 in Tab 5). In particular, we focus on the short-run coefficients obtained in the estimations with data by decade and with internal plus external instrumentation.

Let us set up the first counterfactual environment considering the baseline empirical model:

\[
\begin{align*}
\text{seats}_{i,t}^{F} &= \alpha \text{seats}_{i,t-10}^{F} + \beta \ast \text{indexseats}_{i,t-10}^{F} + \sum_{i=1}^{n} \rho_i R_{i,t} + \mu_i + \varphi_t + \epsilon_{i,t} \\
\end{align*}
\]

where \(\text{indexseats}_{i,t-10}^{F} = \sum_{j} \left[\frac{\text{mig}_{j,t-10}}{\text{pop}_{j,t-10}} \times (\text{seats}_{j,t-10}^{F} - \text{seats}_{i,t-10}^{F}) \right] \)

Assuming no migration, we have:

\[
\begin{align*}
\tilde{\text{seats}}_{i,t}^{F} &= \alpha \text{seats}_{i,t-10}^{F} + \beta \ast \text{indexseats}_{i,t-10}^{F} + \sum_{i=1}^{n} \rho_i R_{i,t} + \mu_i + \varphi_t + \epsilon_{i,t} \\
\end{align*}
\]

where \(\text{indexseats}_{i,t-10}^{F} = 0\). Taking the difference between (4) and (5) gives us the change in the female parliamentary seats:

\[
\Delta \text{seats}_{i,t}^{F} \equiv \tilde{\text{seats}}_{i,t}^{F} - \text{seats}_{i,t}^{F} = -\beta \ast \text{indexseats}_{i,t-10}^{F}
\]

which can be re-written as:

\[
\tilde{\text{seats}}_{i,t}^{F} = \text{seats}_{i,t}^{F} - \beta \ast \text{indexseats}_{i,t-10}^{F}
\]

For simplicity, we consider data for the year 2000 and \(\beta = 1.708\) and we construct the counterfactual values for female parliamentary seats (\(\tilde{\text{seats}}_{i,t}^{F}\)) in each country in the case of no migration (i.e. no transfers of norms). The dashed line in Figure 1 shows the counterfactual value for female parliamentary seats in the case of no migration. As we can see from the graph, for some countries
the counterfactual value for female parliamentary participation in 2000 is lower than the observed value in the same year of interest. This is especially true for countries with lower female political empowerment, in particular developing countries, for which migration is shown to be particularly relevant in improving women’s conditions. For other countries with a high share of females in parliament, such as Sweden, Denmark, Finland, Norway, the Netherlands, however, the counterfactual value is higher than the observed value, meaning that emigration may in some cases decrease female political empowerment. On average with respect to the medium of the distribution, female parliamentary seats will decrease from 9.95 to 9.30 percent.39

In a second and symmetric counterfactual experiment, we compute the maximum effect the transfer of norm mechanism could have. We assume that all migrants are sent to the country with the most feminized parliament (i.e. all migrants are sent to Sweden which has 42.7 percent of female parliamentary seats in 2000). As the dotted line in Figure 1 shows, all the countries have a higher share of female parliamentary seats. On average with respect to the medium of the distribution, female parliamentary seats will increase from 9.95 to 14.44 percent.40

7 Conclusion

Women make up more than half of the population in the World. Female electorates have globally grown up in the last two decades but yet continue to be under-represented in political decision-making bodies at all levels. The recent World Development Report 2012 states that gender equality matters for development enhancing productivity, creating a better environment for the next generation and making institutions more representative. In addition, there is evidence (Clots-Figueras, 2011; Thomas, 1991) that women in politics improve development outcomes for women them-

39To give some numerical examples, the countries that ‘lose’ the most without migration are developing countries. For example, Albania would decrease from 5.2 to .20. For Turkey, however, female parliamentary seats would decrease from 4.2 to 2.27. For countries such as Namibia, there are almost no changes (from 25 to 24.98). On the other hand, among the countries which would gain more from a ‘no transfer of norm’ environment, we find Sweden, with an increase in female parliamentary seats from 42.7 to 43.73; Norway (from 36.4 to 37.18); but also Latvia (from 17 to 17.57); New Zealand (from 29.2 to 30.99); Guyana (from 18.5 to 20.89); Grenada (from 26.7 percent to 37.18)

40Remarkably effects would occur for Armenia (from 3.1 to 18.65) and Morocco (from 0.6 to 2.87); and the minimum effect pertains to China (from 21.08 to 21.93).
The World Bank (2011) wonders whether ‘globalization can help’ in fostering gender equality. In this paper we have partly answered this by providing some evidence on how a globalized outcome such as international migration has contributed to the increase of female parliamentary participation from 1960 to 2010. In other words, international migrants have acted as ‘informational’ channels able to transfer foreign values, create favorable opportunities, reshape attitudes and create new norms about women in the origin country.

Following the brand new strand of literature on ‘transfers of norms’ (Spilimbergo, 2009; Beine et al., 2013), we have applied the same mechanism to female political participation. To this end, we estimated a dynamic model by decades in which female access to Parliament depends on traditional covariates plus international migration. The empirics contains two important insights. First of all, the norm (through which foreign female parliamentary participation is propagated at origin) has been constructed in such a way that the origin country takes advantage of the political environment
at destination just if the female political conditions at destination are better than those at origin. Secondly, in order to control for reverse causality which may arise if international migrants move to countries with better prospects for women (Nejad and Young, 2012), a rigorous instrumentation strategy has been set up.

Results, which are robust to different geopolitical specifications, show that female political emancipation can be accounted as another migration non-economic externality, suggesting that the launch of domestic public actions can also be supported by the role of active national people from abroad.

Acknowledgments

An early version of this paper circulated as IRES Discussion Papers 2012001, Universite catholique de Louvain (Lodigiani and Salomone, 2012). This work has been supported by the European Social Fund (‘Dote ricerca’) from the Lombardia region and the Belgian French-speaking Community (convention ARC 09/14-019 on ‘Geographical Mobility of Factors’). We thank Massimiliano Bratti, Frédéric Docquier, Giovanni Facchini, Emanuele Forlani, Tommaso Frattini, Julien Martin, Elie Murard, Matteo Picchio, and all the participants to the Conference on ‘The Economics and Politics of Immigration’, the 2nd TEMPO Conference on International Migration, the ARC Workshop on ‘Geographical Mobility of Workers and Firms’, the seminar held in the Department of Economics at University of Modena and Reggio Emilia and the LdA/Paolo Baffi research seminar at Bocconi University, for their constructive comments. We are also highly thankful to Chris Parsons and Pamela Paxton for having shared their data with us.

8 References

Economics, 95(7-8), 664-690.

89(3), 379-399.

IZA Discussion Paper 7780.

A List of countries

The geographical sample of interest as in the first two columns of Table 1 in the main text is equal to 170 countries. The 170 countries are: Albania, Algeria, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei Darussalam, Bulgaria, Burkina Faso, Burundi, Cambodia, Cameroon, Canada, Cape Verde, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo, Costa Rica, Cote d’Ivoire, Croatia, Cuba, Cyprus, Czech Republic, Czechoslovakia, Democratic People’s Republic of Korea, Democratic Republic of the Congo, Denmark, Djibouti, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Kyrgyzstan, Lao People’s Democratic Republic, Latvia, Lebanon, Lesotho, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Mauritania, Mauritius, Mexico, Micronesia, Mongolia, Morocco, Mozambique, Namibia, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, Norway, Pakistan, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Republic of Korea, Republic of Moldova, Romania, Russian Federation, Rwanda, Saint Lucia, Saint Vincent and the Grenadines, Samoa, Sao Tome and Principe, Senegal, Serbia and Montenegro, Seychelles, Singapore, Slovakia, Slovenia, Socialist Federal Republic of Yugoslavia, Solomon Islands, South Africa, Spain, Sri Lanka, Sudan, Suriname, Swaziland, Sweden, Switzerland, Syrian Arab Republic, Tajikistan, Thailand, The Former Yugoslav Republic of Macedonia, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Turkmenistan, USSR, Uganda, Ukraine, United Arab Emirates, United Kingdom, United Republic of Tanzania, United States, Uruguay, Uzbekistan, Vanuatu, Venezuela, Yemen Arab Republic, Zambia, Zimbabwe.
B. Construction of the norms

In order to construct the ‘norms’ in Eq. 2 in the main text, the final matrix should be perfectly balanced. By final matrix we mean the matrix comprising: migration data (from Ozden et al., 2011 and UN data for year 2010), political data (from Paxton et al., 2006 and World Development Indicators from 2003 to 2010), total population (from World Population Prospects: The 2012 Revision, United Nations).

For migration data, data for Czechoslovakia, the Socialist Federal Republic of Yugoslavia and USSR were not available in the original dataset. We reconstructed missing observations aggregating migration data for the countries belonging to them before the political scission. So for Czechoslovakia before 1993 (replaced by missing values then), we aggregated data from Czech Republic and Slovakia. For the Socialist Federal Republic of Yugoslavia before 1992 (replaced by missing values then), we aggregated data from Bosnia and Herzegovina, Croatia, Serbia and Montenegro, Slovenia and the Former Yugoslav Republic of Macedonia. For USSR before 1991 (replaced by missing values then), we aggregated data from Ukraine, Russian Federation, Uzbekistan, Kazakhstan, Belarus, Azerbaijan, Georgia, Tajikistan, Republic of Moldova, Kyrgyzstan, Lithuania, Turkmenistan, Armenia, Latvia and Estonia. For political data, we explained in Appendix D how we deal with ‘true missing values’, while for the other missing cells (about 31% of the sample) due to political instability, coup d’etat, dictatorship war, presence of ‘false elections’, lack of sovereignty due to colonialism, we have either keep as missing or set them to 0 because of lack of Parliament. As a result, two different norms have been computed and used for the empirical estimations: one with missing values and the other with zeroe replacing missing cells. The correlation between annual norms is 0.99.

Once we have dealt with missing values in each dataset to make each of them balanced, we have merged the three of them to obtain the final dataset. Then the norms have been constructed.
C Difference with previous studies

Our empirical specification mainly refers to the work by Spilimbergo (2009). Following step by step his dynamic empirical specification, Eq.(2) in the main text becomes:

\[
seats_{i,t}^F = \alpha \cdot seats_{i,t-10}^F + \beta \cdot indexseats_{i,t-10}^F + \gamma \cdot migrate_{i,t-10} + \eta \cdot inter + \sum_{i=1}^{n} \rho_i R_{i,t} + \mu_i + \epsilon_i \tag{C.1}
\]

where:

- \(indexseats_{i,t-10}^F \) is constructed as the weighted average of the female parliamentary share in the host countries, e.g. \(indexseats_{i,t-10}^F = \sum_j \left[\frac{mig_{ij,t-10}}{\sum_{i} mig_{ij,t-10}} \times (seats_{j,t-10}^F - seats_{i,t-10}^F) \right] \). In Spilimbergo (2009), the exact corresponding variable \(indexseats_{i,t-10}^F \) would be constructed as the weighted average of the female parliamentary share in the host countries, just considering the level of female parliamentary share at destination, would have prevented account being taken of political asymmetries between origin and destination countries. With this specification, indeed, the ‘transfer of norm’ is always positive if \(seats_{i,t-10}^F \) is greater than 0, apart from the level of female parliamentary share at origin. In considering the difference between female parliamentary shares between countries of destination and origin, however, we assume that there is a ‘positive transfer’ only when migrants reside in countries where female political conditions are better, and that the transfer is higher the greater the political difference between the two countries.

- \(migrate_{i,t-10} \) is the ratio between \(\left(\frac{\sum_{i} mig_{ij,t-10}}{pop_{i,t-10}} \right) \)

- \(inter \) is the interaction term and corresponds to \((migrate_{i,t-10} \times indexseats_{i,t-10}^F) \)

Eq.(2) in the main text and Eq.(C.1) are symmetric. The only difference consists in the construction of the ‘norm’. In other words, in Eq. (C.1), the average female parliamentary share at destination is computed as:
\[\text{indexseats}_{i,t-10}^F = \sum_j \left[\frac{\text{mig}_{ij,t-10}}{\sum_i \text{mig}_{ij,t-10}} \times (\text{seats}_{j,t-10}^F - \text{seats}_{i,t-10}^F) \right] \] (C.2)

where the weights are given by emigration shares. In Eq.(2), however, the weights are given by emigration rates. In other terms, we substitute \(\frac{\text{mig}_{ij,t-10}}{\sum_i \text{mig}_{ij,t-10}} \) with \(\frac{\text{mig}_{ij,t-10}}{\text{pop}_{i,t-10}} \). So the norm in the benchmark specification becomes as follows:

\[\text{indexseats}_{i,t-10}^F = \sum_j \left(\frac{\text{mig}_{ij,t-10}}{\text{pop}_{i,t-10}} \times (\text{seats}_{j,t-10}^F - \text{seats}_{i,t-10}^F) \right) \] (C.3)

Obviously, due to the different nature of Spilimbergo’s norm, Eq. (C.1) also contains the total migration rate calculated as the ratio between total aggregate migration from country \(i \) over total population in country \(i \) and the interaction term between the total migration rate and the average index of female political participation at destination.

As already explained in the text, the lagged index of female parliamentary share à la Spilimbergo affects the female parliamentary participation at time \(t \) but the interaction with migration rate is not significant as in Beine et al. (2013) and sometimes in Spilimbergo (2009). The lack of significance can be due to collinearity since migration rate appears three times as regressor: alone, then it is used as weight in the norm, and as multiplicative term (as migration share) in the interaction term.

Indeed, the collinearity between the interaction term and the migration rate is more than 90\%. A way to avoid collinearity is an alternative construction of the norm as in Eq.(2) of the main text.
D Addressing the ‘true missing’ values in Paxton et al. (2006)

Here is the list of countries which contains true missing values:

- Belarus: data from 1995-1999 are true missing. The missing cells have been complemented by the CPDS II (Armingeon and Careja, 2008), which covers 28 post-communist countries for the 1989-2008 period.

- Benin: years 1960, 1961, 1962, 1964 are true missing. Following Benin political and historical information, we transformed true missing values into missing.

- Bhutan: year 1996 is a true missing. It has been replaced with an observed data from IPU (01/1996 elections).

- Bosnia-Herzegovina: true missing for 1996-1999. We replaced years 1996-1997 with missing data in accordance with the female parliamentary share in contiguous countries, e.g. Croatia, Serbia and Montenegro. While years 1998-1999 have been complemented by the CPDS II (Armingeon and Careja, 2008), which covers 28 post-communist countries for the 1989-2008 period.

- Cambodia: year 2003 is a true missing. It has been replaced by the observed positive value from IPU, election 07-2003.

- Gambia: data from 1977 to 1981 are true missing. They have been replaced by 0 as women started to stand for election from 1982.
• Guinea: true missing data from 1981-1984 have been transformed into missing for political instability.

• Guyana: true missing from 1964-1967 have been changed into missing because the first parliamentary election occurs in 1968 (from Golder, 2005).

• Kiribati: true missing for year 2003 has been substituted with the observed positive value from IPU, election 05/2003.

• Latvia: true missing values from 1990 to 1992 have been replaced by missing. Latvia gained independence in 1991. According to Golder(2005) and to the Comparative Political Data Set II from Armingeon and Careja (2008) 1993 is the year of the first election after the fall of communist rule.

• Liberia: the country has been dropped because true missing cells exceed 50%.

• Mali: true missing values from 1988 to 1990 have been replaced by missing because of political instability due to the dictatorship of Moussa Traori, before a coup d’etat.

• Marshall Islands: true missing from 1995-1998 have been replaced by values of the previous (1994) and following (1999) elections which are equal.

• MyanMar: true missing from 1960 to 1963 have been replaced by missing because of political instability. True missing data for 1985-1987 have been complemented by the average value from previous years.

• Nauru: true missing data from 1992 to 1994 have been replaced by the mean between previous and following years. While true missing for 2003 has been replaced by IPU value for election 05/2003.

• Niger: true missing value for 1992 has been replaced by missing because of political instability.
• Nigeria: all the true missing values have been replaced by missing because of strong political instability and civil wars.

• Pakistan: true missing values from 1960-1972 have been replaced by missing because of political instability and lack of constitution. While the true missing for year 1996 has been replaced by the 1995’s value, (stable data in the 90’s).

• Peru: the true missing value for year 2000 has been replaced by the observed data from IPU (election 04-2000).

• Rwanda: true missing data from 1966-1971 have been replaced by missing because of political instability.

• Seychelles: true missing data for the biennium 1991-1992 have been replaced by the value for 1990, for historical reasons. In 1977, a coup d’etat ousted the first president of the republic, James Mancham, who was replaced by France Albert René. The 1979 constitution declared a socialist one-party state, which lasted until 1991. The first draft of a new constitution failed to receive the requisite 60 percent of voters in 1992, but an amended version was approved in 1993.

• Sri Lanka: true missing data for year 2000 has been replaced by the average between 1999 and 2001 values.

• Tonga: true missing data for 2002-2003 have been replaced by the observed value of the election 03/2002 from IPU.

• Uganda: true missing values from 1962 to 1965 have been replaced by missing because of political instability.

• Tanzania: true missing from 1965 to 1969 have been replaced by missing because of political instability.
• Vanuatu: true missing values for 1995-1997 have been replaced by missing because of political instability.