
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monica Billio 
Massimiliano Caporin 

Lorenzo Frattarolo 
Loriana Pelizzon 

 
 

Networks in risk spillovers: 
A multivariate GARCH 

perspective 
 

ISSN: 1827-3580 
No. 16/WP/2020 
 
 
      



W o r k i n g  P a p e r s   
D e p a r t m e n t  o f  E c o n o m i c s   

C a ’  F o s c a r i  U n i v e r s i t y  o f  V e n i c e   
N o .  1 6 / W P / 2 0 2 0  

ISSN 1827-3580 

The Working Paper Series  
is available only on line    

(http://www.unive.it/pag/16882/) 
For editorial correspondence, please contact: 

wp.dse@unive.it  

 Department of Economics 
Ca’ Foscari University of Venice 
Cannaregio 873, Fondamenta San Giobbe 
30121 Venice Italy 
Fax: ++39 041 2349210 
 

 

 
 

 
 

Networks in risk spillovers: 
A multivariate GARCH perspective 

 
 

Monica Billio 
Ca’ Foscari University of Venice  

 
Massimiliano Caporin 

Depar tmen t  o f  S ta t i s t i c a l  S c i en c e s ,  University of Padua  
 

Lorenzo Frattarolo 
Ca’ Foscari University of Venice  

 
Loriana Pelizzon 

SAFE-Goethe University Frankfurt (Germany); Ca’ Foscari University of Venice 
 

 
 
 
Abstract 
We propose a spatiotemporal approach for modeling risk spillovers using time-varying 
proximity matrices based on observable financial networks and introduce a new bilateral 
Multivariate GARCH speci_cation. We study covariance stationarity and identification of the 
model, develop the quasi-maximum-likelihood estimator and analyze its consistency and 
asymptotic normality. We show how to isolate risk channels and we discuss how to compute 
target exposure able to reduce system variance. An empirical analysis on Euroarea bond data 
shows that Italy and Ireland are key players in spreading risk, France and Portugal are major 
risk receivers, and we uncover Spain's non-trivial role as risk middleman. 
 
 
  
Keywords  
Spatial GARCH, network, risk spillover, financial spillover 
 
JEL Codes 
C58, G10 

 Address for correspondence: 
Massimiliano Caporin 

Department of Statistical Sciences 
University of Padua 

Via C. Battisti 241 
35121, Padova - Italy 

E-mail: massimiliano.caporin@unipd.it 
 

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions 
expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or 

incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character. 
 



Networks in risk spillovers:
A multivariate GARCH perspective∗

Monica Billio† Massimiliano Caporin‡ Lorenzo Frattarolo§

Loriana Pelizzon¶

∗We thank the participants at the International Symposium on Forecasting 2015, Riverside, USA; and
the Computational and Financial Econometrics Conference 2015 in Pisa, Italy; the SYRTO Conference
held in Amsterdam in 2015; the 79th International Atlantic Economic Conference held in Milan in 2015;
the 9th Financial Risk International Forum of the Bachelier Institute held in Paris in 2016; the 3rd Annual
Conference of the International Association for Applied Econometrics held in Milan in 2016; the SYRTO
Conference held in Paris in 2016; the Econometrics and Statistics conference held in Hong Kong in 2017;
the Systemic Risks in Financial Institutions held in Moscow in 2018; and seminar presentations at the
Complutense University of Madrid and Tasmanian School of Business and Economics for the comments
received from them. The usual disclaimers apply. The authors acknowledge financial support from
the European Union, Seventh Framework Program FP7/2007-2013 under grant agreement SYRTO-SSH-
2012-320270, the MIUR PRIN project MISURA - Multivariate Statistical Models for Risk Assessment,
the SAFE Research Center, funded by the State of Hessen initiative for research, LOEWE, and the
Department of Statistical Sciences of the University of Padova through the MIUR Project of Excellence
”Statistical methods and models for complex data.”
†University Ca’ Foscari Venezia (Italy)
‡University of Padova (Italy) - Corresponding author, Department of Statistical Sciences, Via C.

Battisti 241, 35121, Padova, massimiliano.caporin@unipd.it, +39-0498274199.
§University Ca’ Foscari Venezia (Italy)
¶SAFE-Goethe University Frankfurt (Germany) and University Ca’ Foscari Venezia (Italy)

1



Abstract

We propose a spatiotemporal approach for modeling risk spillovers using time-varying
proximity matrices based on observable financial networks and introduce a new bilateral
Multivariate GARCH specification. We study covariance stationarity and identification of
the model, develop the quasi-maximum-likelihood estimator and analyze its consistency
and asymptotic normality. We show how to isolate risk channels and we discuss how to
compute target exposure able to reduce system variance. An empirical analysis on Euro-
area bond data shows that Italy and Ireland are key players in spreading risk, France
and Portugal are major risk receivers, and we uncover Spain’s non-trivial role as risk
middleman.

Keywords: spatial GARCH; network; risk spillover; financial spillover.

JEL Classification: C58, G10

1 Introduction

The US subprime and European sovereign bond crises sparked a renaissance in the re-

search related to contagion and risk spillovers (Corsetti et al. (2011); Forbes (2012)) and

it continues to be highly relevant. Within this research area, we aim to introduce an

econometric model endowed with an economically grounded medium for variance and

covariance spillovers1. We consider the simplest model for this medium by focusing on

pairwise directed linkages summarized by a network. This allows us to introduce and

exploit a parallel between the network approach and the tools commonly used in spatial

econometrics.

Our proposal focuses on the risk dimension as Caporin and Paruolo (2015) with the

advantage to extend the standard spatial econometrics definition of proximity. In fact,

usually neighboring relations are time invariant, based on geographical measures of dis-

tance, as in Anselin (2013) and Elhorst (2003), or fixed economic properties, such as the

industry sectors membership in Caporin and Paruolo (2015). Our network relationships

are intended to be derived from specific and potentially granular financial variables (in

1see Bekaert and Harvey (1997); Ng (2000); Billio and Pelizzon (2003) for definitions of variance
spillovers



our application, cross-border exposures of national banking systems). These suggested

variables are those commonly perceived as potential time-varying transmission channels

of shocks, and can thus characterize relationships in all their weighted, directional, and

fluctuating generality. In particular, we take inspiration from a recent strand of spatial

econometrics literature that includes finance-based weight matrices in the analysis (Keiler

and Eder (2013), Blasques et al. (2016), Tonzer (2015), and Billio et al. (2017)). However,

building on Caporin and Paruolo (2015), we differentiate from the latter papers since we

focus on the risk dimension, as opposed to their aim to explain expected returns, and we

include both contemporaneous (spatial) transmission effects and lagged cross-sectional

(spatiotemporal) effects of the linkages, that are not considered in previous papers.

We propose an extension of the Spatial BEKK in Caporin and Paruolo (2015) named

Spatial Bilateral BEKK (SB-BEKK) model. The main difference, as the name suggests,

is the use of a bilateral specification for the proximity matrix, which introduces both

Heterogeneity and Asymmetry in the model. In fact, the use of variable-specific proxim-

ity parameters allows heterogeneity in the network mediated effects. Heterogeneity was

already present in the classical literature and Caporin and Paruolo (2015) revised it in a

volatility framework. Furthermore, we have asymmetry of the adjacency (weight) matrix,

which is typical of directed networks as considered in Billio et al. (2017); Tonzer (2015)

and Blasques et al. (2016). Heterogeneity and Asymmetry were already used separately,

but no one understood the consequences of their combination. Their joint consideration

leads to different multiplication possibilities in proximity matrices, allowing the joint use

of left and right multiplication parameters.

From a methodological point of view, the new bilateral specification requires a gen-

eralization of the identification condition stated in Caporin and Paruolo (2015). We are

able to link the identification to the algebraic connectivity characteristics of an auxiliary

undirected network, deriving a subtler condition than the one proposed in Caporin and

Paruolo (2015)2. This sensitiveness of the identification condition to the connectivity

2Nevertheless, we show how in the symmetric case we recover their results
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characteristics of the network sequence, implies that our bilateral specification is more

responsive to actual network values. Indeed, thanks to our bilateral proximity, we are the

first able to test with a simple linear restriction, the significance of each element of the

dynamic BEKK matrices A and B, with a restricted BEKK specification.

A second distinctive feature of our framework is the proper treatment of the time

dependence in the weight matrix. Previous applications of spatial methods to financial

markets averaged these time-varying relationships, reducing everything to a static frame-

work (see, as an example, Tonzer (2015)). We are the first to embed the time-varying

nature of financial proximity within a nonlinear model for conditional covariance, going

thus beyond the static weight matrix used in Caporin and Paruolo (2015). Recent ad-

vances in the linear modeling approach of spatial panels also address this point Lee and Yu

(2012), Qu et al. (2017). Unfortunately, their assumption on the weight-matrix normaliza-

tion is too restrictive in financial applications. Our methodology leads more appropriately

to less constraining normalizations that add economic meaning to the methodology (see

subsection 3.1.2). The essential ingredient for our time varying parameter recipe for a

BEKK model is the joint spectral radius (JSR) of Rota and Strang (1960). We explain,

with the aid of a simple Markov Switching example, how time variation in the matrix

of parameters complicate the discussion and how the JSR represents a robust tool to

obtain asymptotic properties. We derive covariance stationarity and QMLE consistency,

paying the reasonable price of dealing with heterogeneous products of matrices, in place

of matrix powers of the standard case, and computing bounds using the JSR. The proof

of asymptotic normality greatly simplifies by the use of the same tools, but requires also

our characterization of proximity in terms of spectral graph theory, see lemma 1.

With our model, we also take advantage of recent developments in spatial econometrics

literature to summarize the behavior of the large number of series of covariance spillovers

implied by model estimation. We also generalize the notion of direct and indirect effects

to our bilateral specification and to the covariance framework LeSage and Pace (2014).

The last methodological improvement is an alternative, policy oriented, out of sample
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evaluation, based on counterfactual simulations. This procedure is less sensitive to the

choice of covariance proxies needed in forecasting performance assessment. In addition,

our alternative scheme represents a first step for policy evaluation of the optimal network

configuration. A potential drawback of our proposal is that it can be criticized using the

classical Lucas
’
Äô argument. We discuss at length the issue and develop a parameter

constancy test that could mitigate the effects of Lucas
’
Äô critique.

We present an empirical analysis based on European sovereign CDS spreads consid-

ering a sample period that covers the collapse of Lehman Brothers, Greece’s bailout,

European sovereign crisis and Brexit. We focus on the role of cross-country banking

system exposures in explaining the European sovereign CDS spillovers, and provide a

counterfactual analysis evaluating the risk-reducing exposures on the period of the Brexit

referendum.

Our empirical analysis leverages on our methodological innovation introducing a few

elements: i) a normalization able to include rest of the world effects and to remove the

effect of a deleveraging trend; a network map of significant exposure channels for spillovers;

ii) an analysis of risk receivers and risk spreaders; iii) an evaluation of the diversification

through the network of exposures; iv) a characterization of the exposure configuration

that would have been able, according to our model, to reduce the variance during the

Brexit referendum.

The paper is organized as follows. In Section 2, we introduce our new methodology

detailing the econometric model, direct and indirect effects and the counterfactual anal-

ysis. In Section 3, we run an empirical analysis on CDS differences for the major Euro

area countries during the subprime, sovereign debt crises, and Brexit. Finally, Section 4

summarizes our findings and concludes. The Appendix A includes definitions, corollar-

ies, and proofs of the main results. The online supplementary material reports further

methodological details, complementary tables and figures.
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2 Spatial Econometrics of Network-Mediated Risk

Spillovers

Three parts compose our framework for a spatiotemporal econometric treatment of risk

and dependence relationships across entities. First, a multivariate GARCH model, in

which lagged shocks propagate through fluctuating relationships. Second, a covariance

decomposition able to investigate risk circulation and diversification in a synthetic way.

Third, an evaluation of model relevance based on a simulated counterfactual experiment.

2.1 Spatial Bilateral BEKK

One of the benchmark models for conditional covariance is the BEKK GARCH of Engle

and Kroner (1995). Unfortunately, even in its basic specification (the BEKK(1,1)), the

model is computationally unfeasible, even for moderate values of n, due to its large number

of parameters (2n2 +0.5n (n+ 1)). For this reason, the standard practice is to restrict the

number of parameters, using either scalar or diagonal matrices. Despite being feasible,

these common choices impose strong limitations on the detection of risk spillovers and

variance feedbacks.

To overcome these critical aspects, Caporin and Paruolo (2015) introduce the Spatial-

BEKK GARCH model. The spatial version of the BEKK model has the advantage of

being more parsimonious than the full BEKK case, and, at the same time, it is more

flexible than the diagonal specification, as it includes spillovers and feedback effects. We

give a graph theoretic interpretation of their model that allow an extension including

time-varying and asymmetric relationships. A weighted network (graph) is an ordered

pair of sets and a function G = (V,E,w) where V = {1, . . . , n} is the set of vertexes

(or nodes), E ⊂ V × V the set of edges (or arcs), and w(e) : E 7→ R+ is the weight

function attributing strength to the edges. An edge between two nodes exists if there

is a relationship between them and it can be identified as the (ordered) pair {i, j} with

i, j ∈ V . If there is no direction in the connection between nodes, then an edge {u, v} is
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an unordered pair of nodes and the graph G is said to be undirected, whereas if a direction

exists, then each edge {i, j} is defined as an ordered pair of nodes and the graph G is

said to be directed graph (or digraph). Different edges could have different strength as

summarized by the weight function. The vertex adjacency structure of a n-order graph

G = (V,E,w) can be represented through a n-dimensional matrix W called an adjacency

matrix. Each element ωi,j of the adjacency matrix is equal to w ({i, j}) if there is an edge

{i, j} ∈ E (i.e., an edge from institution u to institution v with i, j ∈ V ), and ωi,j = 0

otherwise. If the graph is undirected, then ωi,j = ωi,j, that is, the adjacency matrix is

symmetric. Common measures of node importance are in-degree , the number of incoming

edges to the node dinG,i =
∑n

i=1 ωi,j and out-degree, the number of outgoing edges from the

node doutG,i =
∑n

j=1 ωi,j . In the undirected case in-degrees and out-degrees are the same

and they are called degrees dG,i.

Given a vector yt of n cross-sectional observations at time t, we define ut = yt − ȳ,

where ȳ is the vector of sample means. Furthermore, we assume that a collection of

time-varying adjacency matrices is available, i.e. all our analyses are conditional to an

observed sequence of networks Wt, t = 1, 2, . . . T . Our Spatial Bilateral BEKK GARCH

(SB-BEKK) has the following structure:

ut = Σ
1/2
t εt εt ∼ N (0, In) , t = 1, . . . , T

Σt = CC ′ + A (Wt)ut−1u
′
t−1A (Wt)

′ +B (Wt) Σt−1B (Wt)
′

where C is a lower triangular matrix, Σ
1/2
t is the Cholesky decomposition of Σt,

3 and the

parameter matrices have a specification described in the following equations:

A (Wt) = A0 + A1,LWt +WtA1,R = diag (a0) In + diag (a1,L)Wt +Wtdiag (a1,R)

B (Wt) = B0 +B1,LWt +WtB1,R = diag (b0) In + diag (b1,L)Wt +Wtdiag (b1,R) , (1)

3Alternatively to the Cholesky, we can compute the square root by resorting to the spectral decom-

position and set Σ
1/2
t = DtP

1/2
t D′t, where Dt is the matrix of eigenvectors and Pt is the diagonal matrix

of eigenvalues.
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where a0, a1,M , b0 b1,M , with M = L,R, are n× 1 vectors.

In the spatial econometrics literature (see Anselin (2013), LeSage and Pace (2009),

Elhorst (2003)), parameter matrices in the system (1) are called proximity matrices. In

fact, in (1), the parameters are linearly dependent on the distances reported in the weight

matrices Wt. In this literature, the prototypical example for Wt is a constant symmetric

matrix detailing the real geographical distance.

Our model, instead, is able to handle time-varying asymmetric matrices and nests

the vast majority of previously introduced specification of proximity matrices, including

the heterogeneous impact specification, used in Caporin and Paruolo (2015), among the

others. The right multiplying matrices A1,R and B1,R are a novelty introduced by our

bilateral specification and exploit the asymmetry of adjacency matrix, proper of directed

networks.

Extending the model of Caporin and Paruolo (2015) to time-varying asymmetric ma-

trices, leads to a time-varying parameter model, making harder to derive stationarity of

the process, and asymptotic properties of the estimator. In addition, the bilateral speci-

fication needs a different discussion of identification conditions, that depends on the fine

details of the connectivity of the network sequence. In this respect, our network point of

view cannot be seen as a simple redefinition of previous results, but allow us, to properly

identify and estimate the model.

We also extend covariance stationarity, consistency and asymptotic normality in the

case of time varying proximity using the Joint Spectral Radius. This is another innovation

that could be useful in discussing asymptotic properties of different models.

We suggest to estimate the parameters of our SB-BEKK, conditional on the availability

of the full sequence Wt for t = 1, 2, . . . , T , by means of QMLE methods. If we denote

by θ ≡ (vec (C) , a0,M , a1,M , b0,M , b1,M) the vector of model parameters, the log-likelihood

LT (θ) is :

`t (θ) =
n

2
log (2π) +

1

2
det (Σt) +

1

2
ut (Σt)

−1 u′t , LT (θ) = − 1

T

∑T
t=1 `t (θ) .
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2.1.1 Network Connectivity in Identification

Unidentified models are characterized by a singular likelihood’s Hessian, causing highly

unstable QMLE numerical estimates. Identification restriction are essential to obtain a

reliable inference based on QMLE. The identification condition of Caporin and Paruolo

(2015) does not extend to our asymmetric model. This leads us to the, lead us to the

discovery of an interesting relationship between parameters identification and network

connectivity.

In the following proposition and lemma, we extend results included in Caporin and

Paruolo (2015), with a detailed study of identification for the bilateral specification. More-

over, as the network matrices Wt might evolve on a time scale lower than that adopted for

entities, as we will see in the empirical section, we allow for the presence of a collection

of K distinct matrices Wk, k = 1, 2, . . . K with K ≤ T .

Difficulties in identification of our model can be understood considering the example

of a constant symmetric Wk = W = W ′. In that case matrices commute

Wdiag (a1,R) =
n∑
i=1

a1,R,iωi,j =
n∑
j=1

a1,R,jωi,j = diag (a1,R)W ′ = diag (a1,R)W,

and our proximity matrix A (W ) is:

A (W ) = diag (a0) In + (diag (a1,L) + diag (a1,R))W.

The same proximity can be obtained using all the combination of left and right param-

eters that give equal element by element sum and the model is not identified. One possible

solution is restricting right parameters to zero, reducing to Caporin and Paruolo (2015)

original specification. Accordingly, our condition must be finer than the one proposed in

this previous manuscript, and it must properly take into consideration the connectivity

of a directed network sequence.

The study of identification is possible by making explicit the expression of A (Wk) and
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B (Wk) as a linear function of a vector of parameters. Considering A (Wk) as an example,

we could write:

vec (A (Wk)) = M (Wk)


a0

a1,L

a1,R

 , M (Wk) =

[
In ⊗ In W ′

t ⊗ In In ⊗Wk

]
(I3 ⊗H)

where H =
∑n

i=1 ei ⊗ eie′i and ei is the i-th column of In.

This explicit expression is novel with respect of Caporin and Paruolo (2015), even in the

symmetric case. Moreover, an anonymous referee to whom we are particularly grateful

pointed out how this linear map, in the asymmetric case, cannot be injective due to the

rank deficiency of M (Wk). A proper identification of the model is, then, impossible,

without imposing further restrictions on the parameters.4

Before stating the identification conditions, we remind to the reader additional notions

from network theory needed in the following. Given an undirected graph G the local

structure and connectivity is encoded in the Laplacian matrix:

L (G) = diag (dG)−W (2)

A connected component of G is a sub-graph in which all the nodes can be reached from

any other node. A strongly connected component is a sub-graph in which all the nodes

can be reached from any other node following edge direction. For undirected graphs all

connected component are strongly connected. An isolated node is considered a strongly

connected component.

Starting from each Gk define an auxiliary network sequence Gk = (V,Ek,wk), on the

same nodes, but with undirected edges and different weights, according to the adjacency

4We reproduce conditions in Caporin and Paruolo (2015) for the symmetric case; see corollary 1 in
Appendix subsection A.1
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matrix Wk :

Wk = (W ′
k �W ′

k) (DWk�Wk
)−1 (Wk �Wk) , DWk�Wk

= diag ((Wk �Wk) 1) .

We define as ck the number of connected components in Gk of which sk isolated nodes

without self-loops.

The next lemma is the core result linking the proximity matrix to network connectivity.

It is needed for identification and asymptotic normality.

Lemma 1 (Spectrum ofM ′M). M (Wk)
′M (Wk) has n eigenvalues equal to 1 , n eigenval-

ues equal to the degrees dGk,i , n eigenvalues equal to the eigenvalues of L (Gk). Suppose

that Gk has ck connected components of which sk are isolated nodes without self loops.

Then M (Wk)
′M (Wk) has ck + sk null eigenvalues.

Next we propose our identification Theorem:

Theorem 1 (Identification). Assume that at least one of the matrices Wk is not sym-

metric. Let πK correspond to the vectorized collection of either A (Wk) or B (Wk) for

k = 1, 2, . . . K, that is πK = vec
([
A (W1)′ : A (W2)′ : . . . : A (WK)′

]′)
, where A (Wk) or

B (Wk) matrices are those coming from a full BEKK model fitted on each sub-sample, and

are thus globally identified. Let ψ be the parameter vector in the SB-BEKK representation

corresponding to πK. Additionally, let χ = min
1,...,K

ck + sk. Then, a necessary and sufficient

condition for the identification of ψ is that we place χ linear restriction on it.

In the next lemma a sufficient condition for a single restriction is given on the original

network sequence Gk.

Lemma 2 (Single Restriction). A sufficient condition to have χ = 1 is that at least one

of the original weight matrices Wk is fully indecomposable, inducing an ultrastrong graph

in the sense of Brualdi (1967).

The condition of Lemma 2 is not restrictive for small complete networks such as the

one we use in our empirical analysis. For bigger and sparser networks sequences, the
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number of components of the induced networks sequence Gk could be checked using, for

example, Tarjan’s algorithm (Tarjan, 1972). In figure 1, we give a simple example, where

G has single strongly connected component but the induced G has three.

[Insert figure 1 around here]

In the full BEKK(1,1), it is sufficient to set A1,1, B1,1 > 0 to have global identification,

and in our case, this is equivalent to the conditions a0,1 > 0 and b0,1 > 0. Then, under

Lemma 2, we choose to achieve identification by imposing an equal sum of left and right

parameters:

a1,R,n = −
∑n

i=1 a1,L,i +
∑n−1

i=1 a1,R,i , b1,R,n = −
∑n

i=1 b1,L,i +
∑n−1

i=1 b1,R,i

We stress that this identification strategy allows for the presence of coefficients of both

signs in a0, b0, a1,L, a1,R, b1,L and b1,R. In subsection 2.2, we show how this allows contri-

butions that reduce the variance. Subsection A.1 in the Appendix reports the proof of

the previous theorem and lemmas, alongside corollary 1 for symmetric Wk matrices.

2.1.2 Joint Spectral Radius in Covariance Stationarity

A necessary and sufficient condition for stationarity and geometric ergodicity, and thus a

sufficient condition to ensure the ergodicity and strict stationarity of the process implied

by the model, is covariance stationarity, Boussama et al. (2011). According to the discus-

sion in Avarucci et al. (2013), this condition, distinct from the univariate case, appears

necessary for consistency and asymptotic normality of the QMLE estimator. To show the

covariance stationarity, we introduce a VARMA representation of the process. In addi-

tion, the condition for covariance stationarity will be expressed using the joint spectral

radius (JSR) of Rota and Strang (1960). It is well known that a BEKK model admits a

VARMA representation (see, for example, Hafner and Rombouts (2007)). In our case, the

VARMA coefficients are time varying because they depend on the network sequence, and

ensuring covariance stationarity requires the study of convergence of a geometric series

12



with heterogeneous terms, analogous to the one studied in the generalized autoregressive

model; see Brandt (1986) and Bougerol and Picard (1992).

Heterogeneity requires a specific handling of stationarity as we discuss in the follow-

ing instructive example.5 We introduce a 2 state Markov Switching bivariate VAR(1)

model. The series of coefficient matrices follows a Markov chain, showing a non-trivial

autocorrelation pattern as we expect from coefficients deriving from a series of financial

networks. Conditionally on the realized sequence of networks the process is a VAR. The

conditional process is then similar to the conditional VARMA representation that we will

give of the SB-BEKK. In addition, sharp sufficient conditions for covariance stationarity

of this model can be found in Francq and Zakoian (2002). The model is the following:

Xt = µ+ ΦstXt−1 + εt, µ = 1
2
12, εt ∼ N (02, I2)

Let us define six matrices

Ψ0 =
2

3

 cos
(

3
2

)
sin
(

3
2

)
−2 sin

(
3
2

)
2 cos

(
3
2

)
 Ψ1 =

2

3

 2 cos
(

3
2

)
2 sin

(
3
2

)
− sin

(
3
2

)
cos
(

3
2

)


Ξ0 =
2

3

 cos
(

3
2

)
sin
(

3
2

)
−2 sin

(
3
2

)
2 cos

(
3
2

)
 Ξ1 =

2

3

 2 cos
(

3
2

)
−2 sin

(
3
2

)
sin
(

3
2

)
cos
(

3
2

)


P =

 0.4 0.6

0.6 0.4

 Q =

 0.6 0.4

0.4 0.6


and consider the four specifications:

1. Φst = Ψst , P (st| st−1) = P

2. Φst = Ψst , P (st| st−1) = Q

3. Φst = Ξst , P (st| st−1) = P

4. Φst = Ξst , P (st| st−1) = Q

5Adapted from Jungers (2009) to a stochastic framework.
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It is well known that a VAR(1) is covariance stationary if the maximum absolute value of

the eigenvalues (spectral radius ρ (Φ)) of its coefficient matrix Φ is less than one. We have

ρ (Φ0) = ρ (Φ1) = ρ (Ξ0) = ρ (Ξ1) = 0.9428 and, naively, one can infer that the switching

model inherit covariance stationarity, in all specifications.

[Insert figure 2 around here]

Figure 2 shows simulated paths of the two variables of the model in case the states are

fixed or switching. The series in the bottom left panel, corresponding to the switch-

ing specification Φst = Ψst ,P (st| st−1) = Q, clearly exhibit non stationarity. This

counter intuitive result has the following explanation. The spectral radius of the product

ρ (Ψ0Ψ1) = ρ (Ψ1Ψ0) = 1.7510, is bigger than one. The auto-covariance function of the

model conditional on the realized chain will be a function of the product of the realized

matrix coefficients. The unconditional stationarity of the model is going to depend on the

ratio of probability of occurrence in each possible matrix product sequence of the squares

Ψ2
0,Ψ2

1 that favor stationarity , and of the mixed products Ψ0Ψ1,Ψ1Ψ0 that favor non

stationarity. Given the transition matrix P of the chain, alternating occurrence is more

probable, in this particular specification, and the non stationary character prevail. This

example shows that in the heterogeneous case is important to take into consideration the

spectral characteristic of all the possible products of the realization of matrix coefficients.

The JSR was designed with this scope. In particular, it is possible to show that the JSR

is an upper bound for the spectral radius of all possible products.

To introduce it, let us consider an infinite countable set of n×n matrices A = {Ai}∞i=0

with the convention that A0 = In. A generic product of t elements from A could be

obtained by extracting uniformly, with replacement, t elements from A and matrix-

multiplying them. For example, suppose that the elements sampled have indexes σ1 =

44, σ2 = 44, σ3 = 20, . . . , σt = 1; the product will be A2
44A20 · · ·A1. Let us define the set

of all those possible products At =
{
M ∈ At|M =

∏t
i=1Aσi , s.t. Aσ1 ∈ A, . . . Aσt ∈ A

}
.

We have:

Definition 2.1. Joint Spectral Radius. Given a proper norm ‖ · ‖ on Rn×Rn, we define
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on the set A the joint spectral radius % (A) by

% (A) = lim
t→∞

ρ̂t (A) (3)

ρ̂t (A) = sup
Aσ1 ,...,Aσt∈A

(∥∥∥∥∥
t∏
i=1

Aσi

∥∥∥∥∥
)1/t

(4)

The JSR depends only on the set of matrices included in the sequence with no reference

to the probability measure associated to it. Even if a bound on the spectral radius is a

strong requirement, it is robust with respect to the choice of probability measure. For our

conditional modeling this is an essential feature as we do not detail the underlying data

generating process (DGP) of the network sequence.

Let us clarify the previous statement referring to our Markov Switching example.

Considering Ξ0 and Ξ1 the spectral radius of the mixed product is less than one (= 0.9345),

the JSR of the set {A0, A1} is also bounded by one. Independently from the probability

measure i.e. from the choice of P or Q as a transition matrix, the process would be

stationary in covariance. This can be seen in the bottom right part of figure 2. Instead,

in the cases, with Φst = Ψst , covariance stationarity depends on the choice of measure

induced by the different transition matrices: stationary with P , non stationary with Q (see

bottom left part of figure 2).6 So, an unitary bound on the JSR can be more restrictive

than needed, but it is robust against any possible DGP of the random matrix sequence

that satisfies it. Since in the following we condition on the matrix sequence without

specifying its DGP, bounds on the JSR represent a suitable approach.

We are now ready to introduce the VARMA representation of the SB-BEKK(1,1):

Xt = C̃ +
(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1 + ηt (5)

6Covariance stationarity of the example could be checked using the sharper bounds in Francq and
Zakoian (2002)
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where

Xt = vech (utu
′
t) , ξt = vech (Σt) , ηt = Xt − ξt, C̃ = vech (CC ′)

Ã (Wt) = Ln (A (Wt)⊗ A (Wt))Dn, B̃ (Wt) = Ln (B (Wt)⊗B (Wt))Dn,

and Ln is the elimination matrix, while Dn is the duplication matrix (see Magnus and

Neudecker (1999)). Given the distribution of εt in (1), adopting the terminology of Hafner

and Rombouts (2007), we have that ut is a strong GARCH process and ηt is a martingale

difference sequence. This is true even if the innovation distribution is misspecified, but

remains i.i.d. Equation (5) puts the model outside of the general specifications of dynamic

spatial panel models given in Elhorst (2001), because of the presence of a spatiotemporal

moving average term.

Given the discussion at the beginning of the subsection the following theorem is not

a surprise:

Theorem 2 (Covariance Stationarity). If the joint spectral radius

%

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1,

the SB-BEKK(1,1) process is covariance stationary.

We stress that the use of bounds on the joint spectral radius is a condition on dynamic

stability strictly weaker than the ones already present in the spatial econometrics litera-

ture. For example, the uniform boundedness assumption size in Lee and Yu (2012), being

based on row and column sum norm, implies our JSR condition. This is relevant for our

empirical application where the choice of normalization is different from the standard row

sum, and motivated by the economics of the data used (see subsection 3.1.2).
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2.1.3 Inference and Networks

The possibility of inference on single elements of time varying coefficient matrices with a

single linear restriction is one of the main features of our left-right specification not acces-

sible to any previous spatial model in the literature. Using a simple linear restriction, we

can test whether an off-diagonal element of A (Wt) (or B (Wt)) is statistically significant:

H0,i,j : [A (Wt)]i,j = (a1,L,i + a1,R,j)ωt,i,j = 0 i 6= j (6)

Then, if we are able to show consistency and asymptotic normality of the QMLE esti-

mator, conditionally on the network sequence, the test statistic for H0,i,j is asymptotically

distributed as a standard normal. In our empirical application, we propose a network rep-

resentation of results from the test, picturing the significance and relevance of different

channels of risk circulation. We now discuss the consistency and asymptotic normality of

the QMLE estimator that make this mapping of risk flows possible.

We follow closely Hafner and Preminger (2009) proof and substitute products of ma-

trices in place of simpler powers of matrices, whenever it is the case. Accordingly, the

bounds needed to obtain the results are expressed in terms of joint spectral radii, mak-

ing the conditional results valid for all the DGPs of the network sequence that respect

our covariance stationarity condition. In addition, as already remarked, in the proof of

asymptotic normality, bounds on likelihood derivatives depend on bounds on the spectral

radius of M (Wk)
′M (Wk) requiring again the network perspective of lemma 1.

In the following, ‖·‖ represents the norm operator, with different norms being specified

when needed. Denote by θ the vector of stacked parameters that implicitly satisfy the

identification condition of Theorem 1, and denote the true parameter vector as θ0. Define

the QMLE as θT = arg maxθ∈θ LT (θ). Additionally, let Σ̃t be the process where the

starting values are drawn from their stationary distribution, and let ξ̃t, L̃T and ˜̀
t be

defined analogously.

We begin by discussing the assumptions needed for consistency.

17



Assumption 1. The parameter space Θ is compact and %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1.

Assumption 2. {ut} is strictly stationary and ergodic, and ∃s > 0 s. t. E [‖ut‖s] <∞ .

Assumption 3. E [‖εt‖s] <∞, Var [εt] = In.

Assumption 4. The model is identified: i.e., conditions in Theorem 1 are satisfied.

Our assumptions parallel those in Hafner and Preminger (2009). The only conceptual

difference, once we take into account our use of time-varying matrices, is in Assumption

1, where we bound the JSR of the sum of Ã (Wt) and B̃ (Wt), instead of a condition

that points only at the JSR of B̃ (Wt) matrices. In Lemma 4 in subsection A.2 of the

Appendix, we show that one condition implies the other. This was done for the standard

BEKK in Boussama et al. (2011), where they also show that bounding the spectral radius

of the sum was a sufficient condition for strictly stationarity and ergodicity. Then, in the

standard framework, the first part of assumption 2 would be redundant. Showing that

this also applies to our case is outside the scope of the paper.

Theorem 3 (Consistency). Under Assumptions 1-4 θ̂T →a.s. θ0.

To establish asymptotic normality, the following additional assumptions are needed.

Assumption 5. The parameter θ0 is an interior point of Θ

Assumption 6. E
[
‖ut‖6] <∞

Assumption 7. sup maxi=1,...,n

∑n
j=1 Wt,ij ≤ d∗ <∞ a.s.

Assumptions 5 and 6 are identical to assumptions adopted in Hafner and Preminger

(2009). Assumption 7, pointing at the network structure, is not particularly restrictive.

In fact, it is trivially verified for the row-normalization case, but it also justified for

different normalization schemes. For example, the network used in our empirical analysis

has d∗ = 1 (c.f. section 3.1.2).

Further, let us also define the following matrices

V = E

[
∂ ˜̀(θ0)

∂θ

∂ ˜̀(θ0)

∂θ′

]
, J = E

[
∂2 ˜̀(θ0)

∂θ∂θ′

]
.
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Theorem 4 (Asymptotic Normality). Under Assumptions 1-7

√
T
(
θ̂T − θ0

)
→D N

(
0, J−1V J−1

)
.

2.2 Direct, Indirect and Mixed Spillovers

The introduction of proximity matrices in the dynamic of BEKK models allows the es-

timation 0.5(n + 1)n series of filtered conditional covariance elements. For n ≥ 3, it is

difficult to interpret directly all the recovered series, and it is therefore desirable to have

summary measures backed by some theoretical line of reasoning. This is a classical issue

in spatial econometrics, where we observe the same difficulty in interpreting the impact of

explanatory variables or innovations. The complexity stems from the large cross-sectional

dimension of the analyzed data (or series), as in our case. The traditional solution is

to resort to summary measures of the direct and indirect effects of explanatory variables

and shocks; see LeSage and Pace (2009) and LeSage and Pace (2014). The SB-BEKK

framework has an additional layer of complexity. As we discuss in the following, left and

right multiplication allow researchers to focus on different aspects of risk propagation.

To better understand this model attitude, it is advisable to recall the notions of direct

and indirect effects of shock diffusion, previously introduced in the spatial econometrics

literature (see LeSage and Pace (2014)) and generalized here for the SB-BEKK model.

The starting point is the Spatial Error Model (SEM), where the n−variate dependent

variable vt depends on an n−dimensional vector of shocks ut, on a time invariant (for

simplicity) weight matrix W , and on a scalar parameter θ

vt = (In + θW )ut.
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LeSage and Pace (2014) decompose the error term in the direct effect v0
t and the local

indirect effect v1
t as follows:

vt = v0
t + v1

t , v0
i,t = [Inut]i = ui,t , v1

i,t = [θWut]i = [Wθut]i = θ

n∑
j=1

ωi,juj,t

where [X]i,j identifies the element of position i, j of the argument matrix X with one

single index if X is a vector, ωi,j represents the “distance”between subject i and subject

j coming from the spatial weight matrix W , and by definition ωi,i = 0.

This means that the target variable vi,t depends on its own shock, as monitored by

v0
t , the direct impact. Further, it is also affected by the indirect impact v1

t . The latter

captures the effect coming from neighboring elements vj,t with i 6= j and with an impact

only from those j such that ωi,j 6= 0. We note that in the SEM model, left and right

multiplication are identical due to the presence of a scalar parameter θ. We translate

these elements into the SB-BEKK model and provide a novel decomposition. We focus

on the ARCH part of the model because we want to highlight the role of innovations. We

note that

vt = A (W )ut = (A0 + A1,LW +WA1,R)ut = v0
t + v1

L,t + v1
R,t (7)

v0
i,t = [A0ut]i = a0,iui,t (8)

v1
L,i,t = [A1,LWut]i = a1,L,i

n∑
j=1

ωi,juj,t. (9)

v1
R,i,t = [WA1,Rut]i =

n∑
j=1

ωi,ja1,R,juj,t. (10)

The i−th element of vt depends on its own past shock, weighted by the coefficient a0,j

(direct effect), on the past shocks of its neighbors weighted by the distance, loaded with

the sum of the same coefficient, a1,L,j (indirect left effect), and a coefficient different from

each source a1,R,i (indirect right effect). For the GARCH part, similarly to the ARCH
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case, we introduce:

m0
i,t = [B0ut]i = b0,iui,t (11)

m1
L,i,t = [B1,LWut]i = b1,L,i

n∑
j=1

ωi,juj,t (12)

m1
R,i,t = [WB1,Rut]i =

n∑
j=1

ωi,jb1,R,juj,t. (13)

Consequently, bearing in mind that we are discussing properties of a conditional co-

variance model, the left multiplication term allows us to investigate which are the risk

receivers. In the right multiplication term, distinct from the left multiplication case, the

coefficients in the indirect effect are not pointing at the subject we are monitoring (sub-

ject j) but at the subject originating the shock (subject i). With the right multiplication

term, the parameters magnify the effect of the sources of risk, allowing us to focus on risk

spreaders.

Given the distinction between spreader in receivers possible in our model we need a

suitable refinement of decomposition introduced in the spatial econometrics models

In addition, focusing on conditional covariance decomposition matrices, we have a

breakdown conditional to the past, while usually it considers only contemporaneous vari-

ables, and we deal with quadratic forms.

Our decomposition will then be built of quadratic blocks depending on lagged vari-

ables. As an example we detail the contribution mediated by the interaction of two

indirect left effect in the ARCH and GARCH part:

v1
L,i,t−1, v

1
L,j,t−1 =

[
A1,LWΣt−1W

′A′1,L
]
i,j

(14)[
Ω1,1
L,L,t−1

]
i,j

= Cov
(
m1
L,i,t−1,m

1
L,j,t−1

∣∣ It−2,W
)

=
[
B1,LWΣt−1W

′B′1,L
]
i,j
, (15)

where It−2 is the information set till t− 2.

We propose a four-term decomposition of the system-conditional covariance:

1. Constant Contribution: This represents the part of the covariance that is unrelated
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to the model dynamic and independent from both the network and the time;

2. Direct Contribution: This represents the covariance contribution from each entity’s

own past; it is the variance due to past direct effects, and therefore has no depen-

dence on the network;

3. Indirect contribution: This represents the covariance contribution due to indirect

effects that are due , only, to the assets’ network exposures;

4. Mixed contribution: This represents the covariance contribution originating from

the quadratic form of the model, and is due to the interaction of both direct and

indirect elements.

[Insert table 1 around here]

In Table (1), we summarize the elements appearing in the conditional covariance

decomposition.

We highlight that the decomposition is time varying by construction and might also

be affected by the dynamic in the network structure. Since the model specifications allow

for positive and negative signs on both ARCH and GARCH coefficients, in principle,

diversification benefits could arise from all contributions less the direct one. The variance

decomposition outlined above are specific to a single element of the covariance matrix.

Of particular interest in the empirical section will be the decomposition of the variance of

single series, a breakdown able to highlight which entity risk is the most affected by the

presence of the exposure network (i.e., which are the more fragile nodes in the network).

However, we might be interested in recovering a synthetic measure of the decomposition

at the entire covariance level. We propose to define this synthetic (and time-varying)

measure starting from a portfolio representation of the system, with portfolio weights

given by the vector z, such that
∑n

i=i zi = 1, and therefore leading to the following
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variance contributions (V C):

σ2
t = Var (z′yt| It−1)

= V CConstant
t + V CDirect

t + V CIndirect
t + V CMixed

t . (16)

The previous decomposition is able to report, globally, the importance of the network

sequence through time. Another possibility is instead to compute the marginal spillover

contributions MSCk,t that we could attribute to entity k:

MSCk,t =
1

2

∂

∂zk
Var (z′yt| It−1)

= MSCConstant
k,t +MSCDirect

k,t +MSCIndirect
k,t +MSCMixed

k,t (17)

The marginal spillover contribution is normalized, guaranteeing that, if we define the

vector MSC′t = [MSC1,t, . . . ,MSCn,t]
′, we have z′MSCt = Var (z′yt| It−1). MSCk,t

is, then, a measure of the importance of node k as a source of spillovers in time t. In

particular, our decomposition allows us to disentangle the direct sources of spillovers from

the ones that are mediated by the network sequence.

Among the many possible choices, in the empirical application, we chose the simplest

one, and thus consider a portfolio characterized by equal weights for each entity. This is

also equivalent to considering the behavior of an average element of the covariance (i.e.,

the average linear dependence in the system). The use of different weighting schemes,

with potentially better economic explanations, is left for further empirical research. The

explicit expressions for variance decomposition and marginal spillover contributions are

reported in the supplementary material.

2.3 Counterfactual Network and Covariance Reduction

Evaluating the out of sample accuracy of multivariate volatility models is a difficult task.

One of the main issue is given by unobservable nature of the target and the need of a
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volatility proxy. In particular volatility proxies are usually computed on intra-day data

and according to the literature Laurent et al. (2012) the higher the frequency the higher the

possibility to discriminate among the models. Unavailability of high frequency data then

requires alternative methodologies, less dependent on the choice of volatility proxy. In this

paper we propose an approach tailored to our model, that has also the relevant feature

of being policy oriented. In particular, we rely on a simulated counterfactual analysis

(Mccallum (1988), Rotemberg and Woodford (1997)) to investigate how changes in the

network, impact the variance of an equally weighted index. We change the network in

order to minimize the variance forecast based on ex-ante data. This choice of the objective

function is motivated by its equivalence with the minimization of the average forecasted

covariance coefficent (i.e., on the average linear dependence and risk in the system). The

counterfactual innovation paths are bootstrapped from estimated innovations (see section

S of the Supplementary materials for the details of the circular bootstrap Politis and

Romano (1992) we used). In a similar way, we recover a realized innovation path on the

out-of-sample period using the previously estimated parameters and the out-of-sample

observed network.

In the following, we describe the details of the procedure. Conditional on the boot-

strapped innovations ε̃
[b]
T+l with b ∈ [1, . . . , NB] and l ∈ [1, . . . , h], and assuming that the

network is constant over the forecast horizon, the forecasted covariance path is a function

of the network at time T , WT 7→ Σ̂F
T+l (WT ) l ∈ [1, . . . , h]. This raises the interesting

possibility of obtaining a target network that can reduce the future risk and dependence

in the system. To define the optimal target network, we require that it minimizes, at least

locally, the average covariance coefficient of the system, which we compute as the variance

of an equally weighted portfolio of all the series. We underline here that the methodology

can easily accommodate different objective functions, being based on numerical optimiza-

tion. A detailed investigation of more refined and economically motivated targets is left

for future research. With our approach, we exploit the frequency mismatch between the

data used to estimate the network and the series for which the risk is evaluated. Such
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situations are not rare, as financial networks might be built from lower-frequency data

(using, for instance, balance-sheet data), while financial market data are available at a

daily or even higher frequency. In particular, we assume that the network changes every q

observations. That is, in the full sample T , we have [T/q] = Q networks, or, alternatively,

we have Q sub-periods in which the network is stable. In the forecast exercise, we assume

that WT+l = WQ for each l ∈ [1, . . . , h], such that T + 1 and T + h are the beginning and

end of the period Q + 1. We require that the average forecasted variance of the equally

weighted index over period Q+ 1; i.e., the first sub-period following the estimation sam-

ple, conditional on the bootstrapped innovations, is minimized by numerically solving the

following constrained optimization problem:

min
vecW ?

{
1

h

h∑
l=1

1

n2
1′Σ̂F

T+l (W
?) 1

}
s.t. 0 ≤ [W ?]i,j ≤ 1 for i, j = 1 . . . n, and Tr (W ?) = 0

where 1 is the n × 1 column vector whose elements are all equal to 1 and Tr (.) is the

trace operator. It is important to note that the estimated network W ? is weighted and

directed, but is totally unrelated to the last available network. We thus also consider a

more realistic constraint in which the out (in) strengths of the nodes, defined as the row

(column) sums of the optimal network, are set to be the same as the out (in) strengths

of the nodes of the last network WQ. For the row-sum case, we impose

doutW ?,i = doutWQ,i
, (18)

and we can write a similar constraint for the column sum. These constraints avoid a

change in the strengths of the nodes and correspond to a simple redistribution of the

weights across the system. We refer to the constraint in equation (18) as a redistribution

constraint. Moreover, we introduce an additional alternative constraint imposing that the

resulting optimal network differs from the previous one in an ordinary way, and does not
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represent an exceptional change. We implement this by computing the Frobenius norm

on the historical changes in the network

‖∆Wq‖F = ‖Wq −Wq−1‖F =
√

vec (Wq −Wq−1)′ vec (Wq −Wq−1) q = 1, . . . Q− 1, (19)

and imposing that the norm of optimal change ‖∆W ?‖F = ‖W ? −WQ‖F is less than or

equal to the empirical 0.95 quantile of historical norm changes q
‖∆W‖F
0.95

‖∆W ?‖F ≤ q
‖∆W‖F
0.95 . (20)

We refer to the constraint in equation (20) as a Frobenius norm constraint.

To evaluate the performance of the proposed out-of-sample methodology, we suggest

comparing two estimates of the model, one excluding the out-of-sample data, and the

second including the forecasted data. This enables us to compute the filtered innovations

for the forecasted periods, conditional on the true, observed Q+ 1 network:

ε̂T+l = Σ̂
− 1

2
T+l (WQ+1)uT+l l ∈ [1, . . . , h] . (21)

Then we can reconstruct the us and the counterfactual proxy for the equally weighted

index’s conditional variance, as if the realized network for the period of interest is the

optimal one, W ?:

ũ?T+l = Σ̂
1
2
T+l (W

?) ε̂T+l (22)

Var

(
1

n
1′y?T+l

∣∣∣∣ IT+l−1

)
= Var

(
1

n
1′u?T+l

∣∣∣∣ IT+l−1

)
'
(

1

n
1′u?T+l

)2

(23)

In this way, we can compare the obtained optimal counterfactual proxy with the realized

proxy, the latter being robust against model misspecification. in addition, relative com-

parison of the same type of proxy in the two cases, make the procedure less dependent on

its choice. If we observe a reduction of the optimal counterfactual proxy with respect to
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the realized one, we can conclude that, indeed, we can reduce the variance by optimally

changing the network based only on ex-ante data. Even if this simulated counterfactual

analysis is similar to the one used in monetary-policy evaluation exercises (see Rotemberg

and Woodford (1997), Primiceri (2005) and more recently, Bikbov and Chernov (2013)),

we are aware that, concerning our empirical application, regulators have, at the moment,

no possibility of intervention in incentivizing the redistribution of banking exposures. So

our counterfactual experiment should be, mainly, regarded as a device for out of sam-

ple evaluation of the model. An additional issue in the use of this procedure in policy

evaluation, as noted in the literature, is that such a methodology is prone to the critique

in Lucas (1976), as we are not considering the market reaction to the network change.

Regarding those issues, we recall that endogenizing the network sequence is beyond the

scope of the present investigation and that in Tonzer (2015), in a framework comparable

to ours, exogeneity failed to be rejected by several tests. In our case, in addition, the

time-varying nature of the network during the estimation period mitigates this issue. In

fact, the market reaction to changes in the network should have been at least partially

encoded in estimated parameters. Following this line of reasoning, we propose a new

procedure to test the constancy of parameter estimates when we optimally change the

network.

We estimate again the model using the in-sample Q periods and a Q + 1 period in

which we use W ? and the ũ? of equation (22). We call the estimates for the network

parameters obtained in this way a?1,L, a
?
1,R, b

?
1,L, b

?
1,R. We also estimate the model using the

in-sample Q periods and the Q + 1 realized out-of-sample period. Then, considering as

given the estimates implied by the optimal network, we test for the joint hypothesis

H0 : a1,L = a?1,L, a1,R = a?1,R, b1,L = b?1,L, b1,R = b?1,R, (24)

using the estimates and covariance obtained by the realized sample in a Wald test. Fail-

ing to reject the null hypothesis would support parameter constancy and limit relevance
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of the Lucas critique, making possible the policy exercise Engle and Hendry (1993). In

particular, we explicitly designed the Frobenius norm constraint equation (20) to increase

the possibilities of obtaining parameter constancy. With those limitations in mind, we

highlight that the product of our counterfactual exercise is a first step toward the deter-

mination of the target exposures that can be helpful for policy makers from a monitoring

perspective.

3 Risk Spillovers among European Sovereign CDS

To better clarify the advantages and potential benefits of our methodology, we consider

an application to the Euro area sovereign CDS premia. We restrict our attention to the

Euro area because there is a documented currency firewall effect both for sovereign, Groba

et al. (2013), and banks CDS, Alemany et al. (2015). Inside the EMU, we pick the two

major economies and the peripheral countries excluding Greece, whose bailout make the

CDS series unmanageable from the second semester of 2010. We use two different data

sources: (i) the changes in the five-years sovereign CDS spreads for a selection of European

countries and (ii) the matrices of foreign claims collected by the BIS. These data refer

to the claims that the banking sector of a country A has with respect to the banking

(public and private) sector of another country B. There is clearly an asymmetry between

the dependent variable and the data source for the weighting matrices. Nevertheless,

several theoretical models show tight linkages and feedback loops between sovereign and

banking risk both in single and multi-country economies; see Bolton and Jeanne (2011);

Acharya et al. (2014); Gennaioli et al. (2014); Farhi and Tirole (2016). In Dungey et al.

(2017) this theoretical link is also empirically investigated. The aim of our analysis is

to characterize, identify and evaluate the sovereign risk of the system, considering the

total sovereign risk of the Euro area as the volatility of a weighted-average portfolio of

European sovereign bonds. Risk spillovers are driven by the weight matrices, based on

cross-country cross-credit exposures.
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3.1 Data Description

3.1.1 Sovereign CDS spreads

We use the daily changes in the five-year sovereign CDS spreads, from 9/10/2008 to

30/12/2016, for France, Germany, Ireland, Italy, Portugal, and Spain, as downloaded from

Thomson Reuters Eikon. As can be seen from Table U.1 in the supplementary material,

mean and median are negligible, justifying our volatility approach. The Kurtosis of some

series — in particular, that of Portugal, but also those of Germany and Ireland — is

striking, adding a further motivation for a GARCH-type modeling.

The correlation is high between specific pairs — namely, Spain and Portugal, Spain

and Italy, and Italy and Portugal — highlighting the closeness between those economies.

Despite all being positive, several correlations display relatively small values, even if they

are all significantly different from zero with a p-value below 0.01. Most interestingly,

the smallest correlations are those between Germany and the other European countries

(France excluded).

3.1.2 BIS Banking Statistics

We use data at a quarterly frequency to describe the network of foreign claims among

Portugal, Italy, Ireland, Spain, France, and Germany from Q4 2008 to Q4 2016, as they

are produced by BIS in the consolidated banking statistics (ultimate risk basis) 7. BIS-

consolidated banking statistics provide internationally comparable measures of national

banking systems’ exposures to country risk (see McGuire and Wooldridge (2005)). Only

assets are reported. The residence of the ultimate obligor, or the country of ultimate

risk, is defined as the country in which the guarantor of a financial claim resides, or the

place in which the head office of a legally dependent branch is located. Our choice differs

from that in Tonzer (2015) who, mainly motivated by sample-length consideration and

exchange-rates-adjustment reasons, uses BIS locational banking statistics, in which the

7The quarterly claims are converted to a daily basis by repeating them for each day in the quarter.
This choice assumes that claims variation is slower than changes in CDS variation. We also used a linear
interpolation scheme, and the estimation results were unaltered.
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residence of the obligor is the one of the local branch, even if owned abroad. We motivate

this different choice by the importance of the local banking system in international finan-

cial intermediation (McCauley et al. (2010)), that could obfuscate the real flow of risk.

Further, the obstacles, in Tonzer (2015) are not relevant in our framework because we

focus on a smaller and more homogeneous group of countries, with a common currency,

for which the more reliable consolidated-ultimate-risk-basis statistics are available. We

expect that, if A reports a claim with B as a counterpart (i.e., if A’s banking system owns

a certain amount of B’s public and private debt, investors will perceive A’s sovereign risk

to be dependent on B’s sovereign risk in terms proportional to the claim amount.

We discuss now the impact of normalization schemes on the estimations. Taking

into account the time variation for the spatial proximity matrices Wt obliges us to pay

particular attention to the way in which we normalize these matrices. In fact, a simple

row normalization at each time would make the comparison of the proximity matrices over

time very difficult. Furthermore, a time-specific or matrix-specific normalization would

lead to a loss of information, as both disregard the evolution over time of the network

structure. The flexibility of our normalization schemes, is a consequence of of our careful

treatment of identification and estimator properties.

In order to obtain parameters of a reasonable magnitude, but also to retain differences

in matrix norms across time (which could be an important driver of dependence), we

divide each row of Wt by an (economic) measure of the magnitude of the entities, which

we denote as Mi,t. Our choice for the normalization Mjt of the j-th reporting country

is its quarterly time series of total ultimate-risk-basis claims, which includes claims from

the selected countries, but also from the rest of the world.8 In addition, we stress that

using this normalization allows us also to control for claims outside the chosen countries

and to evaluate the exposure channel importance at the country level.

8We also investigated other choices for normalization: the absence of normalization, row normalization,
the GDP of the reporting country, and the public debt of the reporting country. In the full sample
estimation, total claims outperform, in likelihood terms, the alternative normalization schemes in the vast
majority of models, and when this is not the case, the difference in likelihoods is negligible. Estimation
results for these alternatives are available upon request.
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[Insert figure 3 around here]

[Insert figure 4 around here]

The comparison between un-normalized series (Figure 3) and normalized series (Figure

4) show relevant differences. With respect to the un-normalized series, the deleveraging

trend is less evident and the peripheral countries are more important. Thanks to the

flexibility of our model we are able to use normalization as a device to include rest of the

world effects and remove a deleveraging trend.

3.2 Parameter Estimation

In Table 3, we report QMLE results for the relevant parameters of the model. Table 2

includes some specification tests. We estimate the model by using a numerical-constrained

optimization with bounds for the parameters function of the JSR of the network sequence.

We checked covariance stationarity after the estimation by verifying the JSR condition of

Theorem 19.

[Insert table 3 around here]

[Insert table 2 around here]

As the first panel of Table 2 shows, the SB-BEKK models outperform the diagonal

BEKK model that does not include the networks, and it is the most used parsimonious

restriction of a BEKK model. We check the joint significance of parameters both by

likelihood ratio test statistics and a Wald-type statistic. Notably, both tests strongly

reject the null, thus supporting the relevance of networks in variance-spillover analysis.

In addition, according to a Wald-type tests both right and left multiplication parame-

ters have to be included in the analysis. This means that the Caporin and Paruolo (2015)

model would have been misspecified in our empirical application. This is not surprising

9We compute a numerical bound obtained with the conic ellipsoid algorithm of the JSR matlab toolbox
(see Vankeerberghen et al. (2014)).
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giving that financial claims represent an asymmetric relationship and the use of left pa-

rameters would have focused only on risk receivers, neglecting the sources, underlined by

right parameters and vice versa. Analogously remaining tests show that no part of the

model can be excluded. Indeed, table 3 shows the significance of the vast majority of

coefficients of the proposed model. In addition, the presence of significant coefficients of

both signs induces variance-reducing contributions mediated by the claim matrix.

3.3 Inferred Networks

We use the test described at the beginning of subsection 2.1.3 to build a graphical rep-

resentation that allows us to monitor the edges of the network — that is, the level of

spillover between two specific countries as measured by the time-varying off-diagonal el-

ement of matrices A and B. In particular, one of the main features of our model is the

ability to test the significance of the edges with a linear restriction (c.f. equation (6)).

Due to the high number of coefficients and their time variation, it is difficult to conceive a

tabular representation for our results. Instead, in order to display the topology of spillover

flows, we propose a signed weighted directed network representation of the sequences of

off diagonal elements in A (Wt) and B (Wt), with the weight proportional to the edge

width and color representing the sign.

[Insert figure 5 around here]

In particular, in Figure 5, we report the relevant networks for three crisis periods: Q4

2008 (i.e., the collapse of Lehman Brothers and the bank bailout in Ireland), Q2 2010 (i.e.,

Greece’s bailout), Q2 2016 (i.e., the Brexit referendum).(Section U in the supplementary

material includes the complete representation.) Since we are conducting 2 ∗ (n2−n) = 60

test, it could be argued that we need to adopt a multiple-hypothesis testing framework;

for this reason, we apply a Bonferroni correction to the nominal 5% significance level and

show in Figure 5 only edges with p-values smaller than 0.05
60

= 8.3e− 04.10. The similarity

10We report in Table U.2 of the supplementary material the p-values relevant for each off-diagonal
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of pictures of different crisis periods is a consequence of our model that imposes a stable

pattern on the network topology and signature. What could change is the strength of the

linkage due to the exogenous change of the exposures.

The ARCH spillover topology shows how Spain, in the short term, is the central node

receiving risk from Italy and Portugal and giving it to Ireland and France. Further, while

France is giving risk back to Spain, Ireland is transferring risk to France and fueling

a feedback loop with Germany. The overall picture is more involved in the GARCH

part, with several feedback loops, the strongest of which is between Portugal and Spain.

We register, also, the appearance of a feedback loop between the two major economies:

Germany and France. Here, Ireland has the same incoming interaction, but has two

new targets, Italy and Portugal. Regarding the signature, a negative sign implies a sign

change of the incoming shock, but we remind the reader that covariance contribution

is a quadratic form in the shocks, and therefore negative contribution does not directly

imply a covariance reduction. Again, the presence of edges of differing signs in both

series of matrices favors the presence of covariance reducing terms. However, given the

non-linearity of the model, it is again difficult to understand where covariance reduction

is located. In the next subsection, we will have a clearer description using covariance

decompositions. The previous results point out the role of Spain and, to a lesser extent,

of Ireland as risk middlemen able to transfer risk from peripheral countries to major

economies.

3.4 Covariance Decompositions

The use of a Bonferroni correction could hide the role of less-significant but relevant

links. In addition, it is difficult to understand where and when diversification benefits

are at work. For these reasons, we use herein the methodology of Subsection 2.2 on the

covariance decomposition of the SB-BEKK model. This tool will allow us to understand

who benefited the most from variance-reducing contributions mediated by the network,

element of the sequences A (Wt) and B (Wt), which under our hypothesis of no measurement errors in
weights is time invariant.
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who is most impacted by network exposures, and who are the major risk spreaders.

[Insert figure 6 around here]

Figure 6 reports the percentage of the system-variance, constant, mixed, and indirect

contributions.11 The representation of the system is an equally weighted portfolio.12

The mixed contribution has both variance-increasing and variance-reducing contributions,

with only a few large peaks of diversifying effect, mostly around turmoil. The indirect

contribution is always positive and present during turbulent periods. In the second part

of the sample, the relevance of network contribution is reduced in favor of the constant,

with the notable exception of some important episodes, such as the Brexit referendum.

This change in behavior could be understood by the developments in the second half of

2012, with Mario Draghi’s ”whatever it takes” speech in July, which led to the Outright

Monetary Transactions framework — but also with the July establishment and September

implementation of the European Stability Mechanism. These surrogates of a centralized

lender of last resort dampened the relevance of cross-border claims as a contagion channel.

We summarize our findings with the following table 4, in which we report the cumulative

percentage contribution on the whole estimation period.

[Insert table 4 around here]

Those results testify that most of the variance contribution is not mediated by the

banking system exposures. This is not surprising since this is only one of several contagion

channels. We also note how the indirect contribution is always superseded, in absolute

value, by the mixed one, but the order of magnitude is, in the majority of cases, the

same. In addition, the table shows that only Spain, Germany, and, to a lesser extent,

11We do not include the direct contribution since, although it is the biggest, it does not depend on the
network links.

12It could be argued that an equally weighted portfolio does not represent a well-diversified portfolio.
Indeed, this is the point of view put forward in Brunnermeier et al. (2017), which proposed weights
proportional to the GDP to properly capture the sovereign credit risk of the Euro area. This possibility
and the relevance of our model in evaluating the proposed European Safe Bonds will be investigated
elsewhere.
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Italy benefited from banking network effects. For Portugal and France in particular, and

Ireland to a lesser extent, participation in the network of claims was dangerous. Looking

again at the previously derived topology of spillover, we could now argue that those are

the countries receiving risk from Spain and, in particular, that the countries most severely

hit are the ones involved in an unbalanced feedback loop that favors Spain.

[Insert table 5 around here]

In Table 5. we report the downside. In fact, cumulative marginal spillover contri-

butions, in percentage of the system variance, are able to identify the major sources of

spillovers. Here we see that the most important countries are Portugal and Spain, but

they contribute mostly in the amplification of their own variance. Instead, if we consider

the contribution mediated through the banking exposures, the major sources of risk are

Italy and Ireland, and, to a lesser extent, Spain. From the topology displayed before,

we could argue that Ireland has a worrisome relationship with Germany, and that it is

contributing to the risk of France, Portugal, and Italy. It seems that Italy’s role as one of

the major risk contributor to Spain has a big secondary impact to other countries through

the previously described feedback loops.

3.5 Estimated Counterfactual Exposures

In the previous section, the bank exposure network is characterized as significant but

minor in the sample spillover channel. In this subsection, we evaluate to what extent

changing exposures could be beneficial by a counterfactual analysis, . As remarked in

section 2.3 such alternative out of sample evaluation scheme is also due to the difficulty

of retrieving intra-day sovereign CDS data, for building reliable volatility proxies.

We minimize the predicted path of the conditional average covariance in the sys-

tem, looking for the optimal network structure, by following the methodology outlined in

Subsection 2.3. We choose to optimize the forecast path in the quarter of the Brexit refer-

endum (Q2 2016), while also including part of the subprime crisis and Greek bailout in the
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estimation sample (from Q4 2008 to Q1 2016). Our results convince us that the spillovers

are channelled through foreign claims in the same way on the three occasions. We start by

analyzing the counterfactual effect on the variance proxy of the equally weighted index.

We perform the analysis by replacing the network of Q2 2016 with one of the following

choices: a network with all exposures equal to zero, a network resulting from uncon-

strained optimization, a network coming from a redistribution-constrained optimization,

and, finally, a network coming from a Frobenius-norm-constrained optimization. For the

redistribution-constrained model, equation (18) implies that there is only a redistribu-

tion of the claims among the considered countries; for the Frobenius-constrained model,

equation (20) implies that the change in the network is comparable with the historically

registered changes.

[Insert figure7 around here]

Figure 7 shows the realized and counterfactual variance proxy of the equally weighted

index during the sovereign debt crisis. We compute the variance according to equations

(22) and (23). In addition, we plot the proxy coming from a network with zero expo-

sures. The prevalent diversifying effect of exposures is evident in comparing the realized

proxy with the zeroed one. The percentage change of the cumulative zeroed proxy with

respect to the realized one is an increment of 16.55%. This also clarifies the fact that

the näıve complete deleveraging solution, in our example, amplifies risk. This points out

the necessity of a nontrivial exposure change, if we want to achieve risk mitigation. Our

optimal counterfactual exercise is the first step in this direction. In particular, we think

that several additional insights could be obtained by looking at the optimal proxy in 7.

First of all, we are indeed able to reduce the out-of-sample counterfactual variance of the

system by optimizing the network, based only on ex-ante information. This remains true

also if we are imposing that the amount of claims for each country remain the same, or

that the change is aligned with historical ones. As we were expecting, the optimization

without constraints yielded the best percentage of cumulative reduction (-22.35%) and, in

this case, the Brexit peak is mitigated and delayed. The drawback of this approach is that
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the variance is at several points in time above the realized one. On the opposite side, the

reduction is halved, with the Frobenius-norm constraint (-11.18%), reduced by a lesser

but comparable magnitude (-9.66%) with the redistribution constraint. The Brexit peak

drop is smaller, but is indeed present and again higher for the Frobenius-norm constraint.

Nevertheless, risk mitigation is much more stable in time and the variance is always less

than or equal to the realized one in both constrained cases.13

[Insert table 6 around here]

The remarkable performance of the unconstrained procedure is obtained through dras-

tic changes in the exposures (see Table U.3 in the supplementary material). We cannot

be sure that extraordinary changes do not trigger a reaction from economic agents, which

in turn could lead to a structural break in network parameters. As can be seen from

our test on parameter constancy (see Table 6), we cannot reject the null hypothesis (i.e.,

parameter constancy) in this extreme case. In any case, we have stronger evidence con-

sidering the constrained instances. In particular, it is reassuring that the Frobenius-norm

constraint has the lowest P-value, because it was designed as a solution to this partic-

ular issue. It is also interesting that an economically motivated constraint such as the

redistribution one has comparable evidence in terms of parameter constancy. Considering

the amount of variance reduction, its path through time, and the evidence for parameter

constancy, the best compromise appears to be the optimal networks obtained by imposing

the Frobenius-norm constraint.

[Insert table 7 around here]

To evaluate the feasibility of its changes, in Table 7, we report, for the Frobenius

case only, the differences in billions of US dollars in the amounts needed to achieve the

optimal network. Looking at Table 7, we rediscover some previous results. Here, the target

13Additionally, our procedure reduces an average correlation proxy (see Figure U.1 in the supplementary
material). Instead, a procedure relying directly upon the minimization of conditional average correlation
has the drawback of increasing the variance of some countries. Result are available upon request.
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network proposes a better balance in the feedback loop with Portugal, and a deleverage

in all the others. Furthermore, it is suggested that Germany, and to a lesser extent

France, support the country, with other peripheral countries that divert their exposures

from it. In general, the variance reduction we obtain is implied by exposures changes

that would be hard to enforce in a single quarter. In our opinion, a lower but still

meaningful variance reduction can be obtained by considering stricter and economically

sound maximum redistribution constraints, leading to an implementable enforcement of

redistribution. This is already possible with a minor modification of our methodology

that enables us to account for any kind of constraint by simply changing the equation

(18). In addition, the procedure is based on conditional covariance and could be regularly

updated, closely following actual market evolution after the changes.

4 Conclusions

This paper illustrates how financial networks can be efficiently integrated within a mul-

tivariate GARCH model for risk analyses. We refer to the proposed framework as spa-

tiotemporal econometrics of network-mediated risk, since it exploits spatial econometrics

methodology in the investigation of a network describing risk relationships. Our spa-

tiotemporal econometrics of risk enables a number of evaluations and analyses aimed at

disentangling and understanding the role of asset interconnection in the evolution of the

risk of the system. In particular, the new parsimonious econometric model we propose,

the Spatial Bilateral BEKK, directly measures how variance and covariance spillovers

flow through an exposure channel. Moreover, it entails the possibility of diversifying or

enhancing spillover contributions through coefficients of both signs. Our approach builds

on the introduction of spatial methods into volatility models as in Caporin and Paruolo

(2015) and enhances the ability of proximity matrices to convey economic distances among

assets and capture the interdependence across variables. This simple network model of an

economic risk medium, based on data, allows a better investigation of the determinants
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of dependence and spillover effects, with respect to a purely statistical device.

From a methodological point of view, we make a number of contributions that go

beyond the framework of Caporin and Paruolo (2015). We take advantage of the non-

commutativity of adjacency matrices, and focus on both the risk-receiving propensity

and risk-spreading effectiveness of spillovers. We use algebraic connectivity results in

the study of identification and generalize previous results. We make use of the joint

spectral radius for a set of matrices and of a VARMA representation of the model with

time-varying coefficients to derive the convergence of a heterogeneous geometric series

and to obtain covariance stationarity. Moreover, we derive the asymptotic normality of

the QMLE under conditions that are standard in the literature. Again, the usefulness of

our JSR approach is evident in adapting proof of consistency and asymptotic normality

from the standard framework in Hafner and Preminger (2009). Finally, the study of

the identification, covariance stationarity, and asymptotic normality in the general case

allows us to include a general normalization procedure for proximity matrices, driven by

economic insights, whose payoff is made clear in the empirical application.

The empirical application shows the ability of our model to give a reasonable descrip-

tion of European spillovers during the sovereign crisis, uncovering the fundamental role of

France and Portugal as risk receivers and the risk-spreading effectiveness of Italy and Ire-

land. Our inferred network methodology also points out Spain’s middleman role, which

is not understandable from the single-parameter significance. We also derive a covari-

ance decomposition that allows us to understand the network-mediated contribution to

variance, pointing out in particular how several network configurations can reduce the co-

variance. This effect is possible only with our complete study of identification conditions,

which leave unrestricted the sign of most of the model coefficients. In our empirical anal-

ysis, this diversifying effect was produced only by the mixed contribution in specific time

periods. In addition, we document a change of relevance of exposures after regulatory

interventions in the second half of 2012. Spillover spreading and receiving effectiveness

are heterogeneous across countries, and we study them through our variance decomposi-
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tion and the marginal spillover contribution. The picture that globally emerges, from our

in-sample analysis, points to Ireland and Italy as the major sources of risk and Portugal

and France as the recipients of most of it. However, while Portugal is also a lesser source

of risk, shocks coming from France appear mostly innocuous, if not beneficial, having a

small risk-reducing and stabilizing effect. Germany transforms most risks it receives into

diversification benefits, while contributing negligibly as a risk spreader. Spain’s less-trivial

role exploits network exposures for diversification benefits, while at the same time it is

the third source of network-mediated risk in the system. This middleman behavior in

transferring risk from peripheral to major economies is direct with respect to France, and

aided and mediated through Ireland with respect to Germany.

Finally, inspired by the monetary policy literature, we propose an alternative, pol-

icy oriented scheme for out of sample evaluation of the model based on counterfactual

simulations. Our counterfactual analysis allows us to obtain target exposures for risk mit-

igation based only on ex-ante information. The empirical results on the quarter during

which the Brexit referendum took place are an additional soundness check of our model.

Results confirm the narrative implied by the in-sample analysis and the essential diver-

sifying effect of banking-system exposures. Since the seminal works of Allen and Gale

(2000), Eisenberg and Noe (2001) Freixas et al. (2000), networks of bank exposures were

considered an important theoretical channel of spillover effects. The focus on covariance

allows, in our opinion, a better description of the phenomenon with respect to the use of

plain spatial models, already fruitful in this respect (see Tonzer (2015)). According to the

recent review by Toniolo and White (2016) that focuses on the financial-stability mandate

across countries and across history, the principal interventions that central banks took to

maintain financial stability were the liquidity provision and the monitoring of systemi-

cally important financial institutions. We propose a new econometric framework with the

ability to help the regulator to fulfil the financial system’s monitoring requirement in an

empirically measurable way. To achieve this ambitious goal, two major obstacles remain.

The first is data disclosure: the bilateral exposures are made available only at the country
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level. The second one is methodological. In fact, the application of our methodology to

a greater number of players requires the study of a covariance-targeting estimator of the

model in order to obtain a number of parameters growing linearly with the number of

nodes. Since rigorous covariance-targeting results for the standard multivariate volatility

models were obtained only recently in the literature (Pedersen and Rahbek (2014), Francq

et al. (2016)), this aspect is left for future research.
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A Proofs and Auxiliary Results

A.1 Identification

A.1.1 Proof of Lemma 1 on page 11

Proof.

M (Wt) =
[
In ⊗ In W ′

k ⊗ In In ⊗Wk

]
(I3 ⊗H)

=
n∑
i=1

[(ei ⊗ ei) e′i, (W ′
kei ⊗ ei) e′i, (ei ⊗Wkei) e

′
i]

M (Wk)
′M (Wk) =

[
In

M (Wk)

]
M (Wk) =

[
DWk�Wk

Wk �Wk

W ′
k �W ′

k DW ′k�W
′
k

]
DW ′k�W

′
k

= (W ′
k �W ′

k) 1n , DWk�Wk
= (Wk �Wk) 1n .

Having the identity In as one of the diagonal blocks, M (Wk)
′M (Wk) has n eigenvalues

equal to one. In addition, using the property of the determinant for block matrices, the
characteristic polynomial of M (Wk), is:

det (M (Wk)− λIn2) = det
(
DW�k Wk

− λIn
)

det (L (Gk)− λIn) = 0

det
(
DW�k Wk

− λIn
)

= 0 has exactly n solutions that can be read off as the degrees dG,i.

The remaining eigenvalues are the eigenvalues of L (Gk). Considering the second part
of the theorem, it is well known since the work of Fiedler (Fiedler, 1973, 1975) that the
number of null eigenvalues of L (Gk) is the number of connected components ck of Gk. If
we have sk single nodes without self-loops, then also sk nodes have zero degree, resulting
in additional sk null eigenvalues of M (Wk)

′M (Wk).

A.1.2 Proof of Proposition 1 on page 11

Proof. Without loss of generality, let us consider A (Wk), we have:

vec (A (Wk)) = vec (diag (a0)) +W ′
k ⊗ Invec (diag (a1L)) + In ⊗Wkvec (diag (a1R))

=
[
In ⊗ In W ′

k ⊗ In In ⊗Wk

]  vec (diag (a0))
vec (diag (a1,L))
vec (diag (a1,R))

 = M (Wk)

 a0

a1,L

a1,R

 .
and analogously

vec
([
A (W1)′ : A (W2)′ : . . . : A (WK)′

]′)
=

[
M (W1)′ : M (W2)′ . . . : M (WK)′

]′  a0

a1,L

a1,R
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The [Kn2 × 3n] matrix M̄ =
[
(W1)′ : M (W2)′ . . . : M (WK)′

]′
, is of column rank equal to

max
1...k

rank (M (Wk)). Given that the rank of a generic matrix T is equal to the rank of

T ′T , and lemma 1 on page 11 M (Wk) is of column rank 3n− ck− sk. Then, if we impose
χ = min

1...k
ck + sk linear restriction on the parameter vector, variation in the parameters

induces a unique variation in πK .

A.1.3 Proof of Lemma 2 on page 11

Proof. The result follow from the fact that the non zero elements of Wk are the same
of (W ′

k �W ′
k) (Wk �Wk) and consequently of W ′

kWk. Then, since the multiplication of
two fully indecomposable matrices is fully indecomposable, and fully indecomposability
implies irreducibility, Fenner and Loizou (1971), under the hypothesis of the lemma there
is a at least one k = 1 . . . K for which Wk has only one component. Then, the result
follows from Proposition 1.

A.1.4 Identification for Symmetric Matrices

Corollary 1. If the matrices Wk are all symmetric, to achieve identification the model
must include either the left multiplication or the right multiplication elements. The pre-
vious result holds with a corresponding simplification in the structure of M (Wk) and the
model is identified if the corresponding M̄ is full column rank.

Proof. The corollary is a consequence of symmetry of matrices Wk. Suppose we fo-
cus on the shock component and assume a constant W . We have ALut−1u

′
t−1A

′
L =

(A0 + A1,LW )ut−1u
′
t−1 (A0 +W ′A1,L) thanks to the diagonal form of the parameter matri-

ces. Moreover, by symmetry, (A0 + A1,LW )ut−1u
′
t−1 (A0 +W ′A1,L) and the latter equals

(A0 +W ′A1,L)ut−1u
′
t−1 (A0 + A1,LW ). The latter is equal to the right multiplication case

if W = W ′.
Then, with only left(right) parameters, we have :

M (Wk)
′M (Wk) =

[
In

DWk�Wk

]
.

This matrix is full rank unless some of the row(column) sums are zero. Since the Wk are
non negative this can happen only if the row(column) elements are all zero and we reduce
to the conditions given in (Caporin and Paruolo, 2015)

A.2 Covariance Stationarity

The following lemma considers a deterministic network sequence and gives a sufficient
condition on the joint spectral radius such that it probably collapses to the one given in
terms of the top Lyapunov exponent in Brandt (1986) for scalar coefficients. Bougerol
and Picard (1992) extended the last result to coefficient matrices.14 Note that results in
Bougerol and Picard (1992) are valid under the assumption that the network sequence
has an i.i.d distrbution.

14A similar condition is also used by Hafner and Preminger (2009) in showing stationarity and ergodicity
of the VEC model.
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Lemma 3 (Convergence of Heterogeneous Geometric Series). If % (A) < 1 then

S = lim
T→∞

Sn = lim
T→∞

T∑
t=0

t∏
i=0

Ai <∞ (25)

Proof. We can use here the Cauchy convergence criterion. Given m > n ∈ N with fixed
but arbitrary r = m− n, we have to show that ‖Sm − Sn‖ → 0 when n→∞.

We have :

0 ≤ ‖Sm − Sn‖ =

∥∥∥∥∥
m∑
k=n

Bk

∥∥∥∥∥ ≤
m∑
k=n

sup
Aσ1 ,...,Aσk∈A

(∥∥∥∥∥
k∏
i=1

Aσi

∥∥∥∥∥
)

(26)

and we can write

lim
n→∞

m∑
k=n

sup
supAσ1 ,...,Aσk∈A

(∥∥∥∥∥
k∏
i=1

Aσi

∥∥∥∥∥
)

= lim
n→∞

m∑
k=n

(ρ̂k (A))k

= lim
n→∞

% (A)n lim
n→∞

m∑
k=n

(ρ̂k (A))k

% (A)n
= lim

n→∞

1− % (A)r+1

1− % (A)
% (A)n → 0

The use of the joint spectral radius leads, also, to an interesting property for matrix
sets that leave a proper cone invariant.

Definition A.1. Cones and Proper Cones. A cone in Rn is a subset K ⊆ Rn such that
λv ∈ K for all λ ≥ 0 and v ∈ K. K is proper if it is closed, convex, has non empty
interior, and contains no straight lines.

Definition A.2. Cone Invariance. Ai ∈ A leave a proper cone invariant if there exist a
proper cone K ⊆ Rn such that if v ∈ K ui = Aiv ∈ Ji with Ji ⊆ K for each i.

According to Blondel and Nesterov (2005) it is possible to define a norm ‖·‖K asso-
ciated with the cone K such that, if A and B leave the proper cone K invariant, then
‖A‖K ≤ ‖A+B‖K . This norm will be the essential in the proof of the following lemma.

Lemma 4. Consider two infinite set of n × n matrices A = {Ai}∞i=0 and B = {Bi}∞i=0

and their sum A+ B = {M ∈ A+ B|M = Ai +Bi, Ai ∈ A,Bi ∈ B} with A0, B0 = In.
Suppose that A and B leave the cone K invariant. We have % (B) ≤ % (A+ B).

Proof.
∏t

i=1Aσi +Bσi is a sum of 2t products of t terms. By the assumptions the matrices
Cj j = 1, . . . , 2t obtained by each of this products leave K invariant. In addition we note
that C2t =

∏t
i=1 Bσi . We obtain∥∥∥∥∥

t∏
i=1

(Aσi +Bσi)

∥∥∥∥∥
K

=

∥∥∥∥∥
t∏
i=1

Bσi +
2t−1∑
j=1

Cj

∥∥∥∥∥
K

≥

∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K
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so

% (B) = lim
t→∞

sup
Bσ1 ,...,Bσt∈B

(∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K

)1/t

= lim
t→∞

sup
(Aσ1+Bσ1),...,(Aσt+Bσt)∈(A+B)

(∥∥∥∥∥
t∏
i=1

Bσi

∥∥∥∥∥
K

)1/t

≤ lim
t→∞

sup
(Aσ1+Bσ1),...,(Aσt+Bσt)∈(A+B)

(∥∥∥∥∥
t∏
i=1

(Aσi +Bσi)

∥∥∥∥∥
K

)1/t

= % (A+ B)

A.2.1 Proof of theorem 2 on page 16

Proof. Let us consider the filtration Ft−1 = {Ut−1,Wt−1} where Ut−1 is the information
set given by the past ut and Wt−1 is the information set of the past network Wt. We
remark that, by definition of the processes, Wt−2 ⊂ Ut−1.

Since ηt is a martingale difference sequence E [ηt |Ut−1,Wt−1] = 0, and we also have

E [Xt |Ut−1,Wt−1] = C̃ +
(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1.

Using the iterated expectation theorem and the recursion for Xt

E [Xt |Ut−2,Wt−1] = E [E [Xt |Ut−1,Wt−1] |Ut−1,Wt−1]

= E
[
C̃ +

(
Ã (Wt) + B̃ (Wt)

)
Xt−1 − B̃ (Wt) ηt−1 |Ut−2,Wt−1]

= C̃ +
(
Ã (Wt−1) + B̃ (Wt−1)

)
E [Xt−1 |Ut−2,Wt−1] .

Analogously,

E [Xt |Ut−3,Wt−1] =
[
I +

[
Ã (Wt−1) + B̃ (Wt−1)

]]
C̃

+
[
Ã (Wt−1) + B̃ (Wt−1)

] [
Ã (Wt−2) + B̃ (Wt−2)

]
E [Xt−2 |Ut−3,Wt−1] ,

Further, by induction

E [Xt |Ut−τ ,Wt−1] =

{
I +

τ−2∑
k=1

k∏
l=1

[
Ã (Wt−l) + B̃ (Wt−l)

]}
C̃

+

{
τ−1∏
l=1

[
Ã (Wt−l) + B̃ (Wt−l)

]}
E [Xt−τ+1 |Ut−τ ,Wt−1] .

When τ → ∞, if %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1, by Lemma 3, for all possible

network sequences, the first term converges to a finite limit and the remainder goes to
zero according to Gurvits (1995) and Jungers (2009).
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A.3 Consistency and Asymptotic Normality

In this section we denote as ‖ · ‖ the operator norm. Different norms are specified when
needed. Dn is the duplication matrix and Cnm is the commutation matrix. Under assump-
tion 1 and by Lemma 4, since the set of half vectorized symmetric positive semidefinite
matrices is a proper cone of the set of half vectorized symmetric matrices, i.e of the vector
space R(n(n+1)/2), and Ã (Wt) and B̃ (Wt) leave this cone invariant (c.f subsection 4.2 in
Boussama et al. (2011)). we have

%B = %

({
B̃ (Wt)

}∞
t=−∞

)
≤ %

({
Ã (Wt) + B̃ (Wt)

}∞
t=−∞

)
< 1 , %̄B = supθ∈Θ %B < 1.

Lemma 5. Under Assumptions 1-4 E
[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥s/2] = O (%̄B)

Proof. By solving equation (5) recursively, we get

ξt = vech (Σt) = C̃ + Ã (Wt)Xt−1 + B̃ (Wt) ξt−1

= C̃ + Ã (Wt) yt−1 +
t−1∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(
C̃ + Ã (Wt−τ )Xt−τ−1

)
+

{
t−1∏
l=1

B̃ (Wt−l)

}
ξ0.

In addition∥∥∥Σt − Σ̃t

∥∥∥ ≤ ∥∥∥Σt − Σ̃t

∥∥∥
2
≤
∥∥D+

n

∥∥ ‖Dn‖
∥∥∥ξt − ξ̃t∥∥∥ ≤ ∥∥D+

n

∥∥ ‖Dn‖ %tB
∥∥∥ξ0 − ξ̃0

∥∥∥
By Assumption 2 and 3, and the cr inequality we have E

[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥s/2] = O (%̄B)

Lemma 6. Under Assumptions 1-7

i) E

supθ∈Θ

∥∥∥∥∥∂ξ̃t∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥∂ξ̃t∂b′

∥∥∥∥∥
3
 <∞

ii) E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂a′∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂a′

∥∥∥∥∥
3
 <∞ E

supθ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂b′

∥∥∥∥∥
3
 <∞

Proof. Using the linear map that links A (Wt) and B (Wt) to a and b, it is possible to
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obtain the derivatives of Ã (Wt) and B̃ (Wt). Consider, as an example, B̃ (Wt):

vec
(
B̃ (Wt)

)
=

(
D′n ⊗D+

n

)
(In ⊗ Cnn ⊗ In) vec (M (Wt) b)⊗ vec (M (Wt) b)

=
(
D′n ⊗D+

n

)
(In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) (b⊗ b)

∂

∂b′
vec
(
B̃ (Wt)

)
= (D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n (b⊗ I3n)

∂

∂b′
vec

(
∂

∂b′
vec
(
B̃ (Wt)

))
=

[
I3n ⊗

[
(D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n

]] ∂

∂b′
vec (b⊗ I3n)

=
[
I3n ⊗

[
(D′n ⊗D+

n ) (In ⊗ Cnn ⊗ In) (M (Wt)⊗M (Wt)) 2D3nD
+
3n

]]
×

× (1⊗ C3n3n ⊗ I3n) (I3n ⊗ vec (I3n))

Let us define the following quantities

‖Cnn‖ = K1,n ‖(D′n ⊗D+
n )‖ = K2,n ‖(DnD

+
n )‖ = K3,n

supθ∈Θ ‖a‖ = Ka supθ∈Θ ‖b‖ = Kb supθ∈Θ ‖C‖ = Kc.

Then, let us bound

‖(M (Wt)⊗M (Wt))‖ =
√
ρ
(
(M (Wt)⊗M (Wt))

′ (M (Wt)⊗M (Wt))
)

= ρ
(
M (Wt)

′M (Wt)
)

= ρM .

We already studied the characteristic polynomial in lemma 1 on page 11 ; it has n
eigenvalues equal to 1, eigenvalues equal to dG,i for i = 1, . . . , n and the last n eigenvalues
are the eigenvalues of the Laplacian L (Gt). In particular, we are interested in ρ (L (Gt)).
Bounds could be found in Rojo (2007), the most trivial one being the column sum over
row maxima of the weight matrix.

ρ (L (Gt)) <
n∑
j=1

max
i=1,...,n

Wt,ij
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By Assumption 7 we can bound Wt,ij ≤ d∗ and dG,i ≤ n (d∗)2. We have

ρM = max

(
1, n (d∗)2 ,

n∑
j=1

max
i=1,...,n

Wt,ij

)
≤ max

(
1, n (d∗)2) (27)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥vec
(
B̃ (Wt)

)∥∥∥ ≤ K2,nK1,nρMK
2
b (28)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ ≤ K2,nK1,nρM2K3,3nKb (29)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec
(
B̃ (Wt)

))∥∥∥∥ ≤ K2,nK1,nρM2K3,3nK1,3n (30)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥vec
(
Ã (Wt)

)∥∥∥ ≤ K2,nK1,nρMK
2
b (31)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂

∂a′
vec
(
Ã (Wt)

)∥∥∥∥ ≤ K2,nK1,nρM2K3,3nKa (32)

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂

∂a′
vec

(
∂

∂a′
vec
(
Ã (Wt)

))∥∥∥∥ ≤ K2,nK1,nρM2K3,3nK1,3n (33)

In addition, in the following we will need bounds for the first and second derivatives of
the products. For the first derivative we have:

∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

})

=
s∑
l=r

{
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

))

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

({
s∏
l=r

B̃ (Wt−l)

})∥∥∥∥∥
≤

s∑
l=r

{
sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥
{

s∏
m′=s−l+1

B̃ (Wt−m′)

}∥∥∥∥∥ sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥
{
s−l−1∏
m=r

B̃ (Wt−m)

}∥∥∥∥∥×
× sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
}

≤
s∑
l=r

%̄lB%̄
s−l−r
B sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
≤ (s− r + 1) %̄s−rB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ (34)
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For the second derivative we need the following intermediate result:

∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})
=

[
In(n+1)/2 ⊗ Cn(n+1)/2 ⊗ In(n+1)/2

]
×

×

{
∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′)
⊗ vec

({
s−l−1∏
m=r

B̃ (Wt−m)

})
+

+ vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′)
⊗ ∂

∂b′
vec

({
s−l−1∏
m=r

B̃ (Wt−m)

})}

by which, we get the bound:

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})∥∥∥∥∥
≤ K1,n(n+1)/2 (l + 1) %̄lB%̄

s−l−r
B sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
+K1,n(n+1)/2 (s− l − r + 1) %̄s−l−rB %̄lB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥
= K1,n(n+1)/2 (s− r + 1) %̄s−rB sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥ (35)

For the second derivative we have:

∂

∂b′
vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))
=

=
s∑
l=r

∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

)))

=
s∑
l=r

[[
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

))]′
⊗ In(n+1)/2

]
×

× ∂

∂b′
vec

({
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

})

+
s∑
l=r

{
I3n ⊗

{{
s∏

m′=s−l+1

B̃ (Wt−m′)

}′
⊗

{
s−l−1∏
m=r

B̃ (Wt−m)

}}}
×

× ∂

∂b′
vec

(
∂

∂b′
vec
(
B̃
(
Wt−(s−l)

)))

51



and finally

sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))∥∥∥∥∥
≤ (s− r + 1)2 %̄s−rB K1,n(n+1)/2 sup

θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec
(
B̃ (Wt)

)∥∥∥∥2

+ (s− r + 1)2 %̄s−rB sup
θ∈Θ,t∈(−∞,∞)

∥∥∥∥ ∂∂b′vec

(
∂

∂b′
vec
(
B̃ (Wt)

))∥∥∥∥ (36)

For part (i)

ξt = C̃ + Ã (Wt) yt−1 +
∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(
C̃ + Ã (Wt−τ )Xt−τ−1

)
∂ξt
∂a′

= X ′t−1 ⊗ In(n+1)/2

∂vec
(
Ã (Wt)

)
∂a′

+
∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

 (37)

∂ξt
∂b′

=
∞∑
τ=1

[(
C̃ + Ã (Wt−τ )Xt−τ−1

)′
⊗ In(n+1)/2

]
∂

∂b′
vec

({
τ−1∏
l=1

B̃ (Wt−l)

})
(38)

By using equation (37), equation (38), 32,29 and 34 and applying the Hölder and
Minkowski inequalities, we get

E

sup
θ∈Θ

∥∥∥∥∥∂ξ̃t∂a′

∥∥∥∥∥
3
 ≤


∞∑
τ=0

%̄τ−1
B

E
sup
θ∈Θ

∥∥∥∥∥∥
(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

∥∥∥∥∥∥
3


1/3


3

≤

{
∞∑
τ=0

%̄τ−1
B

[
E
[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKa

]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥∂ξ̃t∂b′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

(τ − 1) %̄τ−2
B

[
K2
c + E

[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKb

]}3

<∞

.

For part (ii)
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∂2ξt
∂a′∂a′

=
(
X ′t−1 ⊗ In(n+1)/2

) ∂

∂a′

vec

∂vec
(
Ã (Wt)

)
∂a′


+

∞∑
τ=1

{
τ−1∏
l=1

B̃ (Wt−l)

}(X ′t−τ−1 ⊗ In(n+1)/2

) ∂

∂a′

vec

∂vec
(
Ã (Wt)

)
∂a′

 (39)

∂2ξt
∂a′∂b′

=
∞∑
τ=1


(X ′t−τ−1 ⊗ In(n+1)/2

) ∂vec
(
Ã (Wt−τ )

)
∂a′

′ ⊗ In(n+1)

×
×


τ−1∑
j=1

{
τ−1−j∏
l=1

B̃ (Wt−l)
′

}
⊗


τ−1∏

l=τ−1−(j−1)

B̃ (Wt−l)

 ∂

∂b′
vec
(
B̃ (Wt−τ+j)

) (40)

∂2ξt
∂b′∂b′

=
∞∑
τ=1

[(
C̃ + Ã (Wt−τ )Xt−τ−1

)′
⊗ In(n+1)/2

]
∂

∂b′
vec

(
∂

∂b′
vec

({
s∏
l=r

B̃ (Wt−l)

}))
.(41)

Then, from equation (39),equation (40), equation (41), 33,30 and 36 and the Hölder and
Minkowski inequalities, we have

E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂a′∂a′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

%̄τ−1
B K2,nK1,nρM2K3,3nK1,3n

[
E
[
‖ut‖6]1/6]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂a′

∥∥∥∥∥
3
 ≤

{
∞∑
τ=0

(τ − 1) %̄τ−2
B K2

2,nK
2
1,nρ

2
M2K2

3,3nKaKb

[
E
[
‖ut‖6]1/6]}3

<∞

E

sup
θ∈Θ

∥∥∥∥∥ ∂2ξ̃t
∂b′∂b′

∥∥∥∥∥
3
 ≤

{[
K2
c + E

[
‖ut‖6]1/6K2,nK1,nρM2K3,3nKb

]
×

×

[
∞∑
τ=0

(τ − 1)2 %̄τ−3
B K2

2,nK
2
1,nρ

2
M2K2

3,3nK
2
b

+
∞∑
τ=0

(τ − 1)2 %̄τ−2
B K2,nK1,nρM2K3,3nK1,3n

]}3

<∞

A.4 Proof of theorem 3 on page 18

Proof. The proof is analogous to the proof of Theorem 2 in Hafner and Preminger (2009) if

we substitute in part (ii) of the proof of their Lemma 2 their bound of E
[
supθ∈Θ

∥∥∥Σt − Σ̃t

∥∥∥]
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(equation 17 in their paper) with our bound in Lemma 5 .

A.5 Proof of theorem 4 on page 19

Proof. The proof is again almost identical to the proof of the equivalent Theorem 3 in
Hafner and Preminger (2009) if we replace in part (i) and (ii) of their proof of Lemma 3
the bound on the derivatives of ξ̃t with respect to parameters (equations 28,29 and 33 in
their paper) with the bound we derive in Lemma 6.
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Table 1: Decomposition of [Σt]i,j

shock response (ARCH) persistence (GARCH)

Constant [CC ′]i,j

direct v0
i,t−1v

0
j,t−1

[
Ω0,0
t−1

]
i,j

indirect v1
L,i,t−1v

1
L,j,t−1 + v1

R,i,t−1v
1
R,j,t−1

[
Ω1,1
L,L,t−1

]
i,j

+
[
Ω1,1
R,R,t−1

]
i,j

+v1
L,i,t−1v

1
R,j,t−1 + v1

R,i,t−1v
1
L,j,t−1 +

[
Ω1,1
L,R,t−1

]
i,j

+
[
Ω1,1
R,L,t−1

]
i,j

mixed v1
L,i,t−1v

0
j,t−1 + v0

i,t−1v
1
L,j,t−1

[
Ω1,0
L,t−1

]
i,j

+
[
Ω0,1
L,t−1

]
i,j

+ v1
R,i,t−1v

0
j,t−1 + v0

i,t−1v
1
R,j,t−1 +

[
Ω1,0
R,t−1

]
i,j

+
[
Ω0,1
R,t−1

]
i,j

Table 2: Specification tests for the Spatial-BEKK model on Daily Changes in the Five-Year
EMU Sovereign CDS spreads from 9/10/2008 to 30/12/2016.

Joint Significance of Network Parameters

LR Wald Wald L Wald R
Stat 268 176 97 55

P-value 0.0000 0.0000 0.0000 0.0000
Wald a1,L Wald a1,R Wald b1,L Wald b1,R

Stat 38 27 80 32
P-value 0.0000 0.0002 0.0000 0.0000
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Table 3: Estimated Relevant Parameters of SB-BEKK on Daily Changes in the Five-Year EMU
Sovereign CDS spreads from 9/10/2008 to 30/12/2016. Standard deviation in parenthesis. *
parameters significant at the 10% level. ** parameters significant at the 5% level. *** parameters
significant at the 1% level

a1,L a1,R b1,L b1,R a0 b0

DE -0.056(0.11) -0.022(0.10) -0.088(0.03)*** -0.014(0.03) 0.258(0.03)*** 0.965(0.01)***
IT 0.089(0.09) 0.849(0.27)*** 0.001(0.03) -0.058(0.07) 0.192(0.02)*** 0.972(0.00)***
FR -0.636(0.19)*** 0.549(0.22)** 0.209(0.05)*** -0.292(0.10)*** 0.376(0.03)*** 0.887(0.01)***
IE -0.388(0.11)*** -1.719(0.53)*** 0.149(0.03)*** 0.757(0.16)*** 0.352(0.04)*** 0.929(0.01)***
ES 0.618(0.18)*** -0.568(0.22)*** -0.138(0.04)*** 0.076(0.04)* 0.107(0.02)*** 0.987(0.00)***
PT 0.206(0.12)* -0.742(0.10)*** 0.086(0.04)** 0.252(0.01)*** 0.290(0.03)*** 0.912(0.01)***

Table 4: The percentage of cumulative variance decomposition was obtained from data on daily
changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to 30/12/2016.

Constant Mixed Indirect Direct

V CDE % 0.0170 -0.0104 0.0021 0.9913
V CIT % 0.0170 -0.0034 0.0019 0.9845
V CFR % 0.0563 0.0137 0.0104 0.9196
V CIE % 0.0167 0.0063 0.0037 0.9732
V CES % 0.0209 -0.0282 0.0192 0.9881
V CPT % 0.0344 0.0436 0.0059 0.9161

Table 5: The percentage of cumulative marginal spillover contribution (MSC) was obtained
from data on daily changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to
30/12/2016.

Total Costant Mixed Indirect Direct

MSCDE % 0.0893 0.0015 0.0011 0.0000 0.0866
MSCIT % 0.0984 0.0022 0.0063 0.0005 0.0894
MSCFR % 0.1442 0.0058 -0.0011 0.0010 0.1385
MSCIE % 0.1413 0.0023 0.0071 -0.0005 0.1323
MSCES % 0.2566 0.0059 0.0042 0.0002 0.2463
MSCPT % 0.2692 0.0037 0.0019 -0.0002 0.2638

Table 6: Parameter-constancy test for the different optimal networks

No Constraints Redistribution Constraint Frobenius Constraint

Wald Stat 27.1 8.2 7.4
P-value 0.3012 0.9988 0.9995
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Table 7: Investment Needed to Reach Target Exposures (Billions of USD), obtained from daily
changes in five-year EMU sovereign CDS spreads.

Optimal Network with Frobenius Constraint
(Delta wrt true) Billions of USD

Location DE IT FR IE ES PT

Reporting
DE -41.2 32.6 -5.6 41.5 109.7
IT 8.1 -6.5 -7.7 -11.4 15.3
FR 44.9 -121.9 -10.8 9.0 85.3
IE -0.8 -1.3 -0.7 -1.9 2.4
ES -10.9 -56.3 -19.8 -2.8 24.1
PT -0.7 -3.6 -1.7 -0.4 -0.9

G G

1

2

3 1

2

3

 0 1 0
0 0 1
1 0 0

  1 0 0
0 1 0
0 0 1


Figure 1: The directed triangle G has one strongly connected component but induces a G with
3 components
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Figure 2: Simulated paths of : (a) bivariate VAR(1) with autocorrealtion matix Ψ0; (c)
bivariate VAR(1) with autocorrealtion matix Ξ0; (d) bivariate VAR(1) with autocorrealtion
matix Ψ1; (d) bivariate VAR(1) with autocorrealtion matix Ξ0; (e) Markov Switching bivariate
VAR(1) with Φst = Ψst and transition matrix P ; (f) Markov Switching bivariate VAR(1) with
Φst = Ξst and transition matrix P ; (g) Markov Switching bivariate VAR(1) with Φst = Ψst

and transition matrix Q; (h) Markov Switching bivariate VAR(1) with Φst = Ξst and transition
matrix Q.
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Figure 3: BIS claims in billions of US Dollars by Counterparty (CP) and Reporting coun-
try(RP)
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Figure 4: BIS claims normalized by the worldwide amount declared by reporting country, by
Counterparty (CP) and Reporting country (RP)
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Equally Weighted Index Variance Decomposition
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Figure 6: The relative variance decomposition of the equally weighted index was obtained
from data on daily changes in the five-year EMU sovereign CDS spreads from 9/10/2008 to
30/12/2016, with the direct contribution omitted.
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Figure 7: The average covariance proxy during the Brexit referendum of Q2 2016 was ob-
tained from data on daily changes in five-year EMU sovereign CDS spreads. The percentage of
cumulative proxy change with regard to the realized one is reported in parenthesis
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