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In a heterogeneous population divided into two cultural groups, we investigate the

intergenerational dynamics of norms, modeled as preferences over actions, as depending

on strategic environments. We find that environments with strategic complementarity

or substitutability lead to different long-run norms and horizontal socializations. When

players face many games within the same class, under complementarity agents converge

to the same norm and socialization is high, under substitutability norms may diverge or

become neutral and socialization is low. However, for specific games, partial convergence

can arise under complementarity, providing an explanation to cultural heterogeneity, and
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From any given set of rules of conduct of the element will arise a steady

structure (showing ‘homeostatic’ control) only in an environment in which there

prevails a certain probability of encountering the sort of circumstances to which

the rules of conduct are adapted. A change of environment may require, if the

whole is to persist, a change in the order of the group and therefore in the

rules of conduct of the individuals; and a spontaneous change of the rules of

individual conduct and of the resulting order may enable the group to persist

in circumstances which, without such change, would have led to its destruc-

tion.[Hayek 1967: 71]

1 Introduction

In our societies some norms or cultural traits, for example languages, appear to be more

homogeneous than others, like attitudes toward conflict or effort choices at the workplace.

This might be due to the fact that material incentives to coordinate are, often, stronger in

the former strategic environment than in the latter. In fact, in linguistic interactions there

are evident material incentives to coordinate on the same language, while in competitive

interactions for scarce shared resources, the material incentives are to anti-coordinate.

Nevertheless, cultural heterogeneity is ubiquitous in many societies even when there are

strong incentives to coordinate. For example, we observe separated minorities who fail

to use incumbents’ languages and the resilience of the native languages in integrated

second-generation immigrants.1

The aim of the paper is to propose a model of the interplay between norms and strategic

decisions that allows to study the evolution of norms depending on the underlying strategic

environment, and to explore its properties for policy purposes. The final objective is to

obtain different social outcomes, such as convergence toward the same social norm, the

persistence of norms’ heterogeneity, or even polarization of norms, while using the same

norm formation model and depending on the strategic environment agents are exposed

to during their adult life. In particular, we consider environments where actions are

strategic complements, so that agents have clear material incentives to coordinate, and

environments where actions are strategic substitutes, so that agents have clear material

incentives to anti-coordinate.2 We explore the effect of the strategic environment on

norms’ evolution along two dimensions. On the one hand, we consider the effect of two

strategic classes, complements or substitutes environments. On the other hand, we study

1Bisin and Verdier (2011) offers a review of empirical examples of cultural heterogeneity and resilience of
cultural traits. For example, the slow rate of immigrants’ integration in Europe and US, the persistence of
’ethnic capital’ in second- and third-generation immigrants, minorities’ strong attachment to languages and
cultural traits.

2There exist strategic environments, like the prisoner’s dilemma, who do not belong to either class. Our
model can be applied also to these cases but it is beyond the scope of this paper.
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both situations in which agents play several games with payoffs distributed within the

same strategic class, and also environments in which they always play the same game.

The model should help to investigate whether strategic complements (arising for example

in communication problems) necessarily lead to assimilation of norms or, instead, leave

space to a multicultural society or even to the arising of an oppositional culture with the

consequent separation of the minority. Relatedly, we shall use the model to investigate

whether in environments with strategic substitutability, being more “competitive”, norms

are doomed not to be homogeneous (leading for example to different attitudes toward

conflict). Moreover, we wonder if there exist socio-economic environments where material

incentives make norms neutral in the long run. Understanding the relationship between

the strategic environment and the emergence of different cultural traits may help to better

address policy issues.

In our model the population is divided into two groups or communities. Agents be-

longing to the same community are endowed with the same cultural trait or personal

norm. Norms can be viewed as “mental representations of appropriate behavior” (Aarts

and Dijksterhuis, 2003) or “internal standard of conduct” (Schwartz, 1977), namely they

represent preferences over actions.3 Agents interact twice during their lives. First, while

young, each agent forms a new norm taking into account both family pressure (verti-

cal socialization) and peer pressure (horizontal socialization).4 The latter represents the

willingness to conform to peers. Then, in the adult age, agents are randomly matched to

play symmetric 2 × 2 games where, by shaping agents’ preferences, different norms lead

to different strategic outcomes (as in Akerlof, 1976; Young, 1998). Norms parametrize

agent preferences over material payoffs and thus best reply actions and Nash equilibria

depend both on a material component and on an immaterial one. The material compo-

nent pushes toward coordination or anti-coordination depending on the ordering of two

material forces that define the game class. The immaterial component can be neutral

(no effect) or enhance payoffs received by playing either action. The tension between the

material and immaterial forces determines ultimate payoffs and thus Nash Equilibria. In

turn, actions most played in equilibrium modify each group norm and socialization level,

thus different socio-economic environments can have an effect on the selection of norms

as suggested by Hayek (1967). At the end of their lives (old age), each agent transmits a

norm and a socialization parameter to her offsprings and the whole process repeats again.

Notably, in this model agents are active in all the stages of their life (youth, adult age,

and old age) and each stage can be analyzed separately.

In Section 2.1, we analyze the norm formation mechanism of the youth age. Children

are not passive during the transmission process and they are responsible for the formation

3This definition of norms differs from the one used in the evolutionary game theory literature (Kandori, 1992;
Young, 1993, for example) where a norm is broadly defined as a specific equilibrium of a strategic interaction.

4We refer to Cavalli-Sforza and Feldman (1981); Bisin and Verdier (2001) for the terminology.
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of their own norms. We follow Kuran and Sandholm (2008) and assume that, in choosing

the norm, each agent faces a trade-off between her inherited norm and a social coordination

payoff, minimizing a loss function. The socialization parameter, which determines the

weight put on the entire population average norm (horizontal socialization) as opposed

to the weight put on the inherited norm (vertical socialization) describes the strength of

such trade-off. With respect to the previous literature, we introduce heterogeneity in the

socialization parameter of each community, an endogenous variable of our model.

In Section 2.2, we model the effect of norms on different strategic environments. We

interpret each agent’s norm as the preference for playing a particular action, thus modi-

fying the payoff associated with playing according to it. The intuition is that the less an

action is in line with the personal norm of the agent, the lower is the psychological utility

derived from its associated material outcome. Each strategic environment is a symmetric

2 × 2 game, which is meant to be representative of tasks that people can face in their

adult age. For the complements case, a possible example is the choice of which language

to use when there are material incentives associated to coordination and each group norm

represents the preference for using a specific language. For the substitutes case, a pos-

sible example is the choice to “fight or flight” in a competition for a shared resource, so

that the material incentives are to anti-coordinate, and each group norm represents the

attitude toward aggressive behavior.5 In their adult age, agents can face several games

of the same strategic class, described by a distribution of payoffs. Agents are randomly

matched so that each agent strategically interacts with agents belonging to both groups.

We assume a multiplicative interaction between norms and material payoffs. If the norms

are neutral, the payoffs of the game are equivalent to material payoffs and agents play

the original 2 × 2 game. If norms assume extreme values, agents stick to the associated

action, giving no importance to material payoffs. When norms have intermediate values,

there is a trade-off between the material consequence of actions and playing according to

the behavior associated with such norm. Relatedly, we derive the possible Nash equilibria

as depending on the tension between material payoffs and norms over behavior.

In Section 2.3, in order to characterize the feedback between the strategic environment

and norms, we study the transmission of norms from old to young and the evolution of

the socialization parameter. The transmission is moved by cognitive dissonance and

cultural substitution. Cognitive dissonance, firstly proposed by Festinger (1962) and

assumed also in the cultural dynamics model of Kuran and Sandholm (2008), is the ten-

dency of agents to have consistency between behavior (actions) and norms (preferences

over actions) and it is widely documented in social psychology (Cooper and Fazio, 1984;

Baumeister, 1982). Cultural substitution captures the idea that the vertical socialization

5There exist examples of norms that can fit in both complements and substitution environments. Consider
the choice of effort level in team-work: whether the underlying material payoffs exert complementarity or
substitutability depends on the possibility to free-ride on the team-mate’s effort. See also the discussion in
Session 4.
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level of offsprings negatively depends on the diffusion of parents’ behavior in the pop-

ulation (Bisin and Verdier, 2001). The functional form chosen for the evolution of the

socialization parameter is microfounded in Appendix B.

In Section 3, we derive all possible long-run outcomes as depending on both the youth

coordination game and the adult-age strategic environment. We consider two limit cases:

uniform and point distribution of one-stage game material payoffs. In Section 3.1, we

analyze uniform distribution of payoffs and show that environments with complements or

substitutes produce very different norms in the long-run. In a social environment with

complements, cultural assimilation emerges as a stable steady state, i.e. both commu-

nities share the same norm and behavior in the long-run. On the contrary, in a social

environment with substitutes, steady states with assimilation exist but are unstable. Since

agents play a coordination game in their youth, when they face strategic substitutes in

the adult age two opposite forces are at play, thus material incentives may lead both

to the erosion of norms or to the polarization of norms and behavior of agents belong-

ing to different communities. Steady states with norms’ erosion or polarization may be

both locally or globally stable depending on the relative size of cognitive dissonance and

horizontal socialization: a higher cognitive dissonance, with respect to the maximum of

horizontal socialization, corresponds to a wider space for the polarization of norms.

The different strategic environments lead also to different socialization levels. Under

assimilation, agents have a maximum horizontal socialization level, and thus a minimum

vertical socialization. Under polarization, the horizontal socialization level is close to its

minimum and thus vertical socialization is close to its maximum. Interestingly, when

there is polarization of norms, the larger the majority, the farther away are both norms

and socialization levels. Indeed, in order to stick to its preferred behavior (different from

the one of the majority) the smaller the minority is, the higher the vertical socialization

becomes.

Results change in Section 3.2, where we analyze the case of agents playing always the

same game (singular material payoff distribution). Depending on the initial norms, in

both complements and substitutes environments, there exist material payoffs such that

the society may converge toward norm assimilation or diverge to polarization. Moreover,

we show that partial convergence or partial polarization can be sustained in games with

strategic complements and substitutes, respectively. In these cases, one community has a

norm so strong as to generate a dominant strategy while the other does not have such a

strong norm and best replies to the dominant strategy as influenced mostly by material

payoffs.

In Section 4, we discuss the model outcomes under general payoff distributions, the

role of assortativity on the matching process for the speed of convergence, and possi-

ble further development of the model allowing for mixed (complements and substitutes)

environments. Section 5 concludes the paper.
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1.1 Literature Review

In recent years, a very wide literature about norms and their effect in socio-economic

outcomes has emerged. Many works focus on the relationship between norms (or culture)

and coordination. Acemoglu and Jackson (2014) study the evolution of a cooperation

norm; Dalmazzo et al. (2014) present conditions under which harmful cultural traits can

persist in a community; Michaeli and Spiro (2017) address the arising of biased norm when

agents, with pressure to conform to each other, play a coordination game; Carvalho (2016)

shows how cultural constraints can lead to miscoordination. In Tabellini (2008) agents

who are matched together to play a Prisoner Dilemma face a trade-off between individual

values (inherited from parents) and material incentives. The main contribution of our

work with respect to these papers is that we study the outcome for different classes of

games at once and let the norm formation process depend both on the imitation of peers

(horizontal socialization) and the transmission of parents (vertical socialization).

The literature about cultural transmission was initiated by Cavalli-Sforza and Feldman

(1981) and, in economics, by Bisin and Verdier (2001), where the evolution of cultural

traits is the result of parent’s socialization choices. Socialization can be vertical (parents),

horizontal (peers), and oblique (role models). Along these lines, Bisin and Verdier (2017)

study the joint evolution of culture and institutions. In our paper, the socialization is

vertical, when parents transmit their preferences to offsprings, and horizontal, when peers

interact together to form new norms. In our model the transmitted cultural traits are

continuous, as in Panebianco (2014). For a complete theoretical and empirical survey on

cultural transmission literature see Bisin and Verdier (2011).

For what concern the effect of norms on the payoff structure, this paper refers to a

specific behavioral literature (López-Pérez, 2008; Kessler and Leider, 2012; Kimbrough

and Vostroknutov, 2016) where actions depends on the will to adhere to a norm.6 The

main difference is that in our paper agents are affected by a group-specific norm, not

necessarily equal for the whole society, so that different players can be subject to different

norms.

The concept of cognitive dissonance we use for the dynamics of preferences was in-

troduced in economics by Akerlof and Dickens (1982). Kuran and Sandholm (2008) and

Calabuig et al. (2016, 2017, 2018), whose norm formation and norm dynamics are close to

ours, have also elements of cognitive dissonance in the updating of norms. In particular,

our contribution can be seen as an extension of Kuran and Sandholm (2008) where agents,

endowed with their norms, interact in strategic environments, and where the dynamics

of norms depends on the interaction between norms and the related equilibrium outcome

of games. If we switch-off feedbacks of equilibrium actions on transmitted norms and

horizontal socializations, our model boils down to a discrete time version of Kuran and

6An alternative viewpoint is that norms imply preferences for a certain distribution of outcomes, i.e. uniform
across players.
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Sandholm (2008). Having these feedbacks changes the results drastically, for example we

are able to reproduce cultural heterogeneity even with fixed communities and complete

interaction.

Our model talks also to the literature of identities and oppositional cultures pioneered

in economics by Akerlof and Kranton (2000). Kuran and Sandholm (2008) study the

tension between cultural integration and multiculturalism, Bisin et al. (2011) focus on the

reason that leads to the presence of oppositional cultures, Olcina et al. (2017) address

the problem of minorities embedded in a relationships network who decide whether or

not to be assimilated to the majority norm. Our main contribution with respect to this

literature is to make explicit the effect of different strategic environments.

The literature about indirect evolution (see for example Güth and Yaari, 1992; Güth

and Kliemt, 1994; Bester and Güth, 1998; Guttman, 2000) studies environments in which

evolutionary selection acts indirectly on preferences. Our approach, even if close in the

spirit, is more strongly related to Bisin et al. (2004), where the evolution of preferences

is moved by a purely cultural transmission mechanism.

Finally, our model can be applied even in the framework of opinion dynamics (De-

Groot, 1974; DeMarzo et al., 2003; Golub and Jackson, 2010, 2012) where there is the

tension between reaching consensus and disagreement. For example, Yildiz et al. (2013)

find in the presence of stubborn agents the reasons of disagreement, Golub and Jackson

(2010) study the general conditions for reaching the consensus in a network, and Bolletta

and Pin (2019) show how an endogenous network structure can lead to opinion’s polar-

ization. In this framework, according to our model, agents form their opinion taking into

account both their previous opinion and the one of others. Then, when they are supposed

to take decisions, they are affected by both opinions and material rewards. Thus, they

update and transmit new opinions taking into account also the experience gained through

interaction. The main insight of our work with respect to this literature is that the inter-

play between material incentives and opinions may be crucial for leading to a consensus

or to disagreement.

2 The Model

In this section, we introduce our model for the interplay between norms and strategic

interaction. We begin with a general overview.

Consider a society of mass 1 with infinitesimal agents divided into two communities

I = {1, 2}. Without loss of generality, define η ∈
[

1
2 , 1
)

the size of community 1, the

majority. Agents belonging to the same community are assumed to be equal and i ∈ I is

the representative agent of each community.

Each time period t ∈ N ∪ {0} indexes a generation of agents. We divide a generation

into three different sub-periods. In Stage (y), youth, the social coordination game that
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microfounds the choice of personal norms takes place; in Stage (a), adult age, agents

interact by playing games whose payoffs are determined also by personal norms; in Stage

(o), old age, norms and socialization levels are transmitted to the next generation.

Stage (y) When young, members of the two communities are endowed with type-

specific observable personal norms θt = (θ1,t, θ2,t) ∈ [0, 1]2 and socialization levels ft =

(f1,t, f2,t) ∈ [0, f̄ ]2, where f̄ ∈ (0, 1) is a parameter that represents the maximal level of

horizontal socialization. Both characteristics are inherited by the previous generation.

Playing a social coordination game, young agents symmetrically choose ex-post personal

norms xt = (x1,t, x2,t) ∈ [0, 1]2.

Stage (a) During their adult age, agents interact in a strategic environment. Agents

are randomly matched in pairs to play several symmetric 2 × 2 games. Different games

are available in the same period and each game is played according to a probability

distribution γ. Each agent plays with members of both communities, namely a fraction

η of times against the majority and a fraction 1 − η against the minority. Games and

population matches are drawn from independent distributions. Norms influence total

payoffs and the Nash equilibrium actions emerge as the response of both material payoffs

and personal norms xt. Eη,γ [At] = (Eη,γ [A1,t],Eη,γ [A2,t]) ∈ [0, 1]2 is the vector of average

equilibrium actions of each community in period t, where Eρ[.] is the expectation operator

with respect to the measure ρ.

Stage (o) At the end of their life, every agent reproduces asexually giving birth to one

child. At this stage, parents transmit new norms and choose how much to socialize their

offsprings. During the transmission, parents are assumed to be partially myopic: they are

able to anticipate the socialization game of their offspring, stage (a), but they are not able

to anticipate their future utility from playing 2× 2 games. We model the feedback from

the environment (game) to norms as a cultural transmission where the Nash equilibrium

action most played in the game contribute to determine the inherited personal norms of

the new generation. In particular, cognitive dissonance moves the choice of the norm

θt+1 to be transmitted while cultural substitution moves the choice of the socialization

parameter ft+1.7

In the next section, we start our analysis from the illustration of the norm formation

in the young age. Next, we consider the effect of norms on the payoffs of games played

in agent’s adult life. Finally, we characterize the transmission process. In the first two

sections, we avoid the time index to simplify the notation.

7Cultural substitution is microfounded in Appendix B.
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2.1 Young Age Norms’ Formation

In this section, we model agents choice of ex-post norms x, stemming from the inherited

norms θ and horizontal socializations f . In our model, young agents (children) are active

in choosing their own personal norm.

As in many cultural evolution paper (e.g. Kuran and Sandholm, 2008), agent ex-post

norms x are the result of social interaction. The general idea is that agents’ choice of

a norm is affected both by inherited norms and by the average ex-post norm chosen by

peers, as dependent on the horizontal socializations.8 Since we have two communities,

and we assume that all agents within the same community are equal, inherited norms,

socialization levels and, as a result, ex-post norms are two-dimensional vectors.9 The

norm xi is chosen by each agent in community i ∈ I by maximizing

ui(x, θi, fi) = − fi(xi − Eη[x])2︸ ︷︷ ︸
social coordination

− (1− fi)(xi − θi)2︸ ︷︷ ︸
group (or family) identity

,

where Eη[x] is taken over the distribution of individual characteristics and it is the average

chosen norm.10 Since fi is the horizontal socialization, (1 − fi) is the vertical socializa-

tion. The utility function captures the tension between inherited preferences, θi, and

coordinating with others: when choosing a personal norm agents want to pick a norm

not too different from the one of their peers, depending on their horizontal socialization

parameter.11

Given the distributions (θ1, θ2) and (f1, f2), the ex-post personal norms (x1, x2) are

found as the unique symmetric Nash equilibrium of the social interaction game, where

agents of the same type choose the same ex-post personal norm.

Proposition 1

For all θ ∈ [0, 1]2 and f ∈ [0, f̄ ]2, there exists a unique symmetric Nash Equilibrium

x ∈ [0, 1]2 of the norm formation game with

xi = fi

(
Eη [θ]− covη[f, θ]

(1− Eη[f ])

)
+ (1− fi)θi for i = 1, 2. (1)

8This is consistent with sociological literature about social norms, see Bicchieri et al. (2018) for a survey.
9Notice that, in principle, agents in the same community can make different choices. However, we focus only

on symmetric choices for all the agents of the same community and thus, with an abuse of notation, we use
only the community index from the beginning.

10Eη[x] can be seen as descriptive norm (Muldoon et al., 2014). Notice that since agents are myopic in their
youth they are not able to anticipate future payoffs and thus form their norms taking in consideration only
parents and peers pressure and not the subsequent strategic environment.

11This formulation is exactly equivalent to the conformity game played by children in Vaughan (2013). More-
over, beauty contest like utility function, such as the one used in Morris and Shin (2002), is widely used both
in the literature of evolution of cultural traits (Kuran and Sandholm, 2008, among others) as well as in net-
work economics for opinion or belief learning and dynamics (Golub and Jackson, 2012; Bolletta and Pin, 2019;
Della Lena, 2019), where it can be seen as a micro-foundation of the so called De Groot model (DeGroot, 1974)
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The average norm is

Eη[x] = Eη[θ]−
(

Eη[f ]

1− Eη[f ]

)
covη[f, θ]. (2)

Proof. In the Appendix. �

The result is a generalization of Kuran and Sandholm (2008). In that setting, f is the

same for both groups, cov[f, θ] = 0, and thus by (2) Eη[x] = Eη[θ]: the population aver-

age ex-post norm is equivalent to the population average inherited norm. In our model,

the heterogeneity of horizontal socialization introduces a distortion in the distribution of

ex-post norms. Even a minority, if enough rigid, can make her group norms prevail.

The following corollary expresses equilibrium norms as a convex combination of inher-

ited norms, where pi is the weight that each community i gives to the inherited norm of

community 1 (the majority).

Corollary 1.1

The Nash Equilibrium of Proposition 1 can be written asx1 = p1θ1 + (1− p1)θ2

x2 = p2θ1 + (1− p2)θ2

, (3)

where p1 = (1−f1)(1−f2(1−η))
1−f1η−f2(1−η) ∈ (0, 1), p2 = f2η(1−f1)

1−f1η−f2(1−η) ∈ (0, 1) and p1 > p2 for all

η, f1, f2.

Social interaction makes each agent choose as norm a convex combination between her

initial norm and the one of the other community. Weights depend on both types social-

ization parameters and the majority size η. By taking the difference of p1 and p2, it can

be easily seen that p1 is always greater that p2. Thus if θ1 > θ2, then x1 > x2 (and

viceversa): it is not possible to have a switch of ordering between ex-ante and ex-post

norms. Finally note that fi = 0 implies xi = θi.

2.2 Nash Equilibria for Normal Form Games with Norms

In this section, we model how norms change the payoffs of each one-stage game and study

the implication on the game’s (pure) Nash equilibria.

In their adult age, agents use norms to make strategic decisions. Their choice is affected

both by material and immaterial payoffs. The latter are represented by the willingness

to choose an action as indicated by their norms. Some norms are often associated with

cooperative environment while others with competitive ones. Below we provide anecdotal

10



examples about norms associated with environments with strategic complementarity or

substitutability.

Language (complements) When people interact in a multicultural environment, they

have to choose the language to use. On the one hand, there are evident “material” incen-

tives to coordinate on the same language. On the other hand, agents can have different

preferences in using a specific language (norms). Preferences for one language can depend

on the relative pleasure of using it, on agents ability to speak it, or on other idiosyncrasies.

Attitude toward conflict (substitutes) In competitive interactions for shared re-

sources, the material incentive are to anti-coordinate, the optimal action is to be ag-

gressive, “fight”, when the other agent is not, “flight”, and viceversa (as in hawks-doves

class of games). In this case, the material incentives are as in anti-coordination games.

Work ethics (complements/substitutes) In interacting at the workplace people may

face both an environment with strategic complements and substitutes. If we consider a

work task that needs a team effort to be accomplished and there is no reward if both agents

do not exert a high level of effort, agents have incentives to coordinate and the game is

with strategic complements. On the contrary, easy tasks that can be accomplished with

the effort of only one agent open the doors for free-riding and the game is with strategic

substitutes. These two examples can be thought as, on the one hand, a tough environment

where resources are extractable at high labor cost and where agents have to cooperate

(complements), and, on the other hand, a flourishing environment where there are abun-

dant and easily extractable resources, in which some agents have the chance to free-ride

(substitutes).

We represent the tasks that individuals face with symmetric bi-matrix games where norms

interact with material payoffs and lead to the total, material plus immaterial, payoff. For

each bi-matrix game Γ, the set of players is N = {r, c} and the action space is defined

as A = Ar × Ac where Ar = Ac = {1, 0} is the set of actions available for each player

(e.g. language A or language B, being aggressive or not, high effort or low effort at the

workplace). The material payoff of the bi-matrix game is symmetric and πr(1, 1) = a,

πr(0, 1) = b, πr(1, 0) = c, and πr(0, 0) = d (all strictly positive).

We consider norms as preferences over actions, namely, the closer the action to a

norm, the higher the perceived utility.12 Therefore, the experienced ultimate payoffs are,

in general, different from the material payoffs. In particular, naming ir the community of

12We could express this ordering of preferences over consequences in the framework of psychological games
(Geanakoplos et al., 1989; Battigalli and Dufwenberg, 2009, among others) where players have belief-dependent
motivations (such as intentions-based reciprocity, emotions, or concern with others’ opinion); the main difference
is that in our framework, the payoff of each agent does not depend on beliefs about others.
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player r, for each action profile A = (Ar, Ac) player r payoff function with norms is

Πr(A;xir) =

 xirπr(1, Ac) when Ar = 1

(1− xir)πr(0, Ac) when Ar = 0
. (4)

The same modification of the material payoff holds also for player c, whose community is

denoted as jc. Table 1 represents the payoff matrix associated with Γ.

Agent c

1 0

Agent r
1 xira, xjca xirc, (1− xjc)b

0 (1− xir)b, xjcc (1− xir)d, (1− xjc)d

Table 1: Bi-matrix game with norms as preferences over behavior

Concentrating on agent r, when xir = 1
2 the transformation is just a rescaling of pay-

offs, Πr

(
A; 1

2

)
= 1

2πr(A), and thus has no effect on best replies. Thus, the norm is said

to be neutral. On the contrary, when xir > 1/2 the norm is in favor of action 1 so that

agent r total payoff for playing action 1 is larger than when the norm is neutral or in favor

of action 2, (xir < 1/2). The larger the norm the larger such an influence. If the norm is

extreme (xir = 0 or xir = 1), the agent always plays the associated action, thus giving

no importance to material payoffs.

Modeling the effect of norms as in (4) we capture the idea that norms change pref-

erences over material payoffs, as in Bisin et al. (2004) and Tabellini (2008) but, at the

same time, when norms are extreme (0 or 1), the transformation is consistent with the

interpretation of Carvalho (2016) where norms restrict agents’ strategy set.13

Since we are interested in studying the evolution of norms when agents are exposed

to different strategic environments, namely when in absence of norms actions are strate-

gic complements or substitutes, we restrict the ordering of the material payoffs a, b, c, d.

Measuring with b̄ = b
a+b the material force that leads out from the equilibrium (1, 1) and

with d̄ = d
c+d the material force that pushes toward the equilibrium (0, 0), it is possible

to categorize the possible games with material payoffs π(A) as Γ(b̄, d̄). In particular

1. Coordination (strategic complements): b̄ < 1
2 < d̄

13An agent that takes into account both material and moral payoffs as in (4) can be seen as “Homo Moralis”
in the language of Alger and Weibull (2013). Moreover, the functional form for payoffs (4) is also consistent
with one commonly used in the behavioral literature on social norms (López-Pérez, 2008; Kessler and Leider,
2012; Kimbrough and Vostroknutov, 2016) where a cost function c of violating the norm is subtracted to the
material payoff: Πr(A;xir ) = πr(A)− c(xi,r,A, π). Indeed, with c(xir ,A, π) = πr(Ar, Ac)(Ar + xir (1− 2Ar))
we get exactly equation (4).
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2. Anti-Coordination (strategic substitutes): d̄ < 1
2 < b̄.14

Similarly to norms, also b̄ and d̄ belong to the interval [0, 1]. However, they represent

material, instead of moral, incentives. If b̄ = d̄ = 1
2 , then there are no material incentives.

A game with both moral and material incentives is denoted as Γ(b̄, d̄,x).

We can now proceed with the equilibrium analysis. For simplicity, we assume complete

information about material payoffs, norms, and rationality of agents and we use (pure

strategy) Nash equilibrium as the solution concept.

The equilibrium analysis relies on the double effect on moral and material incentives.

Moral incentives depend on the consistency between norms and actions. Therefore, the

final decision depends on the strength of the norm as compared to the two threshold b̄

and d̄. b̄ establishes the minimum strength of the norm for action 1 to be played when

the opponent plays 1. d̄ establishes the maximum strength of the norm for action 0 to be

played when the opponent plays 0.15

Define Â(b̄, d̄, x) = Âr(b̄, d̄, xir)× Âc(b̄, d̄, xjc) the set of Nash Equilibria with norms.

Proposition 2 Given the game with norms Γ(b̄, d̄, x):

• If xir > b̄ and xjc > b̄, then (1, 1) ∈ Â(b̄, d̄, x).

• If xir < d̄ and xjc < d̄, then (0, 0) ∈ Â(b̄, d̄, x).

• If xir > d̄ and xjc < b̄, then (1, 0) ∈ Â(b̄, d̄, x).

• if xir < b̄ and xjc > d̄, then (0, 1) ∈ Â(b̄, d̄, x).

Proof. In the Appendix. �

The results of Proposition 2 are represented in Figures 1 where equilibrium actions played

by agents belonging to the two different communities are shown as a function of norms

and for different strategic environments: complements (left) or substitutes (right). The

set of Nash Equilibria depends on the position of threshold values d̄ and b̄. Figure 1(a)

represents a game with strategic complements, b̄ < 1
2 < d̄. Figure 1(b) represents a game

with strategic substitutes, d̄ < 1
2 < b̄. On the main diagonal there are Nash Equilib-

ria when agents have the same norm. When the action is marked with the subscript

∗, it is dominant. As expected, for xir and xjc in the neighborhood of neutral norms

(xir = xjc = 1
2), the games have the same equilibria as the corresponding game without

norms, while as xir and xjc move away from 1
2 the games have have different equilibria.

14 Notice that restricting the ordering of b̄, d̄, 12 can be used to characterize even Prisoner Dilemma and
Efficient Dominant Strategy Equilibrium games, where 1

2 < min{b̄, d̄} and 1
2 > max{b̄, d̄}, respectively. Our

general analysis applies also to these other games but we focus on complements vs substitutes. See also the
discussion in Section 4.

15This is consistent, even if in a totally different framework, with Eshel et al. (1998), who found that the
imitation dynamics depends only upon the values α and β which are strictly related respectively with our b̄ and
d̄.
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(a) (b)

Figure 1: Nash Equilibria as a function of norms (x1, x2). The row player (vertical axis) belongs

to community 1, the column player (horizontal axis) belongs to community 2. (a) Complements,

b̄ < 1
2 < d̄ and (b) Substitutes, d̄ < 1

2 < b̄. A star denotes that the action is dominant.

When xir > max{d̄, b̄} or xir < min{d̄, b̄}, r has a dominant strategy, respectively playing

1 or playing 0. Otherwise, if min{d̄, b̄} < xir < max{d̄, b̄}, then r has not a dominant

strategy and reacts to the action of c. Thus if both xir and xjc are between min{d̄, b̄} and

max{d̄, b̄}, then we have multiple equilibria. We now interpret the results with respect

the two anecdotal examples of language and attitude toward conflict.

Language (complements) The interaction of norms with the incentive for coordi-

nation may result in different Nash equilibria. If the norm is strong and equal in both

communities, norms and incentives are aligned on one language. If one norm is strong,

say of community 1, and the other is mild, of community 2, community 1 uses always the

preferred language while community 2 uses the language preferred by community 1 when

matched with 1 and can use either language when matched with a player of community 2.

If norms of the two communities are strong but different, the game could instead become

an anti-coordination one, where each member of a community uses only its most preferred

language (polarization). The stronger the material incentives to coordinates the stronger

should be the norm to obtain polarization.

Attitude toward conflict (substitutes) Norms in the form of attitude toward

conflict could change the Nash equilibria as well. If, for example the norms of players are

strong and aligned, the game could result in one where both players flight (or fight). On

the contrary, two strong and not aligned norms have the effect of selecting one equilibrium

with anti-coordination. Finally, if the norm of one community is mild while the one of

14



other community is strong then the members of that community anti-coordinate with

members of the other one, and are indifferent in interacting among themselves.

2.3 Cultural Transmission

At the end of each time period t, given the action played during their adult age, agents

transmit new norms θt+1 to their offsprings and decide how much let them socialize with

the peers by transmitting a horizontal socialization ft+1. In this section, we model both

transmissions as a function of generation t norms, xt, socializations, ft, and average

actions chosen when playing the one-stage games.

The average action depends on the distribution of games each agent is playing in

her adult age. We shall assume that in each period agents play different games. In

particular, we name γ a probability distribution on the space of vectors (b̄, d̄) and assume

that the game with payoffs Γ(b̄, d̄; xt) is played with probability γ(b̄, d̄). In order to study

the effect of different strategic environment on norms dynamics, we further assume that

games played belong always to the same environment. In complements environments

b̄ ∈
[
0, 1

2

]
and d̄ ∈

[
1
2 , 1
]
, viceversa for substitutes environments b̄ ∈

[
1
2 , 1
]

and d̄ ∈
[
0, 1

2

]
.

We focus our analysis on the two extreme cases: (i) γ is a uniform distribution on sets

of (b̄, d̄) with support
[
0, 1

2

]
×
[

1
2 , 1
]

for complements and
[

1
2 , 1
]
×
[
0, 1

2

]
for substitutes.

(ii) γ is a point distribution on an element of the set
[
0, 1

2

]
×
[

1
2 , 1
]

for complements and[
1
2 , 1
]
×
[
0, 1

2

]
for substitutes.

2.3.1 Formation of Transmitted Norms

First, we assume that agents try to reduce the cognitive dissonance that arises if there is no

consistency between their original preference over actions xt and their average behavior.

The latter, Eη,γ [Ai,t], is computed taking into account that agents are randomly matched

to play against the whole population and that they face one-stage games drawn from

the distribution γ. Thus, an agent belonging to the majority, community i = 1, will be

matched η time with his own type and 1− η with others, viceversa for a player belonging

to the minority. Moreover, each agent in her adult life plays an infinite number of games

with different payoffs (b̄, d̄) distributed according to γ.

We model cognitive dissonance by letting the ex ante personal norms of each com-

munity i generation t + 1, θi,t+1, to move towards the transmitted actions Eη,γ [Ai,t] as

dependent on the influence of games on norms λ ∈ (0, 1):

θi,t+1 = (1− λ)xi,t + λEη,γ [Ai,t] =: ζi(xi,t,Eη,γ [Ai,t]). (5)

If λ = 0 the strategic environment has no effect on the evolution of norms, similarly the
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case considered by Kuran and Sandholm (2008). Otherwise, the inherited norm of the

next generation depends directly on the norm of the parent xi,t and indirectly also on the

strategic environment through the average equilibrium actions in Eη,γ [Ai,t]. Parents want

to transmit to their offsprings norms that are a combination of their norms and of what

they have learned to be the best action in the specific strategic environment they face.

Note that an equivalent motivation for this form of the feedback is a sociological story:

since children, in the vertical socialization process, are able to observe both norms and

behavior, they inherit norms similar to those of their parents but biased toward parental

behavior.

In order to find the average action played by the representative agent of one commu-

nity, Eη,γ [Ai,t], we have to integrate actions with respect to both population and payoffs

measure, η and γ.16 In particular, all the time agents play a game with a unique Nash

equilibrium the transmitted action is uniquely defined to be the Nash equilibrium one.

When, instead, the played game has not a unique Nash equilibrium, we assume indiffer-

ence on the type of action that is transmitted. Thus, each time an agent of community

i plays against an agent of community j in period t, the transmitted action is (assuming

without loss of generality that she is the row player)

Ai,j,t =

Âr,t(b̄, d̄, x) if the Nash equilibrium is unique

1
2 otherwise

.

Notice that, whenever there are multiple equilibria, the feedback from actions to norms of

a player of community i when playing with a player of community j in date t is Ai,j,t = 1
2 .17

In Figure 2, we show average actions for agents of both communities for different (x1, x2),

in both complements and substitutes game. Integrating over games and communities, we

get the vector of average actions:18

Eη,γ [At] = (Eη,γ [A1,t],Eη,γ [A2,t]) =: ϕ(xt). (6)

2.3.2 Formation of Horizontal Socialization

The dynamics of the socialization level depends on the outcome of the strategic interaction

and it is modeled assuming cultural substitution.19

16Notice that, due to the assumption of independence the order of integration does not affect the result and
Eη,γ [.] = Eγ,η[.]

17A different possibility could be to consider the Mixed Nash equilibrium. However, in several empirical works
the approximation of 1

2 is widely used in presence of multiple equilibria (Bjorn and Vuong, 1984; Kooreman,
1994; Soetevent and Kooreman, 2007).

18It is possible to take into account different levels of assortativity in the matching, see discussion in Section
4.

19Under cultural substitution “parents have fewer incentives to socialize their children the more widely dom-
inant are their values in the population” Bisin and Verdier (2001).
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(a) (b)

Figure 2: Eη[A1,t],Eη[A2,t] in strategic settings with (a) Strategic complements
(
b̄ ≤ 1

2 ≤ d̄
)
, (b)

Strategic substitutes
(
d̄ ≤ 1

2 ≤ b̄
)
. As in Figure 1, we assume that the row player (vertical axis)

belongs to community 1 while the column player (horizontal axis) belongs to community 2.

We assume that the more their action is close to the average of the society, the more

agents let their offsprings horizontally socialize with the peers (the less they vertically

socialize them). Given the average action in the whole society,

Āt = ηEη,γ [A1,t] + (1− η)Eη,γ [A2,t],

the transmitted horizontal socialization for a representative agent of community i is

fi,t+1 = f̄(1− |Eη,γ [Ai,t]− Āt|) =: ψi(Eη,γ [At]). (7)

The horizontal socialization of community i depends directly on the differences between

the average action of the agent and the average action of the whole society. f̄ is the

maximum possible flexibility parameter of the society, namely the highest level of hori-

zontal socialization of a community toward the whole society, and thus also to the other

community. When the distance between actions is maximal, the components of f go to

their lower bound. When the distance is minimal (agents play all the same action) both

components of f reach the upper bound: f = (f̄ , f̄), where f̄ < 1.

It is important to underline that we have assumed cultural substitution and the specific

functional form (7) to have tractability in the dynamics. However, in Appendix B, we

microfound it showing that (7) is consistent with partially myopic parents, with utility

function as in Panebianco (2014), who are able to anticipate the socialization game of

their offspring, but they are not able to anticipate their utility when adult.
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3 Norm and Socialization Level Dynamics

In this section, we analyze the joint dynamics of norms, Nash equilibrium actions, and

socialization levels for environments where, under material payoffs, actions are strategic

complements or substitutes.

As anticipated in Section 2.1, the chosen norm x depends directly on inherited norm

θ and horizontal socialization f . Introducing the time dimension and using eq. (1) for a

representative agent of both communities i ∈ I, we define the vector function υ(.) such

that

xt+1 = υ(θt+1,ft+1). (8)

Combining equations (6 - 8) we get the dynamics of our model

xt
ϕ(.)−−−−−−→ Eη,γ [At]

ζ(.), ψ(.)−−−−−−−−→ (θt+1,ft+1)
υ(.)−−−→ xt+1.

or

xt+1 = υ(ζ(xt,ϕ(xt)),ψ(ϕ(xt))) =: Ξ(xt). (9)

We define E the set of steady states of (9), E := {x∗ ∈ [0, 1]2 : x = Ξ(x)}. From each

steady-state norm x∗, we can derive the corresponding steady-state actions (Eη,γ [A∗1],Eη,γ [A∗2]),

the steady-state horizontal socialization levels (f∗1 , f
∗
2 ), and the steady-state equilibrium

weights (p∗1, p
∗
2) that link ex-post and ex-ante norms, as defined in Corollary 1.1. First,

we provide a relation between norms and average actions at the steady state.

Proposition 3

Given the norm dynamics in (9), for all strategic environments, each steady-state norm

x∗ solves x∗1 = φ∗1Eη,γ [A∗1] + (1− φ∗1)Eη,γ [A∗2]

x∗2 = φ∗2Eη,γ [A∗1] + (1− φ∗2)Eη,γ [A∗2]
, (10)

where φ∗1 =
p∗1−(p∗1−p∗2)(1−λ)
1−(p∗1−p∗2)(1−λ) and φ∗2 =

p∗2
1−(p∗1−p∗2)(1−λ) .

Proof. In the Appendix. �

In a steady state, norms are a convex combination of the average actions played by the

agents of the two communities. Weights (φ∗1, φ
∗
2) depend on the steady state norms x∗

through horizontal socialization levels f∗ and weight p∗1 and p∗2. The size of the majority

η and the influence of games on norms λ also play a role.

Next, we find steady-state norms, and characterize their stability, for both comple-

ments and substitutes environments. Below, we consider uniform distributions of material

payoffs. In Section 3.2, we consider point distributions.
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3.1 Uniform Distribution of Material Payoffs

In this section the payoff distribution γ is uniform distribution on sets of material payoffs

(b̄, d̄). We consider separately cases where material payoffs imply that actions are strategic

complements or substitutes.

3.1.1 Strategic Complements

In their adult age, agents face an environment with strategic complementarity when each

game they play has material payoffs with 0 ≤ b̄ ≤ 1
2 ≤ d̄ ≤ 1. Assuming that payoffs are

uniformly distributed, we choose b̄ and d̄ uniformly in [0, 1
2 ] and [1

2 , 1], respectively, and

independently for each other.

As we show below, there exists (only) steady states where both communities share

the same, extreme or neutral, norm. Here, the level of horizontal socialization is maximal

and communities play the same Nash equilibrium action. The set of steady states norms

is Ed := {(1, 1), (0, 0),
(

1
2 ,

1
2

)
}, all with maximal socialization f̄ , and with average actions

Eη,γ [A∗] equal to (1, 1), (0, 0), and
(

1
2 ,

1
2

)
, respectively. Moreover the steady state where

both communities have the same strong norm, (1, 1) and (0, 0), are stable, while the state

with neutral norms,
(

1
2 ,

1
2

)
, is a saddle.

Proposition 4 (Complements)

For all η ∈ [1
2 , 1), f̄ ∈ (0, 1), and λ ∈ (0, 1), if (b̄, d̄) is uniformly distributed in the set[

0, 1
2

]
×
[

1
2 , 1
]
, then the set of steady states is Ed. Moreover, (1, 1) is asymptotically stable

with basin of attraction at least
(

1
2 , 1
]2

, (0, 0) is asymptotically stable with the basin of

attraction at least
[
0, 1

2

)2
, and

(
1
2 ,

1
2

)
is a saddle.

Proof. in the Appendix �

In an environment with strategic complementarity, if payoffs are uniformly distributed

over
[
0, 1

2

]
×
[

1
2 , 1
]
, the two stable long-run outcomes are assimilation toward one extreme

norm, either 0 or 1. In each stable equilibrium, the prevailing norm solves the Nash equi-

librium selection issue typical of coordination games. In our framework, whether norms

converge to 1 or 0 depends on the initial norms and thus, in turn, on basins of attraction.

For all initial conditions, but those on the saddle path leading to the neutral norm 1
2 , both

community converge to the same norm, as well as to the corresponding Nash equilibrium

action, and the horizontal socialization is at its maximum.

3.1.2 Strategic Substitutes

We now discuss results for an environment with strategic substitutability where agents

play several games in which 0 ≤ d̄ ≤ 1
2 ≤ b̄ ≤ 1. Whereas in an environment with strategic

complements both games played by agents in the youth age (the norm formation game)

19



and the adult age (the 2 × 2 strategic interaction) favor coordination among agents,

with strategic substitutes two opposite forces are at play: coordination in youth and

anti-coordination in the adult age. As we shall see, the relative strength of the two, as

dependent on the relationship between the parameter that describes the maximum possible

horizontal socialization (f̄) and the strength of the cognitive dissonance (λ), determines

long-run outcomes.

In games with substitutes, other than the set of steady states where both communities

share the same norm and the socialization level is at its maximum, Ed, there exists a set of

polarized steady states where the two communities use different norms and the horizontal

socialization level is low, Ep := {( �x1,
�
x2) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
, (
◦
x1,

◦
x2) ∈

[
0, 1

2

]
×
[

1
2 , 1
]
}. To

maintain analytic tractability, in the next proposition we provide results only when the

two communities have the same size, η = 1
2 .

Proposition 5 (Substitutes)

For η = 1
2 and λ ∈ (0, 1), if (b̄, d̄) is uniformly distributed in the set

[
0, 1

2

]
×
[

1
2 , 1
]
, then

there exist f̂ ≥ λ
2+λ such that

• If f̄ > f̂ , then the set of steady states is Ed and
(

1
2 ,

1
2

)
is the globally stable steady

state.

• If f̄ < f̂ , then the set of steady states is Ed ∪ Ep and the strong norm states (0, 0)

and (1, 1) are unstable. Moreover:

– If 0 < f̄ < λ
2+λ , then

(
1
2 ,

1
2

)
is a saddle, (

�
x1,

�
x2) is asymptotically stable with

basin of attraction at least
[

1
2 , 1
]
×
[
0, 1

2

]
, (
◦
x1,

◦
x2) is asymptotically stable with

basin of attraction of at least
[
0, 1

2

]
×
[

1
2 , 1
]
;

– If λ
2+λ < f̄ < f̂ , then all norms in Ep ∪ (1

2 ,
1
2) are asymptotically stable.

Proof. In the Appendix �

In an environment with substitutes and uniformly distributed material payoffs, there

still exist steady states with assimilation as in the previous (complements) case, however

they are unstable. Stable steady states depend on the tension between the young age

social interaction and the strategic environment faced in the adult age. If the young age

social interaction is very strong also across the two communities (f̄ > f̂), the only stable

long run outcome is the erosion of norms (1
2 ,

1
2) (as in Calabuig et al., 2016). On the con-

trary, with low social interaction, f̄ < f̂ , there exist stable steady states with polarization.

In the latter, norms are polarized, e.g.
�
x1 >

1
2 and

�
x2 <

1
2 , agents of the two communities

play on average opposite actions (Eη,γ [
�
A1],Eη,γ [

�
A2]) ∈

[ �
x1, 1

]
×
[
0,
�
x2

]
, and the more the

actions are polarized the more the horizontal socialization is low. (symmetrically for
◦
x1

and
◦
x2).
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(a) (b)

Figure 3: Norm dynamics for (a) Strategic Complements and (b) Strategic Substitutes when f̄ < λ
2+λ .

When f̄ < f̂ , whether the polarized steady states are the only possible long-run

outcomes or norm neutrality is also a possible long-run outcome depends on the relative

size of the horizontal socialization response to behavioral heterogeneity (f̄) and agents’

cognitive dissonance (λ). The higher the cognitive dissonance, the higher the effect of

strategic substitutes in the adult age games, making norm neutrality a saddle. This

is always the case when f̄ = 0, so that horizontal socialization does not play a role

and children care only about inherited norms, leading to fully polarized norms, either

(
�
x1 = 1,

�
x2 = 0) or (

◦
x1 = 0,

◦
x2 = 1).

The main implication of Propositions 4 and 5 is that different strategic environments

lead to different long-run norms and equilibrium behavior. An environment with strategic

complementarity always leads to norms that are strong and homogeneous across both

communities. Instead, in environments with strategic substitutability, there exist stable

steady states with polarization of norms or, when the norm is homogeneous it is neutral

in both communities. Whether polarization or erosion of norms is the long-run outcomes

depends on the relative size of cognitive dissonance and horizontal socialization.

3.2 Point Distribution of Material Payoffs

In the previous section, we have shown that with strategic complements and uniformly

distributed payoffs stable norms are strong and homogeneous. An empirical observation

is that an environment that favors coordination is not always enough to ensure the occur-

rence of complete assimilation of the minority or to avoid the occurrence of polarization

in a society. The process of cultural integration may fail to achieve complete assimilation,

having the resilience of cultural traits, or even lead to norms’ polarization.20 Bisin and

20We refer to Berry (1997) and Ryder et al. (2000) (among others) for the terminology about cultural
assimilation, integration, marginalization, and polarization (also separation). They proposed a concept
of minority’s self-identification, based on a two-dimensional framework, which takes into account for differences
in both adaptation and interaction processes between the minority and the dominant culture.

21



Verdier (2011) offer a review of empirical examples of cultural heterogeneity and resilience

of cultural traits: the slow rate of immigrants’ integration in Europe and US, the per-

sistence of ‘ethnic capital’ in second- and third-generation immigrants, e.g. minorities’

strongly attachment to their original languages and cultural traits.

In this section, we show how to reconcile our model of norm formation with these

empirical observations. We do so by considering limit cases of point distributions of

material payoffs, namely by imposing γ to be singular on the set (b̄, d̄). We shall show

that polarization can occur even in environments with complements while mild cultural

heterogeneity can occur both in environments with complements, favoring convergence of

norms, and in environments with substitutes, favoring divergence of norms.

As with the uniform distribution of payoffs the exact nature of these stable norms

depends on whether the strategic interaction taking place in the adult age is characterized

by strategic substitutes or complements. We start our analysis with the latter.21

3.2.1 Strategic Complements

Figure 4 shows all the possible steady states in environments with complements. The

first result is that two stable steady states with polarization (and minimal horizontal

socialization) can exist depending on the value of b̄ and d̄ and on the norms’ distance

between the two communities. For simplicity, we now formally present only one of the

two steady states with polarization (the upper left blue dot in Figure 4), the other (the

lower right blue dot) can be easily derived by symmetry.

Figure 4: Steady States of x for complements with b̄ = 0.2, d̄ = 0.8, f̄ = 0.3, η = 0.5, λ = 0.6.

The existence of steady states depend on the relative size of material incentives (b̄, d̄)

and average actions weights defined in Proposition 3. If b̄ > φ∗1 and d̄ < φ∗2 and initial

norms belong to the region R1∗,0∗ , then the dynamics described in (9) converges to the

steady state (φ∗1, φ
∗
2), with socialization (f̄η, f̄(1 − η)). Norms are polarized, horizontal

21We keep the analysis at a descriptive level, more details can be found in the Appendix.
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socialization is at its minimum, and agents belonging to different communities always play

different actions, Eη,γ [A∗] = (1, 0). This occurs despite in all rounds agents are playing a

coordination game, according to material payoffs.

The result is driven from the fact that if games played in adult life have always the

same non degenerate payoffs, then there exist initial norms, x1,0 high enough and x2,0

low enough, that sustain the equilibrium with anti-coordination. Playing this equilibrium

leads, by cognitive dissonance, to norms polarization.

If agents interaction features complementarity another class of steady states can exist

(white in Figure 4), where there is cultural integration but not complete assimilation.

In such steady states, only the agents of one community have a well-defined group-specific

norm, which induce them to always play a specific action as dominant strategy. Agents

belonging to the other community have a neutral norm. When the latter are matched

among themselves, they face the original coordination problem, while they conform to

the behavior of agents with a strong norm whenever they encounter them. This is a clear

example of integration, namely there is convergence toward a homogeneous norm, but,

at the same time, the identity is not totally lost as in assimilation.

Real life examples of this result are linguistic choices between immigrants and natives.

Natives always use their own language. Agents belonging to a linguistic minority start

with a different norm and, after a long interaction with natives, they end up using the

two languages indifferently, but conforming with the natives whenever they interact with

them.

In steady states with integration, we have two sources of symmetry. One is with

respect to the community with a well defined norm, the other with respect to the action

played. Therefore there can exist up to four steady states of this type. Again we formally

characterize only one of these equilibria. Let us focus on the region R1∗,1, were there can

exist a steady state where b̄ < x∗2 < d̄ and Eη,γ [A] =
(
1, 1

2(1 + η)
)
. Notice that with point

distribution steady state with intergation but not assimilation are stable, provided they

exist. However, there are values of material incentives (b̄, d̄) such that they do not exist,

as shown in Figure 5. On the contrary, steady states with assimilation always exist (and

are always stable).22

The difference between assimilation and integration equilibria is important with

respect to different policy goals. For example, sometimes a policy is considered successful

only when minorities (immigrants) completely lose their previous norms or culture and

are assimilated; instead in other circumstances the resilience of cultural traits can be

considered socially desirable, in these cases the policymaker reaches its goal if the minority

integrates with the majority but keeps some of their cultural traits. In this second case,

there is partial convergence and there is still room for a multicultural society.

22In Appendix A.8 we prove that with point distributions of payoffs all steady states are asymptotically stable.
The issue is thus whether a steady state exists or not, given material payoffs, rather than if it is stable.
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Figure 5: Steady states of the norm dynamics for strategic complements with (b̄ = 0.2, d̄ = 0.8) and
(d̄′ = 0.7, b̄′ = 0.1). Left panel: change from d to d′. Right panel: change from d to d′ and from b to
b′. In both plots, f̄ = 0.3, η = 0.5, λ = 0.6.

Moreover, from a policy point of view, it is interesting to appraise the long-run effects

due to a change in game incentives (Figure 5). We observe that moving the material

incentives b̄ and d̄ can significantly affect the social outcome. In Figure 5 (left panel) we

can see how diminishing d̄ to d̄′ the basin of attraction of the steady state with assimilation

(grey) becomes much wider and integration (white) disappears. Figure 5 (right panel)

shows that in such a case, moving the two material incentives together, d̄ to d̄′ and b̄

to b̄′, it is possible to reach assimilation even if the communities start off having initial

norms that are polarized. This sheds further light on the relationship between uniform

and point distribution. In fact, if (b̄, d̄) is not a single point, but moves in the whole space[
0, 1

2

]
×
[

1
2 , 1
]
, then the steady states presented in this section are not robust to game

change.

3.2.2 Strategic Substitutes

Figure 6 shows all the possible steady states in environments with strategic substitutes

when γ is singular. The main difference with the case of uniform distribution is that steady

states with assimilation can be stable. Comparing the long-run norms with the case of

point distribution and strategic complements, steady states with cultural integration do

not exist. Moreover, in environments with substitutes, steady states may exist (white

in Figure 6) where one community has a well defined norm while the members of the

other community have a norm that, when they are matched among themselves, does not

induce preferences over actions. Namely, interacting in their own community agents are

indifferent on the action to play, but when matched with the other community they act in

the opposite way. In a sense, we can talk about marginalization, in fact, there is a partial

polarization of norms with low socialization across communities.

In environments with strategic substitutes policies that aim to reach cultural integra-

tion are not possible. Cultural assimilation is still possible but it is not reachable starting
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from polarized norms, even if we weaken material incentives to anti-coordinate. These

incentives determine if there exists steady states with marginalization or polarization.

Lowering material incentives enlarges the region of initial norms that lead to norm neu-

trality. Differently from the uniform distribution of material payoffs (Proposition 5) the

relative size of the maximum horizontal socialization f̄ and cognitive dissonance parameter

λ do not play a role for stability but only for the speed of convergence.23

Figure 6: Steady states of the norm dynamics for strategic substitutes with b̄ = 0.8, d̄ = 0.2,
f̄ = η = 0.5, λ = 0.75. In the extreme case where b̄ = d̄ = 0.5, the neutral norm (0.5, 0.5) is the only
steady state and it is globally stable.

23See the Proof of Proposition A.8 in the Appendix for details.
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4 Discussion

In this section we discuss possible extensions of the model.

Payoffs Distribution This paper is a first attempt to analyze the effect of different

strategic environment on the dynamics of norms. While, we study only extreme cases for

the payoffs’ distribution (uniform and point), our analysis can be generalized to many

others payoffs distributions. If the distribution is still uniform, important parameters to

understand the existence and stability of stable norms are the boundary points (highest

and lowest) of the payoffs distribution of material incentives (b̄, d̄). In the interior points

of the support the dynamics is the same as studied in 3.1, while outside results discussed

in 3.2 hold. Considering probability distributions different from the uniform one, the

analysis is less straightforward as it depends on the density in the tails. Our conjecture

is that it is possible to establish threshold values over which the density is vanishing and

such that the dynamics is the same as with a uniform distribution defined within these

threshold. Thresholds should depend, non trivially, on the whole distribution, including

moments higher than the second. Although all these possible intermediate cases could be

interesting to study, their analysis is beyond the scope of this paper.

Assortativity We have studied the case of perfect random matching without taking

into account the possibility of having assortative matching. In order to consider different

levels of assortativity, it is enough to consider a parameter ε that can assume values less

than η for the minority (1 − η for the majority) and add it to the probability of being

matched with agents belonging to the same community. This generalization does not

affect results.24 In environments with complements, the only effect of a higher level of

assortativity is to slow down the convergence to the steady state norm for minority and

speed it up for the majority, thus the assimilation of norms occurs at a slower pace. On

the contrary, in environments with substitutes, a higher level of assortativity decreases

the speed of convergence to the steady state, and thus to the polarization. This would

suggest us that, from the prospective of a policy maker who wants to favor assimilation,

in environments with complements is better to facilitate across-communities interactions,

while in environments with substitutes is better to avoid them.

Mixed Environments In this paper we keep the class of strategic environment fixed

to complements or substitutes. An extension of the model is to allow changes in the class

of strategic environment. Our conjecture is that norms may not converge and generate

cycles. The same results should be found also when the strategic environment resembles

Prisoner Dilemma. In fact, according to our preliminary analysis, depending on the

24The only difference is to replace η with η′ = η + ε for the majority and with η′′ = η − ε for the minority.
Since the only condition relevant for the proofs is η < 1, the change does not affect the dynamics.
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material payoffs parametrization, the Prisoner Dilemma with norms becomes either a

game with strategic complements or a game with strategic substitutes.

This extension is particularly relevant to study more complex environments where

some the same norm is applied to both cooperative and competitive settings. Such an

extension could provide a foundation of the fact that if a society faces many tasks that

require a joint effort, then its agents develop more cooperative norms. This is also in

line with the recent empirical evidence suggesting that institutions, by changing material

payoffs, can lead to a crowding out of norms (Lowes et al., 2017).

5 Conclusion

In this paper, we study a cultural transmission model where the relationship between

norms and strategic environments is made explicit. Agents divided into two communities

form their community norm by taking into account both the norm received by their previ-

ous generation and the average norm of the society. The relative strength of the two forces

is regulated by a horizontal socialization parameter. The norm received by the previous

generation depends on the average equilibrium actions played in the game under the hy-

pothesis of minimization of cognitive dissonance. We derive conditions under which norm

assimilation is reachable or not. Provided games material payoffs are randomly distributed

but preserve their strategic setting (complements/substitutes), the norm dynamics con-

verges to assimilation in environments with strategic complements and to polarization or

neutrality in environments with strategic substitutes. Moreover, when specific material

payoffs are chosen, provided initial conditions show enough heterogeneity, we are able

to obtain the rise of oppositional cultures and situations of cultural heterogeneity. For

example, we show that even if the material payoffs provides incentives to coordinate, it

is still possible to obtain integration but not assimilation or, even, polarization. At the

same time, in environments where material payoffs provide incentive to anti-coordinate,

it is still possible to reach assimilation or only partial polarization.
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A Appendix

A.1 Proof of Proposition 1

In order to simplify the notation, we consider payoffs for a representative agent of each

community. The payoff of a generic agent belonging to community i ∈ I is

ui(x, θi, fi) = −fi

xi − (ηx1 + (1− η)x2)︸ ︷︷ ︸
Eη [x]


2

− (1− fi)(xi − θi)2.

Since each agent is negligible in the population, she does not affect the whole average.

Thus, the first order condition ∂ui(x,θi)
∂xi

= 0 gives

−2fi (xi − (ηx1 + (1− η)x2))− 2(1− fi)(xi − θi) = 0

fi (xi − (ηx1 + (1− η)x2)) + (1− fi)(xi − θi) = 0,

leading to

xi = fiEη[x] + (1− fi)θi. (11)

Taking expectations of (11) on both sides we get

Eη [x] = Eη [f · Eη[x] + (1− f)θ]

Eη [x] = Eη [f · Eη[x]] + Eη [θ]− Eη[f · θ]

Eη [x]− Eη [f ] · Eη[x] = Eη [θ]− Eη[f · θ]

Eη [x]− Eη [f ] · Eη[x] = Eη [θ]− Eη[f ] · Eη[θ]− covη[f, θ]

(1− Eη[f ]) · Eη [x] = (1− Eη[f ]) · Eη [θ]− cov[f, θ]

Eη [x] = Eη [θ]− covη[f, θ]

(1− Eη[f ])
.

Substituting Eη[x] in (11) we find the optimal action of each player belonging to commu-

nity i as a function of the distributions of θ and f

xi = fi

(
Eη [θ]− covη[f, θ]

(1− Eη[f ])

)
+ (1− fi)θi. (12)

�
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A.2 Proof of Corollary 1.1

From the ex-post norm formation rule (12) we obtain for agent i = 1

x1 = f1

(
ηθ1 + (1− η)θ2 −

covη[f, θ]

1− f1η − f2(1− η)

)
+ (1− f1)θ1.

Computing the covariance leads to

covη[f, θ] = Eη [(f − Eη[f ])(θ − Eη[θ])]

= η(1− η)2(f1 − f2)(θ1 − θ2) + η2(1− η)(f2 − f1)(θ2 − θ1)

= η(1− η)(f1 − f2)(θ1 − θ2)

so that

x1 = f1

(
ηθ1 + (1− η)θ2 −

η(1− η)(f1 − f2)(θ1 − θ2)

1− f1η − f2(1− η)

)
+ (1− f1)θ1

=
f1(1− η)(1− f2)

1− f1η − f2(1− η)︸ ︷︷ ︸
1−p1

θ2 +
(1− f1)(1− f2(1− η)

1− f1η − f2(1− η)︸ ︷︷ ︸
p1

θ1.

The same can be computed for agent i = 2.

�

A.3 Proof of Proposition 2

We solve the generic game with norms as described in Table 1. The best-replies are

Âr(Ac = 1; b̄, d̄, xir) =

1 if xir > b̄

0 if xir < b̄
and Âr(Ac = 0; b̄, d̄, xir) =

1 if xir > d̄

0 if xir < d̄
.

Since the game is symmetric, these are also the best reply of agent c. Looking for the

fixed-point of the best replies we find the Nash Equilibria.

�

A.4 Corollary 2.1

Before we proceed with other proofs, we provide a partition of the norm space [0, 1]2 where

Nash equilibria are as described in Figure 1.
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Corollary 2.1 The regions of norms xir and xjc in which different Nash equilibria

emerge are the following:

R1∗,1∗ = {(xir , xjc) : xir > max{d̄, b̄} ∧ xjc > max{d̄, b̄}}

R0∗,0∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧ xjc < min{d̄, b̄}}

R = {(xir , xjc) : min{d̄, b̄} < xir < max{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄}}

R1∗,0∗ = {(xir , xjc) : xir > max{d̄, b̄} ∧ xjc < min{d̄, b̄}}

R0∗,1∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧ xjc > max{d̄, b̄}}

R1∗,1 = {(xir , xjc) : xir > max{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R1∗,0 = {(xir , xjc) : xir > max{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ b̄ > d̄}

R1,1∗ = {(xir , xjc) : xjc > max{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ d̄ > b̄}

R0,1∗ = {(xir , xjc) : xjc > max{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ b̄ > d̄}

R0∗,0 = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R0∗,1 = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ b̄ > d̄}

R0,0∗ = {(xir , xjc) : xir < min{d̄, b̄} ∧min{d̄, b̄} < xjc < max{d̄, b̄} ∧ d̄ > b̄}

R1,0∗ = {(xir , xjc) : xjc < min{d̄, b̄} ∧min{d̄, b̄} < xir < max{d̄, b̄} ∧ b̄ > d̄}

A.5 Proof of Proposition 3

Substituting the dynamics of θ in equation (3) we getx1,t+1 = p1,t+1[(1− λ)x1,t + λEη,γ [A1,t]] + (1− p1,t+1)[(1− λ)x2,t + λEη,γ [A2,t]]

x2,t+1 = p2,t+1[(1− λ)x1,t + λEη,γ [A1,t]] + (1− p2,t+1)[(1− λ)x2,t + λEη,γ [A2,t]]
,

where p1,t =
(1−f1,t)(1−f2,t(1−η))

1−f1,tη−f2,t(1−η) , p2,t =
f2,tη(1−f1,t)

1−f1,tη−f2,t(1−η) .

Substituting and computing the steady state we obtainx∗1 = φ∗1Eη,γ [A∗1] + (1− φ∗1)Eη,γ [A∗2]

x∗2 = φ∗2Eη,γ [A∗1] + (1− φ∗2)Eη,γ [A∗2]
, (13)

where φ∗1 =
p∗1−(p∗1−p∗2)(1−λ)
1−(p∗1−p∗2)(1−λ) and φ∗2 =

p∗2
1−(p∗1−p∗2)(1−λ) or, in terms of (f∗1 , f

∗
2 ),

φ∗1 =
(1−f∗1 )f2η+λ(1−f∗1−f∗2 +f∗1 f

∗
2 )

f1(1−η)+f∗2 η−f∗1 f∗2 +λ(1−f∗1−f∗2 +f∗1 f
∗
2 )

φ∗2 =
f∗2 η(1−f1)

f1(1−η)+f∗2 η−f∗1 f∗2 +λ(1−f∗1−f∗2 +f∗1 f
∗
2 )

.

�
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A.6 Proof of Proposition 4

To verify that (1, 1), (0, 0), and
(

1
2 ,

1
2

)
are steady states it is enough to substitute them

in (13). Due to the dynamics for horizontal socialization, namelyf1 = f̄(1− (1− η)|(Eη,γ [A1,t]− Eη,γ [A2,t])|)

f2 = f̄(1− η|(Eη,γ [A2,t]− Eη,γ [A1,t]])|)
, (14)

when norms, and thus average actions, are strong or neutral, Eη,γ [A1,t] = Eη,γ [A2,t] leading

to f∗1 = f∗2 = f̄ .

In order to study the dynamics and show that no other steady state is present, we

need to explicit Eη,γ [At] as a function of xt. Let’s first focus on the region {(x1,t, x2,t) :

x1,t >
1
2 , x2,t >

1
2}.

Assume x1,t ∈ (1
2 , 1) and x2,t ∈ (1

2 , 1), then

Eη,γ [A1,t] = γ(d̄ < x1,t) + γ(d̄ > x1,t ∧ d̄ < x2,t)

(
1− 1

2
η

)
+ γ(d̄ > x1,t ∧ d̄ > x2,t)

1

2

Since payoffs are uniformly distributed in the region characterized by strategic comple-

mentarity

• γ(d̄ < x1) = 2
(
x1 − 1

2

)
• γ(d̄ > x1 ∧ d̄ < x2) = 4 (1− x1)

(
x2 − 1

2

)
• γ(d̄ > x1 ∧ d̄ > x2) = 4 (1− x1) (1− x2)

so that

Eη,γ [A1,t] = 2

(
x1,t −

1

2

)
+ 4 (1− x1,t)

(
x2,t −

1

2

)(
1− 1

2
η

)
+ 4 (1− x1,t) (1− x2,t)

1

2
.

= −1 + 2x1,t + 2x2,t − 2x1,tx2,t + (1− x1,t − 2x2,t + 2x1,tx2,t)η

A similar computation can be performed for Eη,γ [A2,t].

Next, we shall verify that if x1,t ∈ (1
2 , 1) and x2,t ∈ (1

2 , 1), then min{x1,t, x2,t} <
min{x1,t+1, x2,t+1} ≤ 1 for all t ∈ N. This is enough to prove that (1, 1) is the only steady

state in the region {(x1, x2) : x1 ∈ (1
2 , 1), x2 ∈ (1

2 , 1)} and that it is asymptotically stable

with basin of attraction at least as big as the region itself.

We first prove that Eη,γ [A1,t] > x1,t and Eη,γ [A2,t] > x2,t.
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Let us verify that Eη,γ [A1,t] > x1,t:

−1 + 2x1,t + 2x2,t − 2x1,tx2,t + (1− x1,t − 2x2,t + 2x1,tx2,t)η > x1,t

−1 + x1,t + 2x2,t − 2x1,tx2,t + (1− x1,t − 2x2,t + 2x1,tx2,t)η > 0

(x1,t − 1)︸ ︷︷ ︸
>0

(1− 2x2,t)︸ ︷︷ ︸
>0

(1− η)︸ ︷︷ ︸
>0

> 0, always satisfied.

By symmetry (the two groups have different sizes but it is enough to replace η with (1−η)

for the minority), we can repeat the reasoning for x2,t and show that Eη,γ [A2,t] > x2,t. In

particular, the expression for the average action is

Eη,γ [A2,t] = x2,t + (2x1,t − 1)(1− x2,t)η .

By eq. (3) both x1,t and x2,t are a convex combination of θ1,t and θ2,t. Moreover, if

Eη,γ [A1,t] > x1,t and Eη,γ [A2,t] > x2,t, then by eq. (5) both θ1,t > x1,t and θ2,t > x2,t.

Assume w.l.o.g. x1,t ≥ x2,t. Then, eqs. (3) and (5) imply x1,t+1 > x2,t and x2,t+1 >

x2,t, independently on the weights (p1,t, p2,t) of the convex combination in (3). More in

general, min{x1,t+1, x2,t+1} > min{x1,t, x2,t} for all t ∈ N. Moreover, by eqs. (3) and

(5) min{x1,t+1, x2,t+1} ≤ 1. Thus we can conclude that there are not steady states in

the region {(x1, x2) : x1 ∈ (1
2 , 1), x2 ∈ (1

2 , 1)} and that limt→∞min{x1,t, x2,t} = 1. The

latter together with the fact that norms are bounded above by 1 implies that (1, 1) is

asymptotically stable. The proof of the asymptotic stability of (0, 0), as well as the fact

that there are no steady states in {(x1,t, x2,t) : x1,t ∈
(
0, 1

2

)
, x2,t ∈

(
0, 1

2

)
}, proceeds along

the same lines.

We now turn to the region of initial conditions {(x1,t, x2,t) : x1,t ∈
(

1
2 , 1
)
, x2,t ∈

(
0, 1

2

)
}

to show that it does not contain steady states, so that the dynamics either converges to(
1
2 ,

1
2

)
or moves in another region.

Assume x1,t ∈ (1
2 , 1) and x2,t ∈ (0, 1

2), then

Eη,γ [A1,t] = γ(d̄ < x1,t) + γ(d̄ > x1,t ∧ b̄ > x2,t)
1

2
η + γ(d̄ > x1,t ∧ b̄ < x2,t)

1

2
.

Since payoffs are uniformly distributed in the region characterized by strategic comple-

mentarity

• γ(d̄ < x1) = 2
(
x1 − 1

2

)
• γ(d̄ > x1 ∧ b̄ > x2) = 2(1− x1)(1− 2x2)

• γ(d̄ > x1 ∧ b̄ < x2) = 2(1− x1)2x2
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so that

Eη,γ [A1,t] = 2

(
x1,t −

1

2

)
+ 2(1− x1,t)(1− 2x2,t)

1

2
η + 2(1− x1,t)2x2,t

1

2

= 2x1,t − 1 + η(1− x1,t)(1− 2x2,t) + 2(1− x1,t)x2,t.

Similarly, we can compute

Eη,γ [A2,t] = γ(d̄ < x1,t ∧ b̄ < x2,t)
1

2
(1 + η) + (d̄ > x1,t ∧ b̄ < x2,t)

1

2
γ

= 2(1 + η)

(
x1,t −

1

2

)
x2,t + 2(1− x1,t)x2,t.

We shall show below that for all norms {(x1,t, x2,t) : x1 ∈
(

1
2 , 1
)
, x2 ∈

(
0, 1

2

)
} x2,t <

Eη,γ [A1,t] < x1,t and x2,t < Eη,γ [A2,t] < x1,t. Using equation (3), the former implies

x2,t < θ1,t+1 < x1,t while the latter implies x2,t < θ2,t+1 < x1,t. Equation (5) then implies

x1,t+1 < x1,t and x2,t+1 > x2,t, proving the result. (in what follows we remove the time

index to simplify the notation)

Let us verify that Eη,γ [A1] > x1:

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 > x1

x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 > 0

(1− x1)(−1 + η(1− 2x2) + 2x2) > 0

(1− x1)︸ ︷︷ ︸
>0

(1− η)︸ ︷︷ ︸
>0

(2x2 − 1)︸ ︷︷ ︸
<0

< 0, always satisfied.

Let us verify that Eη,γ [A2] > x2:

2(1 + η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 > x2(

2(1 + η)

(
x1 −

1

2

)
+ 2(1− x1)

)
x2 > x2

(+2ηx1 − η + 1)x2 > x2

(η (2x1 − 1)︸ ︷︷ ︸
>0

+1)

︸ ︷︷ ︸
>1

x2 > x2, always satisfied.
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Let us verify that Eη,γ [A1] > x2

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 > x2

2x1 − 1 + η(1− x1)(1− 2x2) + 2(1− x1)x2 − x2 > 0

2x1 − 1 + (1− x1)(η(1− 2x2) + 2x2)− x2 > 0

2x1 − 1− x2 + (1− x1)(η + 2x2(1− η)) > 0, always satisfied.

Let us verify that Eη,γ [A2] < x1:

2(1 + η)

(
x1 −

1

2

)
x2 + 2(1− x1)x2 < x1

2x1x2 − x2 + 2ηx1x2 − ηx2 + 2x2 − 2x1x2 < x1

x2 + 2ηx1x2 − ηx2 < x1

x2(1− η + 2ηx1) < x1

x2 − x2η + 2ηx1x2 − x1 < 0

(x2 − x1) + x2η(2ηx1 − 1) < 0.

The left-hand side is maximized by η = 1. Thus, we should verify that

(x2 − x1) + x2(2x1 − 1) <0

2x1x2 − x1 <0

x1 (2x2 − 1)︸ ︷︷ ︸
<0

<0, always satisfied.

The proof that there are no steady states in {(x1,t, x2,t) : x1,t ∈
(
0, 1

2

)
, x2,t ∈

(
1
2 , 1
)
}

proceeds along the same lines.

A.7 Proof of Proposition 5

To verify that (1, 1), (0, 0), and
(

1
2 ,

1
2

)
are steady states one can proceed as in the proof

of Proposition 4. Before showing the existence of other fixed points, and assessing their

stability, we prove that (1, 1) and (0, 0) are unstable.

Let us consider the region x1,t ∈ (1
2 , 1) and x2,t ∈ (1

2 , 1). Assume x1,t > (1
2 , 1) and

x2,t > (1
2 , 1), then

Eη,γ [A1,t] = γ(b̄ < x1,t) + γ(b̄ > x1,t ∧ b̄ < x2,t)
1

2
η + γ(b̄ > x1,t ∧ b̄ > x2,t)

1

2
.

Since payoffs are uniformly distributed in the region characterized by strategic substi-

tutability
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• γ(b̄ < x1) = 2x1 − 1

• γ(b̄ > x1 ∧ d̄ < x2) = 4(1− x1)(x2 − 1
2)

• γ(b̄ > x1 ∧ b̄ > x2) = 4(1− x1)(1− x2)

so that

Eη,γ [A1,t] = (2x1,t − 1) + 4(1− x1,t)(x2,t −
1

2
)
1

2
η + 4(1− x1,t)(1− x2,t)

1

2
.

By eq. (3) both x1,t and x2,t are convex combinations of θ1,t and θ2,t. The latter de-

pends directly on Eη,γ [A1,t] and Eη,γ [A2,t], respectively, as shown in eq. (5). In particular,

Eη,γ [A1] < x1 and Eη,γ [A2] < x2 are sufficient conditions to ensure that min{x1,t+1, x2,t+1} <
min{x1,t, x2,t}. By symmetry the opposite holds when x1,t ∈ (0, 1

2) and x2,t ∈ (0, 1
2). Thus,

(1, 1) and (0, 0) are unstable.

Let us verify that Eη,γ [A1] < x1:

2x1 − 1 + 2η(1− x1)

(
x2 −

1

2

)
+ 2(1− x1)(1− x2) < x1

x1 − 1 + 2η(1− x1)

(
x2 −

1

2

)
+ 2(1− x1)(1− x2) < 0

(1− x1)︸ ︷︷ ︸
>0

(1− 2x2)︸ ︷︷ ︸
<0

(1− η)︸ ︷︷ ︸
>0

< 0, always.

By symmetry Eη,γ [A2] < x2 and, as we have argued above, both x1,t and x2,t decrease.

We now turn to the existence of other fixed points and to their stability, as well as to

the stability of
(

1
2 ,

1
2

)
, by analyzing the norms dynamics in the region where x1,t ∈ (1

2 , 1)

and x2,t ∈ (0, 1
2) and, symmetrically, x1,t ∈ (0, 1

2) and x2,t ∈ (1
2 , 1).

Recall that the norm dynamics isx1,t+1 = p1,t+1[(1− λ)x1,t + λEη,γ [A1,t]] + (1− p1,t+1)[(1− λ)x2,t + λEη,γ [A2,t]]

x2,t+1 = p2,t+1[(1− λ)x1,t + λEη,γ [A1,t]] + (1− p2,t+1)[(1− λ)x2,t + λEη,γ [A2,t]]
,

where p1,t =
(1−f1,t)(1−f2,t(1−η))

1−f1,tη−f2,t(1−η) , p2,t =
f2,tη(1−f1,t)

1−f1,tη−f2,t(1−η) , and from (7)

f1,t+1 = f̄(1− (1− η)|(Eη,γ [A1,t]− Eη,γ [A2,t])|)

f2,t+1 = f̄(1− η|(Eη,γ [A2,t]− Eη,γ [A1,t]])|)
.

When η = 1
2 , f1,t+1 = f2,t+1 so that p1,t+1 = 1− 1

2f1,t+1 and p2,t+1 = 1− p1,t+1 = 1
2f1,t+1.
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The norm dynamics simplifies tox1,t+1 = (1− 1
2f1,t+1)((1− λ)x1,t + λEη,γ [A1,t]) + 1

2f1,t+1((1− λ)x2,t + λEη,γ [A2,t])

x2,t+1 = 1
2f1,t+1((1− λ)x1,t + λEη,γ [A1,t]) + (1− 1

2f1,t+1)((1− λ)x2,t + λEη,γ [A2,t])

(15)

and, adding up the two equations,

x1,t+1 + x2,t+1 = (1− λ)(x1,t + x2,t) + λ(Eη,γ [A1,t]] + λEη,γ [A2,t]]). (16)

Next we shall show that if x1,t ∈ (1
2 , 1) and x2,t ∈ (0, 1

2), or x1,t ∈ (1
2 , 1) and x2,t ∈ (0, 1

2),

the term Eη,γ [A1,t]] + λEη,γ [A2,t] depends only on the sum zt = x1,t + x2,t, so that (16)

can be used to characterize the dynamics of zt.

Let us start from the region where x1,t ∈ (1
2 , 1) and x2,t ∈ (0, 1

2). For Eη,γ [A1,t] we

have

Eη,γ [A1,t] = γ(b̄ < x1,t) + γ(b̄ > x1,t ∧ d̄ > x2,t)(1−
1

4
) + γ(b̄ > x1,t ∧ d̄ < x2,t)

1

2
.

Since payoffs are uniformly distributed in the region characterized by strategic substi-

tutability

• γ(b̄ < x1) = 2x1 − 1

• γ(b̄ > x1 ∧ d̄ > x2) = 4(1− x1)(1
2 − x2)

• γ(b̄ > x1 ∧ d̄ < x2) = 4(1− x1)x2

then

Eη,γ [A1,t] = 2x1,t − 1 +
3

2
(1− x1,t)(1− 2x2,t) + 2(1− x1,t)x2,t

=
1

2
− x2,t + x1,t(

1

2
+ x2,t)

Turning to Eη,γ [A2,t], we have

Eη,γ [A2,t] = γ(b̄ < x1,t ∧ d̄ < x2,t)
1

4
+ γ(b̄ > x1,t ∧ d̄ < x2,t)

1

2

so that, computing the probabilities of having norms within the given bounds,

Eη,γ [A2,t] = 4

(
x1,t −

1

2

)
x2

1

4
+ 4(1− x1,t)x2,t

1

2

=

(
3

2
− x1,t

)
x2,t.

Importantly

Eη,γ [A1,t] + Eη,γ [A2,t] =
1

2
(1 + x1,t + x2,t) .
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Swapping the role of x1,t and x2,t, we get the values of Eη,γ [A1,t] and Eη,γ [A2,t], and their

sum, also in the region where x1,t ∈ (0, 1
2) and x2,t ∈ (1

2 , 1).

Using the sum of average payoffs in (16), we obtain the dynamics for zt = x1,t + x2,t:

zt+1 = (1− λ)zt +
λ

2
(1 + zt) =

(
1− λ

2

)
zt +

λ

2
(17)

The latter has a unique, and globally stable, steady state z∗ = 1, implying that we can

restrict the stability analysis of the norm dynamics on the line x1 + x2 = 1.

We turn to the analysis of the norm dynamics on the line x1 + x2 = 1. Without loss

of generality we also impose x1 ∈ (1
2 , 1). From the norms dynamics in (??) we obtain

x1,t+1 = (1− 1

2
f1,t+1)[(1− λ)x1,t + λEη,γ [A1,t]] +

1

2
f1,t+1[(1− λ)(1− x1,t) + λEη,γ [A2,t]]

where 
f1,t+1 = f̄(1− 1

2 |(Eη,γ [A1,t]− Eη,γ [A2,t])|)

Eη,γ [A1,t] = 5
2x1,t − 1

2 − x
2
1,t

Eη,γ [A2,t] =
(

3
2 − x1,t

)
(1− x1,t).

Substituting and simplifying we obtain

x1,t+1 =
1

2
+

(
x1,t −

1

2

)
(1 + λ− λx1,t)

(
1− f̄

(
1− (2− x)

(
x− 1

2

)))
or, defining yt = xt+1 − 1

2 ,

yt+1 = yt

(
1 + λ

(
1

2
− yt

))(
1− f̄ + f̄yt

(
3

2
− yt

))
= f(yt) = yth(yt). (18)

The dynamics of yt has y∗ = 0 as steady state, whose stability can be assessed by looking

at

f ′(y)
∣∣
y=0

= (h(y) + yh′(y))
∣∣
y=0

= h(0) =

(
1 +

λ

2

)(
1− f̄

)
.

Imposing f ′(0) < 1, we derive that the steady state y∗ = 0, and thus (x∗1, x
∗
2) =

(
1
2 ,

1
2

)
, is
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asymptotically stable when25

f̄ >
λ

2 + λ
.

Note that instead

f̄ <
λ

2 + λ
(19)

implies that y∗ = 0, and thus (x∗1, x
∗
2) =

(
1
2 ,

1
2

)
, is unstable. The existence of other steady

states and their stability depends on whether there exists y∗ ∈
(
0, 1

2

)
such that

f(y∗) = 0⇔ h(y∗) = 1 and |f ′(y∗)| < 1⇔ |h(y∗)− y∗h′(y∗)| < 1 .

Expliciting h(y) from (18) we obtain the following third degree polynomial

h(y) = f̄λy3 − 3

2
f̄

(
1 +

3

2
λ

)
y2 +

(
3

2
f̄ +

7

4
f̄λ− λ

)
y +

(
1 +

λ

2

)
(1− f̄). (20)

We shall use the properties of the function h and of its derivative h′ in the interval
[
0, 1

2

]
to verify the presence of asymptotically stable fixed point. Having

lim
y→±∞

h(y) = ±∞ and h

(
1

2

)
< 0

implies that there exists at most two solutions of h(y) = 0 in the interval
[
0, 1

2

]
. We shall

show that the exact number of solutions (steady states), and their stability, depends on

the relative strength of λ and f̄ .

Let us consider first the case f̄ < λ
2+λ , so that y∗ = 0 in unstable, as we derived in

25Alternatively one could derive the Jacobian of (15) in
(
1
2 ,

1
2

)
. Irrespectively from the region where average

actions are computed the result is

J

(
1

2
,

1

2

)
=

[
1− f̄

(
1
2 + 1

4λ
)

f̄
(
1
2 + 1

4λ
)
− 1

2λ

f̄
(
1
2 + 1

4λ
)
− 1

2λ 1− f̄
(
1
2 + 1

4λ
) ] .

Calling µ1 and µ2 the eigenvalues of J(xt) we get

µ1 = 1− f̄
(

1

2
+

1

4
λ

)
− 0.25

√
f̄2(2 + λ)2 − f̄(8 + 4λ)λ+ 4λ2

µ2 = 1− f̄
(

1

2
+

1

4
λ

)
+ 0.25

√
f̄2(2 + λ)2 − f̄(8 + 4λ)λ+ 4λ2

While µ1 < 1 is always true, for µ2 < 1 we should verify that

−f̄
(

1

2
+

1

4
λ

)
+ 0.25

√
f̄2(2 + λ)2 − f̄(8 + 4λ)λ+ 4λ2 < 0,

which is true when

λ <
2f̄

1− f̄
⇔ f̄ >

λ

2 + λ
.
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(19). It can be verified that

h(0) > 1,

implying that there exists one and only solution
�
y of h(y) = 0 in the interval

[
0, 1

2

]
. The

fact that such a fixed point is globally stable is implied by y∗ = 0 being unstable and

by the fact that f ′(y) > −1 for all y ∈
[
0, 1

2

]
(the latter is implied by f ′′′(y) < 0 and

f ′
(

1
2

)
> −1), so that f ′(

�
y) ∈ (−1, 1). We have shown that for f̄ < λ

2+λ the norm dynamics

converges to a (
�
x1,

�
x2) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
for all initial conditions in

[
1
2 , 1
]
×
[
0, 1

2

]
.

Let us now turn to the case f̄ = λ
2+λ . Here, h(0) = 1. If λ > 2

3 also h′(0) > 0 so that

there exists two steady states, y∗ = 0 and
�
y ∈

(
0, 1

2

)
, of which only the latter is stable

(because f ′(0) = 0 and f ′(y) > −1 for all y ∈
[
0, 1

2

]
). Lower values of λ, holding fixed

f̄ = λ
2+λ , imply instead h′(0) ≤ 0 so that the only steady state is y∗ = 0 and it is globally

stable.

We turn now to f̄ > λ
2+λ , implying that y∗ = 0 is asymptotically stable. Here,

h(0) < 1. If f̄ is close to λ
2+λ and λ high enough, there exist two solutions of h(y) = 1 in

the interval
(
0, 1

2

)
. Of these solutions the largest,

�
y, is asymptotically stable. The norm

dynamics has thus two locally stable fixed points
(

1
2 ,

1
2

)
and (

�
x1,

�
x2) ∈

[
1
2 , 1
]
×
[
0, 1

2

]
.

Increasing f̄ above a threshold f̂ , threshold that depends on λ, implies instead that there

are no solutions of h(y) = 1 (both (h(0) − 1) and h′(0) become rather negative) so that

y∗ = 0, corresponding to the norms
(

1
2 ,

1
2

)
, is the only, globally stable, fixed point.

By symmetry we can repeat the reasoning when x1,t ∈
[
0, 1

2

]
and x2,t ∈

[
1
2 , 1
]

and

find: converging to (
◦
x1,

◦
x2) for low f̄ ; convergence to

(
1
2 ,

1
2

)
for high f̄ ; and convergence

to either steady state, depending on the initial conditions, for intermediate f̄ . Since the

dynamics is symmetric to the one found above the threshold f̄ is the same.

�

A.8 Proofs of Section 3.2

Before we discuss the possible steady states in both complement and substitute environ-

ments for a singular payoff distribution, we provide a general convergence result. The next

proposition ensures the for all parameters and every initial conditions, the norm dynamics

converges and, moreover, all steady states that exist are asymptotically stable. Thus, we

can partition the whole state space of norms in basins of attraction.

Proposition 6 For all η ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1), and (b̄, d̄) ∈ [0, 1] × [0, 1], if all

material payoffs are determined by (b̄, d̄), then all steady states are asymptotically stable

and their basins of attraction form a partition of the state space of norms and socialization

levels.
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Proof

First note that the dynamics of f in (7) depends on norms through average payoffs.

Moreover, when all players face the same game, average payoffs are constant for norms in

the regions identified by Corollary 2.1. Thus, horizontal socializations f are constant in

each region identified by Corollary 2.1, and equal to f∗, and we can concentrate on the

dynamics of norms. For f∗ given, the dynamics of norms in (9) becomes

xt+1 = υ(ζ(xt,f
∗), ψ(f∗)).

or, expliciting the functions υ and ζ,

xt = (1− λ)

p1,t(f
∗) 1− p1,t(f

∗)

p2,t(f
∗) 1− p2,t(f

∗)

xt−1 + constant,

where the constant depends on average payoffs and f∗ and the expression of p1,t and p2,t

is in Corollary 1.1.

The norm dynamics within each region of the state space depends linearly on previous

norms through a stochastic matrix, whose composition is also stochastic. We can thus

solve the norm dynamics and get

xt − x∗ = (1− λ)tP(t)(x0 − x∗),

where P(t) is a stochastic matrix and x∗ is a steady states. Taking the limit, and assuming

that the steady state x∗ is in the region considered, we have convergence for all x0 within

the same region (and possibly outside from it if there are no steady state in other regions)

Below, we characterize all the possible steady states of (9) and their possible basin of

attraction.

�

A.9 Point Distribution: Steady States

In this section, we discuss all the possible steady state with point distribution.

We define e as a generic element of E , thus we can enumerate the possible steady states

as e1, e2, ...

Proposition 7 [Assimilation and Norm Neutrality]

Consider the norm and socialization level dynamics in (9). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1)

• e1 = (1, 1) and e2 = (0, 0) ∈ E. In both steady states the socialization level is f∗ =

(f̄ , f̄) and the average actions are, respectively, Eη[A∗] = (1, 1) and Eη[A∗] = (0, 0),
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• e3 =
(

1
2 ,

1
2

)
∈ E if and only if the original 2× 2 symmetric game has multiple Nash

equilibria. At the steady state the socialization level is f∗ = (f̄ , f̄) and the average

action is Eη[A∗] =
(

1
2 ,

1
2

)
Proposition 8 [Polarization]

Consider the norm and socialization level dynamics in (9). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1)

• e4 = (φ1, φ2, f̄η, f̄(1− η)) ∈ E if and only if φ1 > max{d̄, b̄} ∧ φ2 < min{d̄, b̄}. The

average actions at the steady state are Eη[A∗] = (1, 0).

• e5 = (1− φ1, 1− φ2, f̄η, f̄(1− η)) ∈ E if and only if 1− φ1 < max{d̄, b̄} ∧ 1− φ2 >

min{d̄, b̄}. The average actions at the steady state are Eη[A∗] = (0, 1).

Proposition 9 [Integration Without Assimilation]

Consider the norm and socialization level dynamics in (9). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1), with b̄ < d̄

• e6
d̄

=
(
1− 1

2(1− η)(1− φ1), 1− 1
2(1− φ2)(1− η), f̄

(
1− 1

2(1− η)2
)
, f̄
(
1− 1

2η(1− η)
))

∈ E if and only if 1 − 1
2(1 − φ2)(1 − η) < d̄ < 1 − 1

2(1 − η(1 − φ1)). The average

actions at the steady state are Eη[A∗] =
(
1, 1

2(1 + η)
)
.

• e7
d̄

=
(
1− 1

2ηφ1, 1− 1
2ηφ2, f̄

(
1− 1

2η(1− η)
)
, f̄
(
1− 1

2η
2
))
∈ E if and only if 1 −

1
2ηφ1 < d̄ < 1 − 1

2ηφ2. The average actions at the steady state are Eη[A∗] =(
1− 1

2η, 1
)
.

• e8
d̄

=
(

1
2ηφ1,

1
2ηφ2, f̄

(
1− 1

2η(1− η)
)
, f̄
(
1− 1

2η
2
))
∈ E if and only if 1

2ηφ2 < b̄ <
1
2ηφ1. The average actions at the steady state are Eη[A∗] =

(
1
2η, 0

)
.

• e9
d̄

=
(

1
2(1− η)(1− φ1), 1

2(1− η)(1− φ2), f̄
(
1− 1

2(1− η)2
)
, f̄
(
1− 1

2η(1− η)
))
∈ E

if and only if 1
2(1 − η)(1 − φ1) < b̄ < 1

2(1 − η)(1 − φ2). The actions at the steady

state are Eη[A∗] =
(
0, 1

2(1− η)
)
.

Proposition 10 [Partial Polarization]

Consider the norm and socialization level dynamics in (9). For all η ∈ (0, 1), b̄ ∈ (0, 1),

d̄ ∈ (0, 1), f̄ ∈ (0, 1), λ ∈ (0, 1), with d̄ < b̄

• e6
b̄

=
(
1− 1

2(1− φ1)(1 + η), 1− 1
2(1− φ2)(1 + η), f̄(1

2(1 + η2)), f̄(1− 1
2η(1 + η))

)
∈

E if and only if b̄ < 1 − 1
2(1 − φ1)(1 + η) ∧ d̄ < 1 − 1

2(1 − φ2)(1 + η). The average

actions at the steady state are Eη[A∗] =
(
1, 1

2(1− η)
)
.

• e7
b̄

=
(
1− φ1(1− 1

2η), 1− φ2(1− 1
2η), f̄(1− 1

2η(1− η)), f̄(1
2η(3− η))

)
∈ E if and

only if d̄ < 1 − φ1(1 − 1
2η) ∧ b̄ < 1 − φ2(1 − 1

2η). The average actions at the

steady state are Eη[A∗] =
(

1
2η, 1

)
.

• e8
b̄

=
(
φ1(1− 1

2η), φ2(1− 1
2η), f̄(1− 1

2η(1− η)), f̄(1
2η(3− η))

)
∈ E if and only if

φ2(1 − 1
2η) < d̄ < φ1(1 − 1

2η) ∧ b̄ > φ1(1 − 1
2η). The average actions at the steady

state are Eη[A∗] =
(
1− 1

2η, 0
)
.
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• e9
b̄

=
(

1
2(1 + η)(1− φ1), 1

2(1 + η)(1− φ2), f̄(1
2(1 + η2)), f̄(1− 1

2η(1 + η))
)
∈ E if and

only if 1
2(1 + η)(1− φ1) < d̄ < 1

2(1 + η)(1− φ2) ∧ b̄ > 1
2(1 + η)(1− φ2). The average

actions at the steady state are Eη[A∗] =
(
0, 1

2(1 + η)
)
.

Corollary 10.1 The steady state described in Proposition 7, 8, 9, and 10 are the only

possible steady states of (9). Moreover

• If the game has strategic complements, b̄ < 1
2 < d̄, (9) has a minimum of three steady

states, (e1, e2, e3), and a maximum of nine, (e1, ..., e9
d̄
).

• If the game has strategic substitutes, b̄ < 1
2 < d̄, (9) has a minimum of three steady

states, (e1, e2, e3), and a maximum of nine, (e1, ..., e9
b̄
).

Proofs of Propositions 7-10 and Corollary 10.1

If the distribution γ is singular, then Eη,γ [A] = Eη[A]. In order to prove the previous

propositions we need to substitute Eη[A] in equation (9). Having constant payoffs when

norms are within specific bound given by b̄ and d̄ and a linear dynamics of norms due to

cognitive dissonance, (5), proves convergence and leads to the following basins of attrac-

tion B(e1), B(e2), ... defined as a function of norms regions in Corollary 2.1.

1. B(e1)



3 R1∗,1∗ always

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ R1∗,1∗

3 R1,1∗ iff d̄ > b̄ ∧ e6
d̄
∈ R1∗,1∗

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R1∗,1 ∧ e6
d̄
∈ R1∗,1∗

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R1,1∗ ∧ e6
d̄
∈ R1∗,1∗

2. B(e2)



3 R iff e2 ∈ R

3 R1∗,0∗ iff e4 ∈ R

3 R0∗,1∗ iff e5 ∈ R

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ R

3 R1,1∗ iff d̄ > b̄ ∧ e7
d̄
∈ R

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ R

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ R

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ R

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ R

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ R

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ R
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3. B(e3)



3 R0∗,0∗ always

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ R0∗,0∗

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ R0∗,0∗

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R0,0∗ ∧ e8
d̄
∈ R0∗,0∗

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R0∗,0 ∧ e9
d̄
∈ R0∗,0∗

4. B(e4)


3 R1∗,0∗ iff e4 ∈ E

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ R1∗,0∗

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ R1∗,0∗

5. B(e5)


3 R0∗,1∗ iff e5 ∈ E

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ R0∗,1∗

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ R0∗,1∗

6. B(e6
d̄
)

3 R1∗,1 iff d̄ > b̄ ∧ e6
d̄
∈ E

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R1∗,1

7. B(e7
d̄
)

3 R1,1∗ iff d̄ > b̄ ∧ e7
d̄
∈ E

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R1,1∗

8. B(e8
d̄
)

3 R0,0∗ iff d̄ > b̄ ∧ e8
d̄
∈ E

3 R1∗,0∗ iff d̄ > b̄ ∧ e4 ∈ R0,0∗

9. B(e9
d̄
)

3 R0∗,0 iff d̄ > b̄ ∧ e9
d̄
∈ E

3 R0∗,1∗ iff d̄ > b̄ ∧ e5 ∈ R0∗,0

10. B(e6
b̄
)

3 R1∗,0 iff b̄ > d̄ ∧ e6
b̄
∈ E

3 R1∗,0∗ iff b̄ > d̄ ∧ e4 ∈ R1∗,0

11. B(e7
b̄
)

3 R0,1∗ iff b̄ > d̄ ∧ e7
b̄
∈ E

3 R0∗,1∗ iff b̄ > d̄ ∧ e5 ∈ R0,1∗

12. B(e8
b̄
)

3 R1,0∗ iff b̄ > d̄ ∧ e8
b̄
∈ E

3 R1∗,0∗ iff b̄ > d̄ ∧ e4 ∈ R1,0∗

13. B(e9
b̄
)

3 R0∗,1 iff b̄ > d̄ ∧ e9
b̄
∈ E

3 R0∗,1∗ iff b̄ > d̄ ∧ e5 ∈ R0∗,1
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Considering all the possible steady states and basins of attraction and we can easily check

that ⋃
∀ei∈E

B(ei) = [0, 1]2 × [0, 1]2

Thus, independently on parameters b̄, d̄, η, λ, f̄ the dynamics (9) converges to a stable

steady state for all initial norms x0.

�

B Microfoundation of Parental Transmission

B.1 Flexibility Parameter Optimal Choice

In this section we shall show that the vector of flexibility parameters f = (f1,t, f2,t) can

arise as the equilibrium of the game played by parents of groups i = 1, 2 who face the

following optimization problem (see e.g. Panebianco, 2014)

max
1−fi,t∈[0,1]

{
−(θi,t − xi,t)2 − 1

2
(1− fi,t)2

}
. (21)

Before we proceed, it is necessary to adapt the concept of cultural substitution to our

framework. According to Bisin and Verdier (2001) there is cultural substitution whenever

“parents have fewer incentives to socialize their children the more widely dominant are

their values in the population”. In our model the cultural traits are continuous and the

communities are fixed, moreover, according to (5) the transmitted norm for the community

i, θi,t, depends on the average action played. For his reason we are interested in re-define

the concept of cultural substitution (complementarity) with respect the difference between

the actions of community i and those of the whole society.

To be consistent with the standard literature about cultural transmission, we have

written the maximization problem (21) with respect the direct (vertical) socialization

effort 1 − fi,t. Since we are interested in the horizontal socialization, we study cultural

substitution (complementarity) with respect fi,t.

Recall that the average action in the whole society is

Āt = ηEη,γ [A1,t] + (1− η)Eη,γ [A2,t].

Definition 1 fi,t satisfies the cultural substitution (complementarity) property if, for all

parameter values, is a continuous, strictly decreasing (increasing) function with respect

|Eη,γ [Ai,t]− Āt|
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We define cultural substitution (complementarity) with respect the average actions and

not with respect population shares η and 1−η. This distinction is important and it is due

to the fact that in our framework population shares are fixed, while norms and actions

evolve over time. Moreover agents belonging to different ex-ante community may end up

to have the same norm and play the same action.

We further assume that parents are able to anticipate the offsprings’ future choices in

the young age, (3), buy that are not able to anticipate their payoffs in the adult age.

Proposition 11

Given the parents problem (21), there exists an fi,t that satisfies the cultural substitution

property.

Proof of Proposition 11

First we change variable and set τi,t = 1− fi,t so that (21) becomes

max
τi,t∈[0,1]

{
−(θi,t − xi,t)2 − 1

2
τ2
i,t

}
.

Parents are aware that

xi,t = pi(τt)θi,t + (1− pi(τt))θ−i,t.

Thus they solve

max
τi,t∈[0,1]

{
−(θi,t − pi(τt)θi,t − (1− pi(τt))θ−i,t)2 − 1

2
τ2
i,t

}
,

max
τi,t∈[0,1]

{
−(1− pi(τt))2(θi,t − θ−i,t)2 − 1

2
τ2
i,t

}
.

Solving the first order condition

∂U

∂τi,t
= 0 : 2

∂pi(θt)

∂τi,t
(1− pi(θt))(θi,t − θ−i,t)2 − τi,t = 0

where

pi(τt) =
τi,t(1− (1− τ−i,t)(1− η))

1− τi,tη − (1− τ−i,t)(1− η)
=
τi,t(η + τ−i,t(1− η))

τi,tη + τ−i,t(1− η)
,

∂pi(θt)

∂τi,t
=
τ−i,t(1− η)(η + τ−i,t(1− η)))

(τi,tη + τ−i,t(1− η))2
,

1− pi(τt) =
(1− τi,t)(1− η)τ−i,t
τi,tη + τ−i,t(1− η)

.

The latter imply

2
τ2
−i,t(1− τ−i,t)(1− η)2(η + τ−i,t(1− η)))

(τi,tη + τ−i,t(1− η))3
(θi,t − θ−i,t)2 − τi,t = 0. (22)
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(from (22) it is also evident that ∂2U
∂τ2
i
< 0, so that the second order condition is satisfied).

Next, we check the number of solutions of (22) or, equivalently, the solutions of

τi,t = 2(θi,t − θ−i,t)2τ2
−i,t(1− η)2(η + τ−i,t(1− η))

(1− τi,t)
(τi,tη + τ−i,t(1− η))3

(23)

On the left hand side of (23) we have a linear function while on the right hand side we

have a decreasing function (this is evident by computing the derivative of the r.h.s. with

respect to τi,t). Thus for each τ−i,t there exists only one real and positive best reply τi,t.

Since we have the two best reply functions (one for each group of parents) we can use the

Brouwer’s fixed point theorem to ensure that the game where parents solve (21) admits

at least an equilibrium in the space [0, 1].

If τ−i,t = 0, then τi,t = 0 implying that (0, 0) is always a solution of (23). Next we

shall prove that also an interior equilibrium exists. Sufficient conditions are that τi,t < 1

when τ−i,t = 1 for both i = 1, 2 and that best replies in zero have first derivative higher

than 1.

We first show that if τ−i,t = 1, then τi,t < 1. Substituting τ−i,t = 1 in (23) we obtain

τi,t = 2 · (θi,t − θ−i,t)2 · (1− η)2(η + (1− η)) · (1− τi,t)
(τi,tη + (1− η))3

.

whose solution in τi,t can only be in the interval (0, 1).

Next we use implicit function theorem on (22), which defines the function F , to show

that best replies in zero are increasing with first derivative higher than 1. We obtain

τ ′i,t(τ−i,t) = −
F ′τ−i,t
F ′τi,t

,

F ′τ−i,t =
(1− η)2ητ−i,t(1− τi,t)((1− η)τ−i,t(3τi,t − 1) + 2ητi,t)

(τi,tη + τ−i,t(1− η))4
(θi,t − θ−i,t)2,

F ′τi,t = −
(1− η)2τ2

−i,t(η(τ−i,t − 1)− τ−i,t)(η(τ−i,t − 2τi,t − 3)− τ−i,t)
(τi,tη + τ−i,t(1− η))4

(θi,t − θ−i,t)2 − 1.

Defining ∆θt = θi,t − θ−i,t

τ
′
i,t(τ−i,t) =

(1 − η)2ητ−i,t(1 − τi,t)((1 − η)τ−i,t(3τi,t − 1) + 2ητi,t)∆θ
2
t

(1 − η)2τ2−i,t(η(τ−i,t − 1) − τ−i,t)(η(τ−i,t − 2τi,t − 3) − τ−i,t)∆θ2t − (τi,tη + τ−i,t(1 − η))4
. (24)

Although we cannot use implicit function theorem in the point τ−i,t = 0, we can study

τ ′i,t(τ−i,t) when τ−i,t → 0.

From (23), τi,t is the solution of a quartic equation, thus τi,t = o(τα−i,t). Therefore

τ
′
i,t(τ−i,t) =

(1 − η)2ητ−i,t(1 − o(τα−i,t))((1 − η)τ−i,t(3o(τ
α
−i,t) − 1) + 2ηo(τα−i,t))∆θ

2
t

(1 − η)2τ2−i,t(η(τ−i,t − 1) − τ−i,t)(η(τ−i,t − 2o(τα−i,t) − 3) − τ−i,t)∆θ2t − (o(τα−i,t)η + τ−i,t(1 − η))4
(25)
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lim
τ−i,t→0

τ ′i,t(τ−i,t) = lim
τ−i,t→0

τ−i,t(τ−i,t + τα−i,t)

τ3
−i,t(−τ−i,t − τα−i,t)− τ4α

−i,t − τ4
−i,t

In studying limτ−i,t τ
′
i,t(τ−i,t) we have to consider, both at the numerator and the denom-

inator, only the smallest power of τ−i,t, thus we have to distinguish different cases.

• If α > 1 then

lim
τ−i,t→0

−τ2
−i,t

−τ4
−i,t

= +∞,

which is not possible, since it is not consistent with τi,t = o(τα−i,t).

• If 0 < α < 1 then

lim
τ−i,t→0

−τ1+α
−i,t

−τ4α
−i,t

= +∞ if α >
1

3
,

so that α > 1
3 is not consistent with τi,t = o(τα−i,t).

We can conclude that it must be 1
3 < α < 1. Both the numerator and the denominator of

(25) go to zero when τ−i,t → 0 and, since the denominator is a polynomial of higher order

in τ−i,t, the slope of the best-reply function is unbounded (from above) in a sufficiently

small neighborhood of zero.

We conclude the proof by showing that that best replies positively depend on |Eη,γ [Ai,t−1]−
Eη,γ [A−i,t−1]|. This is sufficient to show that the socialization problem satisfy the cultural

substitutions properties.

Defining ∆Eη,γ [At−1] = Eη,γ [Ai,t−1] − Eη,γ [A−i,t−1] and substituting equation (5) we

get

τi,t = 2((1−λ)(xi,t−1−x−i,t−1)+λ∆Eη,γ [At−1])2τ2
−i,t(1−η)2(η+τ−i,t(1−η)))

(1− τi,t)
(τi,tη + τ−i,t(1− η))3

τi,t positively depend on Eη,γ [Ai,t−1]−Eη,γ [A−i,t−1]. Since |Eη,γ [Ai,t]−Āt| is equivalent

to |(Eη,γ [Ai,t−1] − Eη,γ [A−i,t−1])(1 − η)|, then τi,t positively depends on |Eη,γ [Ai,t] − Āt|.
We also know that fi,t = 1− τi,t. Therefore, given the parents problem (21), fi,t satisfies

the cultural substitution property. The qualitative result on socialization level of our rule

(7) is equivalent to the one derived in a rational transmission model that stems from

preference for offspring with similar cultural traits.

In Figure 7, we show the change of best replies, and thus of the interior equilibrium, after

a change of |Eη,γ [Ai,t] − Āt| for both i = 1, 2. In particular, if |Eη,γ [Ai,t] − Āt| decreases

also the equilibrium vertical socialization decreases. Although we represent the case with

only one interior equilibrium, the same applies with more equilibria if one selects the
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Figure 7: Change of best replies of the Parental Transmission Game, and of the related Nash Equi-
librium, after a decrease in average payoffs difference.

equilibrium with max or min value of vertical socialization.

�
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