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1 Introduction

Buildings account for 40% of EU energy use (Parliament and Council, 2010), and it is

predicted that 75–90% of the building stock in the EU will continue to stand in 2050. Thus,

the improvement of buildings’ energy efficiency (EE) is among top priority measures that can

help meet EU’s commitment to reduce energy consumption and greenhouse gas emissions.1

From the perspective of mortgage lenders and investors, who have shown growing interest

in “green”, “sustainable” and “energy efficient” products in recent years, investment in

building performance improvements seems to be an attractive market segment.2 Studies

across the globe document that homebuyers recognize the contributory value of increased

energy efficiency. They seem to require a larger discount for less energy efficient dwellings

while capitalizing energy certifications into the property value.3

While the positive relation between EE and sales prices is well documented, it is less

obvious if EE has any effect on borrower’s credit risk. Understanding the importance of

EE for mortgages’ default is of significant importance. If EE yield significant information

on predicting mortgages’ defaults, then banks or other financial intermediaries (as Fintech)

could include this info in their credit score models. With this paper we aim to shed light on

this aspect.

Moreover, there are two potential channels that might drive the results: (i) personal

characteristics of the borrowers captured by the choice of an EE building and (ii) building

performance improvements that help to free-up disposable income of a borrower through

lower utility bills and could, thus, reduce the risk of default. If the second channel is relevant,

we should observe that low income borrowers would be the one that benefit the most of an

1On 24 October 2014, the European Council endorsed a binding EU target of greenhouse gas reduction
of at least 40% by 2030, 60% by 2040, and 80% by 2050, compared to 1990 levels.

2There is currently no coherent definition of and distinction between the popular terms “green”, “sus-
tainable” and “energy efficient”. In the following, we will use these terms interchangeably.

3A positive relation between energy efficiency and sales prices was documented in China (Zhang et al.,
2016), Europe (Ankamah-Yeboah and Rehdanz, 2014), Japan (Yoshida and Sugiura, 2015), Netherlands
(Chegut et al., 2016; Brounen and Kok, 2011), Singapore (Deng and Wu, 2014), Spain (de Ayala et al.,
2016), Sweden (Högberg, 2013), and the United States (Szumilo and Fuerst, 2017; Eichholtz et al., 2012;
Kahn and Kok, 2014; Bloom et al., 2011; Eichholtz et al., 2010; Fuerst and McAllister, 2011).
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EE building and therefore they should default with a significant lower default rate, than

other low-income borrowers. We attempt to contribute to this strand of research by using

a loan-level dataset that we combine with information on buildings’ energy efficiency and

provide evidence if indeed there is any evidence of default rate reduction for the borrowers

that leave in a buildings’ energy efficiency and if this reduction is larger for low income

borrowers.

We use loan-level data of the Dutch mortgage market and investigate the relation between

a building’s energy efficiency and the probability of mortgage default. By focusing on resi-

dential buildings, our sample consists of mortgages issued on more than 120,000 dwellings.

We supplement the dataset with provisional energy efficiency ratings that are assigned by the

Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, in short RVO)

to all Dutch buildings that are not yet supplied with the actual energy performance certifi-

cate (EPC) rating. RVO provides rating categories for 60 pairs of different building type

and construction period combinations in the Netherlands. This allows us to match the loan

data with EE ratings according to building type and construction year.

Additionally, we exploit the fact that the ratings change asynchronously across the dif-

ferent building types in order to disentangle the energy efficiency-component from building

type- and building age-specific effects that are typically associated with borrower’s risk of

default. We employ two empirical methodologies – the Logistic regression and the extended

Cox model – and find that energy efficiency is negatively related with a borrower’s likelihood

of default on mortgage payments. The results hold if we account for borrower, mortgage, and

market control variables. The findings survive a battery of robustness checks. This means

that the energy efficiency rating pick up some unobserved characteristics of the borrower not

caught by the usual variables considered for credit scores.

Furthermore, we show that buildings’ EE better mitigates the default risk of borrowers

with a lower income. Therefore, we provide evidence of the relevance of the economic channel

(on top of the personal characteristics) i.e. that savings coming from reduced costs (i.e.,
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energy bills and insurance costs) might have an impact, at least for borrower with less

disposable income.

In the remainder of this paper, we first provide a more detailed account of the recent

developments in the energy rating landscape and present related literature in Section 2.

In Section 3, we explain the construction of the dataset and present relevant descriptive

statistics. In Section 4, we outline the methodology. Section 5 discusses the results and

Section 6 concludes.

2 Background and Related Literature

This section attempts to put this work in perspective to the historical development of energy

efficiency rating landscape and former studies related to energy efficiency and the associated

findings.

2.1 Historical Background on Energy Efficiency Ratings

Over the last three decades, the building sector has witnessed a rapid growth in the im-

plementation of energy efficient building technologies. In order to make such improvements

comparable across buildings, energy efficiency components of a building have to be measured,

evaluated and aggregated to an easily interpretable indicator, i.e., a rating. Currently, the

landscape of rating schemes is quite diverse. For instance, in the United States, various

energy efficiency certifications co-exist and compete with one another. In Europe, on the

other hand, the energy performance certificate (EPC) is well known but the information

inherent in it varies across countries. In Germany, for instance, two definitions, an energy-

consumption and an energy-demand perspective, co-exist under the same EPC label (see

Weiss et al., 2012). This provides a challenging research environment for the question at

hand: what is the relation between buildings’ energy efficiency and mortgage default risk?

The answer to this question has the potential to unlock benefits for borrowers, lenders and
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investors alike.

In the United States, the history of energy efficiency labels goes back to the early and

mid-1980s when Alaska and California took the first steps to improve efficiency and afford-

ability of housing in the United States (see Farhar et al., 1997). About a decade later, in

1995, the non-profit organisation Residential Energy Services Network (RESNET) took the

initiative to develop the Home Energy Rating System (HERS)4 and the governmental Envi-

ronmental Protection Agency (EPA) introduced the ENERGY STAR certification program5

for newly constructed single-family homes. During the same time, the government-owned

National Renewable Energy Laboratory (NREL) initiated a pilot program that was intended

to introduce a new financial product, the “energy-efficient mortgage”, and to link this prod-

uct to a building’s energy efficiency rating. Once the mortgages were distributed, the task

was to evaluate the program. The evaluation phase intended, among other goals, also to

analyse to what extent a link between buildings’ energy efficiency and the mortgage proba-

bility of default exists (see Farhar et al., 1997; Farhar, 2000). The results from this analysis

would have been the first of their kind. However, the study was either not conducted or not

published. The reasons for this remain unknown. Similarly, none of the published energy

efficiency reports could provide a thorough analysis in the years thereafter. Data availability

issues were reported as the main reason for this research gap (see, e.g., Hammon, 2005).

In Europe, Denmark and the UK were among the first countries to perform energy

efficiency assessments of buildings in the 1970s and 1980s, respectively. In the early and mid-

1990s, various European countries introduced mandatory energy efficiency requirements that

were accompanied by the development and implementation of appropriate rating schemes.

To name a few, in the UK, BREEAM (Building Research Establishment Environmental

Assessment Methodology) and NHER (National Home Energy Rating Scheme) were both

introduced in 1990. In Ireland, ERBM (Energy Rating Bench Mark) was created in 1992

4A HERS index was introduced in 2006. It is normalized to the climatic zone, size, and type of the
house. A HERS value of 100 corresponds to the current home built market standard. Most house scores fall
between 0 to 150. The lower the number, the better, i.e., a net-zero-energy house scores a 0.

5An ENERGY STAR-rated house achieves typically a HERS rating of 85 or lower.
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while in the Netherlands the energy performance of buildings was measured since the mid-90s.

In 2002, the EPC was introduced as a requirement for European Union member states by the

Energy Performance of Buildings Directive (see European Parliament and Council, 2002).

As a result, all member states and some other European countries have established national

building rating policies during the past two decades. Despite these initiatives, however, the

usage of European energy rating information for research into the financial performance of

property is rather rare. This paper is among the first attempts to shed light on this issue.

2.2 Literature on Energy Efficient Buildings

An important question for both practitioners and researchers alike is whether or not the

inclusion of the mortgage-specific attribute “energy efficient” or “green” into the lender’s

scoring model provides any additional value. The theoretical argument is that mortgages on

energy efficient houses should have lower risks relative to standard houses. The argument

for this reasoning is that borrowers’ savings from energy usage will result in more income

available in case of emergencies or unexpected events. For instance, Burt et al. (2010) argue

that house ratings can predict accurately the annual energy costs which should translate

into lower default risk. However, actual research on this topic is limited. Only few studies

have been conducted on this topic to date and all of them rely exclusively on residential and

commercial mortgage data from the United States.

One of the most recent studies on the relationship between energy efficiency and the

probability of default of residential mortgage loans was conducted by Kaza et al. (2014).

In their analysis, the authors employ information on about 71,000 loans for single-family,

owner-occupied houses. The loans were originated between the years 2002 and 2010 in the

United States. The authors show that ENERGY STAR-rated houses are associated with

a substantial and significant reduction of default and prepayment risk. In an additional

analysis, they find that the degree of energy efficiency plays a substantial role: a marginal

decrease in the HERS index implies a significant reduction in the likelihood of loan default.
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These findings suggest that even among ENERGY STAR-rated buildings differences prevail

with mortgages on most energy efficient homes being the least likely to default.

An and Pivo (2015) perform an analysis of the relationship between energy efficient

buildings that hold an ENERGY STAR label, and the corresponding commercial mortgage

default risk. The underlying loan sample is comprised of about 23,000 commercial mortgages

that were originated between the years 2000 and 2012 in 17 Metropolitan Statistical Areas in

the United States. The authors provide evidence that traditional default predictors do not

fully reflect the financial benefits of energy efficiency. Their findings suggest that ENERGY

STAR-labelled commercial buildings are 20% less likely to default than their non-labelled

counterparts.

A more recent commercial mortgage study was conducted by Wallace et al. (2017). Using

securitised commercial mortgages from six cities in the United States, the authors document

that energy efficiency, as measured by all three metrics (i) site energy use intensity, (ii) source

energy use intensity, and (iii) the ENERGY STAR score, significantly mitigates default

risk. They conclude that energy efficiency of buildings should be included in lenders’ risk

evaluation models at new mortgage originations.

Besides using pure energy efficiency characteristics, studies have shown that buildings

with higher sustainability scores are also less prone to default risk. By analysing datasets

on residential and multi-family homes, Rauterkus et al. (2010) and Pivo (2014) observe that

sustainability features, such as buildings’ location, transportation facilities (e.g., closeness to

freeways, subways, work) or housing affordability, also play a significant role in borrowers’

ability to repay their debt.

To summarize, current literature on the direct relationship between energy efficiency and

default risk is sparse and it focuses exclusively on the U.S. housing market. Moreover, only

the study of Kaza et al. (2014) employs residential mortgage data to investigate the impact

of energy efficiency. The presented results are supportive of a significant and inverse relation

between energy efficiency and mortgage default risk. In this paper, we contribute to this
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relatively young strand of literature by focusing on the Dutch residential mortgage market,

confirming that exogenous changes in EE buildings standards have an impact on the default

rates of mortgages. We therefore suggest that also for Europe there is a relationship between

EE ratings and default rates that should be included in the lenders’ risk evaluation models.

We also provide evidence that on top of capturing potential unobservable characteristics of

the borrower, the EE rating do capture the effect that lower annual energy costs have for

low income borrowers on their economic ability to pay the mortgage.

3 Data, Energy Efficiency Definition, and Statistics

This section elaborates on the construction of the dataset that is employed in the analysis.

The steps include (i) the selection and aggregation procedure of loan-level data, (ii) the

definition of energy efficient building ratings, and (iii) the merging methodology of the two

datasets. Additionally, we present the choice of variables for the analysis and the respective

summary statistics.

3.1 Data and Sample Selection

In the following analysis, we employ Dutch mortgage data obtained from the European

DataWarehouse (ED).6 ED provides a rich dataset with periodically updated dynamic and

static individual loan-level information of securitized European mortgages.7 We narrow

down the data sample according to following criteria. The sample period covers January

2014 to May 2018 and the asset country is restricted to Netherlands. The type of borrower

is “individual” and the primary income is between EUR 20,000 and 1,000,000. The property

type is “residential detached/semi-detached house”, “apartment”, or “terraced house”. The

6The European DataWarehouse is part of the European Central Bank ABS Loan Level Initiative. It
provides an open platform for users to access over 1,250 ABS data transactions and private portfolios
belonging to several different originators across Europe.

7A comprehensive overview of loan-level data templates including detailed variable descriptions on
residential mortgages-backed securities (RMBS) datasets can be obtained from ECB’s website: https:

//www.ecb.europa.eu/paym/coll/loanlevel/transmission/html/index.en.html.
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building’s occupancy type is restricted to “owner-occupied” and the construction year of the

building ranges between 1900 and 2016. We further focus on fixed-interest rate mortgages

only and exclude repurchased ones. Finally, we require each individual borrower to be

associated with exactly one building and vice versa. Appendix A provides an overview of

the variables selected for the analysis.

After applying the above selection criteria, our final dataset totals 273,024 individual

mortgage components that are associated with 127,309 individual buildings. The discrepancy

between the number of mortgage components and the number of underlying buildings comes

from the Dutch-specific taxation treatment of mortgages. A typical Dutch mortgage loan

consists of multiple loan parts, e.g., a bank savings loan part that is combined with an

interest-only loan part. This is more common for mortgages originated before 2013, when

there was a specific tax preference for interest-only mortgages. Besides the tax reasons, the

number of mortgage components can go beyond two when a borrower takes an additional

mortgage on the same building at a later time. For the analysis, we aggregate loan-component

information at the building level. For certain variables, this is already done by the data

provider. For instance, variables such as loan-to-value or debt-to-income are available at the

borrower level (i.e., the same value is reported for each loan component). Where necessary,

we compute for each building the average variable value across loan components weighted

by the loan component’s original balance. Further details on this aggregation procedure are

provided in Section 3.3.

3.2 Defining Energy Efficiency

To classify buildings into different energy efficiency categories, we rely on the Dutch energy

performance reference table that was compiled by RVO.8 The idea behind this table is

to determine a provisional energy label for all existing Dutch residential buildings. The

temporary EPC indicates the energy performance of the residence based on cadastral data

8The reference table can be obtained either by contacting RVO or via this link: http://

energielabelatlas.nl/info/index.html.
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(i.e., area, date of construction, building type, quality of insulation of floors, roof and walls,

and systems for heating, hot-water, and renewable energy). The owners are then encouraged

to change or add additional information on energy measures, which a qualified expert has

to approve before being published on the website. In this respect, the owners have also to

provide evidence of the measures taken, such as invoices and photos. The qualified expert

checks the uploaded changes and documents before approving the definite EPC. Finally,

based on this approval, the new EPC is registered at RVO.nl. The final EPC is based on a

national calculation method that considers the measures taken by the owner of the residence.

In the provisional rating table, the label classes are calculated as described in voor On-

dernemend Nederland (2014). This document is based on studies conducted on the Dutch

residential market, such as Boumeester et al. (2008) and Agentschap NL (2011). For the

provisional label, RVO has drawn up 60 reference situations that serve for determining the

provisional energy label.9 For each type of dwelling and for each construction year, the most

common characteristics of the house were studied with regard to flooring, roof, heating and

ventilation system, presence of solar panels, etc., and a code was assigned to each character-

istic. Subsequently, on the basis of these properties, the approximate energy consumption

of a house was calculated and given an energy label.

Table 1 provides an overview of the final energy classification for our analysis. It is

obvious that energy efficiency improved over time with the most efficient buildings being

built after 2006. We can observe that the ratings change non-simultaneously across property

types and construction years. This feature allows us to disentangle the energy efficiency

component from the construction year and type-effect in the analysis.

[Table 1 about here]

Table 2 presents the energy rating distribution of all buildings in the sample and Table

9The table differentiates between six building types (detached house, semi-detached house, row home
corner, terraced house between, flat/apartment, maisonette) and ten construction year periods (1945 and
earlier, 1946–1964, 1965–1974, 1975–1982, 1983–1987, 1988–1991, 1992–1999, 2000–2005, 2006–2013, and
2014 and later). The ordinal rating scale ranges from G (lowest energy efficiency) to A (highest energy
efficiency).
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3 reports the building distribution across Dutch provinces. In both tables, a mortgage on

a building is marked as defaulted if at least one of its mortgage components is reported to

be at least for three months in arrears. We can observe that C-rated (E-rated) buildings

represent the higher (lower) bucket in the sample while the rest of the ratings is more

or less evenly distributed. Column three in Table 2 reports the percentage of defaulted

mortgages within each rating category. In this respect it is noteworthy to highlight the

increasing share of defaults that is associated with a lower energy efficiency rating. In total,

the percentage of defaulted mortgages is rather low with 0.55%. From Table 3, we can

observe that the mortgages across Dutch provinces are not equally distributed, with the

largest share stemming from Holland. Within each province, between one half and one fifth

of buildings are categorized as energy efficient (i.e., having an A- or B-rating). Among the

defaulted mortgages, the share of energy efficient mortgages is always lower relative to their

non-efficient counterparts within each province.

[Table 2 about here]

[Table 3 about here]

3.3 Choice of Variables and Summary Statistics

The control variables for the analyses are those variables that were identified in existing

literature to have a significant effect on mortgage default probability (see An and Pivo, 2015).

The variables can be categorized into four different types: mortgage, building, borrower, and

macroeconomic/financial variables.

Among mortgage variables, we employ contemporaneous loan-to-value ratio (LTV), debt

service coverage ratio (DSCR), debt-to-income ratio (DTI), and loan term. LTV and DTI

are reported by ED. In cases where DTI is missing, we approximate the variable as the

ratio between total original balance per building and total household income. This pro-

cedure seems reasonable as the average absolute difference between the reported DTI and
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the approximated DTI is relatively low at only 0.23. DSCR for each building is defined as

value-weighted monthly periodic payments for each loan component on the same building

computed using current loan balance, interest rate, and the number of periods left until

maturity. Loan term at the building level is defined as the difference between issuance and

maturity date (measured in months) and aggregated as the original balance-weighted average

across loan components associated with that building.

Among building variables, we include property type, geographical location at NUTS 3

level10, and building’s age category. Building’s age is defined as the difference between

current loan year and building’s construction year. We categorize building’s age into 3-

year categories as this is the shortest building maintenance cycle according to Underwood

and Alshawi (2000). Borrower-level information includes total income, which is defined as

the sum of primary and secondary income and borrower age at origination of the earliest

loan component. In this respect, we categorize the total income across high, medium and

low tertile groups. To control for the overall macroeconomic conditions, we include Dutch

quarterly unemployment rate, the end-of-month 10-year German government bond yields,

the monthly standard deviation of the 10-year German bond yields, and the yield curve

slope defined as the difference between 10- and 1-year EUR swap rates. The variables are

obtained from Bloomberg.

In the following, we present the summary statistics at property level. Table 4 provides

summary statistics on the main borrower, property and mortgage characteristics as a cross-

sectional one-time snapshot using the latest reported values. The table differentiates between

non-defaulted (Panel A) and defaulted (Panel B) mortgages. Within both panels, we ad-

ditionally differentiate between energy efficient (EE = 1) and energy inefficient (EE = 0)

buildings. A building is considered EE if it is A or B rated. Beginning with borrower char-

acteristics, age at mortgage origination does not seem to differ substantially between EE

10The Nomenclature of Territorial Units for Statistics (NUTS) is a geocode standard for referencing the
subdivisions of countries for statistical purposes. For each EU member country, a hierarchy of three NUTS
levels is established by Eurostat in agreement with each member state. Among the three levels, the NUTS
3 codes refer to the most granular region specification.
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and non-EE mortgages. However, it seems that younger borrowers experience more often a

default. In terms of income, EE-building borrowers have an overall higher total household

income for both defaulted and non-defaulted loans while defaulted borrowers have in general

a relatively lower annual income. The construction year of the buildings varies between EE

and non-EE by definition. More recently constructed buildings are EE. About 68% of build-

ings are detached houses while 17% are apartments and 15% terraced houses in the sample

(results are not reported in the Table). Average interest rates and original loan-to-value is

higher for defaulted and non-EE mortgages.

[Table 4 about here]

Figure 1 provides the distribution of mortgages according to buildings’ year of construc-

tion (Panel A), total original balance (Panel B), and earliest origination year (Panel C). It is

noteworthy to mention that our dataset is well diversified according to buildings’ construc-

tion year. Additionally, we have a considerable amount of mortgages that are older than ten

years. This is an important feature as defaults typically do not occur in the first years after

origination.

[Figure 1 about here]

Unreported statistics on market and economic variables indicate that the average quar-

terly Dutch unemployment rate for the period January 2014 to May 2018 is at about 6.47%.

For the same period, the mean 10-year German government bond yield is at 0.46%, its aver-

age monthly standard deviation is 0.095% and the average difference between 10- and 1-year

Euro swap rates amounts to 0.963%.

4 Methodology

The industry standard for estimating mortgage default risk in consumer loans is the appli-

cation of a Logistic regression model. Among the more sophisticated techniques, survival
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analysis – in particular the application of the Cox model – is a popular alternative approach

as it allows to incorporate the time series nature of a given dataset. Due to the panel struc-

ture of the data provided by ED, we present and employ both estimation procedures in our

analysis.

4.1 Logistic Regression

A common approach for investigating the relation between borrower-level loan information

and the probability of mortgage default in literature is the Logistic regression (see, e.g.,

Campbell and Dietrich, 1983). Its main difference to the linear regression model is that the

dependent variable is a latent variable, and that only the binary outcome variable Y , i.e.

the default event, can be observed. At a random point in time, Y takes either a one in case

of occurrence of the event and zero otherwise. The probability distribution of Y is modeled

as

P(Yi = 1|xi) =
exp(β′xi)

1 + exp(β′xi)
, (1)

where Yi to be equal to one if at least one of the mortgage components on building i has

experienced a repayment delay for at least three months in a row, and zero otherwise. The

vector of explanatory variables xi includes the energy efficiency indicator EEi that equals

to one if a building has a provisional energy rating A or B and zero otherwise. All other

independent variables fall into one of the four categories: mortgage, building, household, or

market control variables. A detailed overview of the covariates is presented in Section 3.3.

4.2 Extended Cox Model

The Cox regression is a survival analysis method that aims to estimate the distribution

function f(t) of the random event times T , where an event is the default date of a loan

component. Following the standard terminology, a generic survival model is represented by

a survival function S(t) and a hazard function h(t) defined as
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S(t) = P(T > t) =

∫ ∞
t

f(u)du, (2)

h(t) = lim
∆t→0

P(t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
, (3)

where S(t) is a monotone decreasing function in t with the limits limt→0 S(t) = 1 and

limt→∞ S(t) = 0. The survival function models the probability that a loan will survive

beyond a threshold period t. The hazard function h(t) represents the instantaneous risk or

conditional probability that a default occurs at time t given that the loan has survived up

to time t. A convenient way to express the relationship between survival function S(t) and

the hazard function h(t) is by introducing the cumulative hazard function H(t) =
∫ t

0
h(u)du.

Then, using the relation given in equation (3) it is straightforward to show that H(t) =

− ln{S(t)}. The cumulative hazard function can be interpreted as the total amount of risk

accumulated up to time t.

Cox (1972) proposes a proportional hazards model with the hazard function being defined

as the product of a positive baseline hazard rate h0(t) and the exponential of a linear function

of explanatory variables xi:

h(t|xi) = h0(t) exp(β′xi), (4)

where xi is a vector of time-fixed covariates that are associated with building i and β is a

vector of the corresponding regression coefficients. This basic form of the Cox model can be

extended to allow for time-varying covariates:

h(t|xi(t)) = h0(t) exp(β′xi + γ′xi(t)), (5)

where the vector xi(t) = [x1, x2, . . . , xp, x1(t), x2(t), . . . xq(t)] consists of p time-independent

and q time-dependent predictor variables.

Graphical visualization of empirical survival functions can illuminate if the proportional
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hazards assumption holds. The empirical survival function is typically depicted using the

Kaplan and Meier (1958) method. It is a well recognized non-parametric approach, assuming

that censoring time is independent of an individual’s behavior. The empirical function is

defined as

Ŝtm =
m∏
l=1

P(T > tl|T ≥ tl) = Ŝ(tm−1)P(T > tl|T ≥ tl), (6)

where tm are ordered event times and the probabilities being approximated by the frequency

distribution in the dataset.

In survival analysis, the observation period is typically limited to a defined time span

such that it is important to differentiate between the time (i) when a subject first becomes

at risk, (ii) when a subject comes under observation, and (iii) when a subject experiences

failure. An individual is referred to as left-truncated if the date when it first becomes at

risk precedes the beginning of the observation period. In the case of loans, left-truncation

applies to loans that were originated prior to the first observation date. And among the

left-truncated loans, we can observe only those loans that survived until the beginning of

the study while we do not have any information on those that experienced a default prior

to the observation period. In general, it is allowed to include left-truncated subjects into

the analysis but it is important to take into account the subjects’ time of exposure to risk

when they come under observation (i.e., account for loan’s age at beginning of the study).

A subject is referred to as right-censored if the date of failure is unobservable either due to

subject’s early exit from the study or due to early termination of the study. For instance, in

the application to the loan analysis we cannot observe the future default date of a loan that

is still being paid off at the end of the observation period. For a loan that was paid off during

the observation period, on the other hand, the day of the last payment is considered as the

censoring date because a default might have occurred at some point in the future if the loan

term was only sufficiently long enough. The common practice to correct for censoring is to

introduce a dummy variable for censored observations.
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5 Empirical Results

The following section presents the regression results and the associated robustness checks.

5.1 Logistic Regression

The logistic regression model is appropriate for modeling a binary outcome disregarding

time dimension. Since our dataset provides a quarterly time series of mortgage information,

We resolve to the following procedure for eliminating the time dimension. Among those

mortgages that did not experience any defaults in the sample, we take the latest quarter for

the regression analysis. For defaulted mortgages, on the other hand, we identify the quarter

of default, i.e., that quarter in which the mortgage was reported for the first time to be in

arrears for three or more months. We employ the information that was reported in that

quarter in the logistic regression for the defaulted mortgages.

Table 5 presents the estimates. Column 1 reports the results not controlling any other

characteristics in the model. The EE estimate of −0.7150 suggests that energy efficiency

has a negative and highly significant relationship with the risk of default. The marginal

effect of the EE implies that a mortgage on an energy efficient building has a decrease on

the probability of default equal to −0.34% with respect to the non-efficient counterpart, i.e.

a reduction by one half of the default probability, if we consider that the default rate for

non-EE building is on average 0.66% (see Table 2). Since this finding might be driven by

various mortgage, building or household characteristics, we include the appropriate control

variables. One of the most important criticalities in this analysis stems from the provisional

rating table. As mentioned earlier, buildings’ rating categories are constructed by RVO

based on building type and construction year period. This means that the results might be

driven not by the actual rating but either by the building type or the age of the building.

To disentangle the energy efficiency effect from other building characteristics, we include as

control variables both the type of the building and its current age category. Additionally, we
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control for household (total income tercile and borrower age at origination) and mortgage

characteristics (LTV, DTI, DSCR, loan term). Further, we include region fixed effects at

NUTS 3 level and year fixed effects. Column 2 shows that the negative relation between

energy efficiency and the probability of default remains significant and quantitatively sizeable

with an estimated coefficient of −1.3408. Adding market controls (i.e., unemployment,

government bond yields, volatility of gov. bond yields, and yield curve slope) and clustering

the standard errors at the NUTS 3 region level does not affect the findings as reported in

columns 3 and 4. Also in this case, the marginal effect of the EE are very similar with

a decrease on the probability of default equal to −0.39% with respect to the non-efficient

counterpart.

[Table 5 about here]

We validate the above findings with a number of robustness checks. For this purpose,

we take specification (4) in Table 5 as the baseline model and replace, redefine or add

covariates as described further below. The various model specifications are presented in Table

6, where we report for convenience purposes only on the regression coefficient associated with

the energy efficiency dummy variable. Since it is common to estimate a credit risk model

with original covariates, we replace the explanatory variables current LTV and current total

income with original LTV and total income terciles that were reported at the earliest date

in our sample. As presented under specification 1, the main results are not driven by the

covariates’ reporting date. Model specifications 2 to 5 show that the results are not affected

by the definition of building and borrower age category. In models 2 and 4, we use the actual

building and borrower age, respectively. In models 3 and 5, we redefine the age categories

from 3- and 5-year category to 9-and 15-year for building and borrower age, respectively.

The baseline regression was estimated by omitting the DTI and the original balance due to

multicollinearity concerns. The correlation between DTI and LTV (DSCR) is quite high at

0.51 (0.68). Similarly, total income and total original balance exhibit a correlation coefficient

of 0.73. In model 6 (7), we add DTI (original balance) to the baseline specification while
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model 8 includes both covariates. As presented in Table 6, the inclusion of the two covariates

does not affect the main result.

[Table 6 about here]

5.2 Extended Cox Model

The Cox model is typically employed to study survival data over time. Since our dataset

allows to periodically track a mortgage’s health, we employ the extended Cox model with

time-varying covariates for the period January 2014 to May 2018.

Before presenting the regression results, it is important to confirm if the proportional

hazards assumption holds as it might affect the interpretation of the results. Figure 2 presents

the empirical survivor functions for energy efficient and non-energy efficient mortgages. From

visual analysis, we observe that the two curves neither cross, nor do they diverge too much,

suggesting that the proportionality assumption holds. The implication of this finding is that

the estimated coefficients for the energy efficiency variable can be assumed to be constant

over time, meaning that the estimates are not dependent on the reporting time of the last

observed value. Additionally, the survivor curves suggest that, on average, energy efficient

mortgages survive for a longer period than their non-efficient counterparts.

To further explore the observed relation between EE and survival time, we run the

extended Cox regression with time-varying covariates and present the results in Table 7.

Column 1 reports the estimated log hazard ratios not controlling for any mortgage and

other characteristics. The regression coefficient is negative and highly significant (−0.5652),

confirming the findings obtained from the Logistic regression. Energy efficiency seems to

be associated with a lower probability of mortgage default. As we can observe, the time-

varying nature of the covariates does not qualitatively affect much the logistic regression

results. Among the time-varying covariates are current LTV, DSCR, total income, loan

term, and the macroeconomic variables. It is obvious that the former two vary over time

as the individual loan components are being repaid. Total income and loan term vary less
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often. The former being dependent on the borrower’s changes in the income status or salary

increases while the latter is affected by any additional loan components that are added to

the already existing ones.

[Figure 2 about here]

[Table 7 about here]

To validate these results, we apply similar robustness exercises as in the case of the

Logistic regression. The only difference is that Spec. 1 is omitted as it is the main property

of the Cox regression to include original as well as current covariate values in the regression

analysis. Table 8 presents the results. The estimates suggest that neither redefining borrower

and building age categories (Spec. 2 to 5), nor including additional covariates that might

raise multicollinearity concerns (Spec. 6 to 8) does affect the main finding. The results are

quantitatively and qualitatively similar to the baseline estimate.

[Table 8 about here]

Additional, we investigate to what extent the degree of energy efficiency plays a role on

credit risk. The findings suggest that mortgages on more efficient buildings are less prone to

default. For sake of space, we include the results in Appendix B.

5.3 Economic Mechanism

As shown in the report of Zancanella et al. (2018), the benefits from energy efficiency

building are obtaining in savings rather than revenues. Borrowers’ savings such as reduced

energy bills and home insurance costs should result in more income available in case of

emergencies or unexpected events. Consequently, energy efficiency should better mitigate

credit risk on residential mortgage in lower income borrowers.
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To measure if such effect exists, we decompose the EE variable according to the income

tercile group,

EEi =
3∑

j=1

IncQji × EEi (7)

where IncQji is equal to one if the individual i belongs to the tercile group j, and zero

otherwise.

Table 9 reports the Energy rating distribution according to the income tercile group.

The energy efficient buildings (A/B rating) represent the 32.61% (all sample), 43.45% (high-

income, INCQ1), 32.66% (medium-income, INCQ2) and 21.71% (low-income, INCQ3). The

percentage decreases by approximately 11 points when moving to a lower income group. As

expected within the same rating category, the borrower defaults increase for lower income

classes. For instance, the default for the rating class A is equal to 0.22 (INCQ1), 0.24

(INCQ2) and 0.34 (INCQ3).

[Table 9 about here]

Table 10 presents the regression results for the logit model. All the other explanatory

variables remain unchanged with respect to the previous estimates. It is worth noting that

IncQ1×EE is not significant for specifications (1) and (2) while is negative and significant

at 10% level for (3) and (4) with an estimated coefficient equal to −1.4613. Interestingly,

IncQ2×EE and IncQ3×EE show a negative and significant estimated coefficients in all the

proposed four specification. The magnitude of IncQ3×EE is always higher than IncQ2×EE,

and higher than IncQ1×EE in (3) and (4).11 In the last two cases, the marginal effect of the

EE according to the income group shows a decrease on the probability of default equal to

−0.39% (IncQ1×EE), −0.45% (IncQ2×EE) and −0.46% (IncQ3×EE) with respect to the

non-efficient counterpart. If we consider that the average default rate for IncQ3 is 0.93%,

the reductio in terms of default probability is economically significant and corresponds to

one half of the average default probability for low income borrowers. This suggests that

11Additionally, we perform a Wald test for the equality of IncQ1×EE and IncQ3×EE. We do not accept
the null hypothesis for specification (1) at 5% confidence level.
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energy efficiency better mitigates the default risk of borrowers with a lower income. In this

respect, the economic channel is represented by savings coming from reduced costs which

exert in relative terms a major impact on the borrower with less disposable income.

[Table 10 about here]

Finally, Table 11 shows the estimates for the Extended Cox model. The results are similar

to the logit model for specification (1) where IncQ1×EE is not significant while IncQ2×EE

and IncQ3×EE are negative and significant with almost the same order of magnitude. Re-

garding the other specifications, we found that energy efficiency mitigates the risk of default

for the borrowers in the second tercile (IncQ2×EE) with respect to the ones belonging to

first (IncQ1×EE). On the contrary, we do not find such evidence for IncQ3×EE where the

estimated coefficient is negative and significant but lower in magnitude with respect to the

other tercile groups. Once again, findings confirm a mitigation effect on the default probabil-

ity with respect to the non-energy efficient counterpart, but the pattern is not clear among

the different income groups.

[Table 11 about here]

6 Conclusions and policy implications

This study identifies a relationship between buildings’ energy efficiency and mortgage de-

fault risk. We employ a unique dataset which consists of Dutch loan-level data that are

supplemented with provisional building energy efficiency ratings obtained from RVO’s rat-

ing categories. In the empirical analyses, we exploit the non-simultaneous changes in energy

efficiency ratings across construction years and building types to disentangle the energy

efficiency-component from type-and age-specific effects that are typically associated with

borrower’s risk of default.

We make use of two empirical methodologies, the Logistic regression and the extended

Cox model, and find that energy efficiency is negatively related with a borrower’s likelihood
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of default on mortgage payments. The results hold accounting for borrower, mortgage,

and market control variables. A series of robustness checks confirms that the findings are

not driven by any particular assumptions. As a consequence, the discriminatory power of

a model using both the usual borrower credit variables and the EE variable significantly

exceeds models that only use the borrower credit variables. This suggests that the EE

ratings complements rather than substitutes for borrower credit information and a lender

that uses information from both sources (borrower credit information + EE ratings) can

make superior lending decisions compared to lenders that only access to borrower credit

information.

Furthermore, we investigate whether there is evidence, on top of unobservable character-

istics of the borrower, of any economic mechanism that mitigate the default risk of borrowers

having a lower income. The economic channel shows that savings coming from reduced costs

such as energy bills and home insurance costs have a major impact in relative terms on the

borrower with less disposable income.

These aspects, despite being crucial for the design of future energy policies, have also

implication in terms of risk management for the European financial institutions. In fact,

a lower risk of default for mortgages on energy efficient residential buildings could imply a

different pricing (i.e., lower interest rates).

The presented findings are a first step to understanding if and to what extent energy

efficiency plays a role in the European mortgage market.
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Figures

Figure 1: Distribution by construction year and original balance.
Notes: Panel A depicts the relative frequency of buildings’ construction year. Panel B depicts
the relative frequency of total mortgage original balance that is defined as the sum across all loan
components on the same building. Panel C presents the earliest mortgage origination year that
is associated with a building.
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Figure 2: Survivor functions.
Notes: This figure shows Kaplan-Meier time-to-default over a 20-year period for two mortgage groups: mortgages with energy
efficient (EE = 1) and non-energy efficient (EE = 0) buildings. The Log-rank test for equality of survivor functions gives a
p-value of 0.0001.
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Tables

Table 1: Energy ratings by property type and construction year

Construction year

Property type 1900– 1946– 1965– 1975– 1983– 1988– 1992– 2000– 2006
1945 1964 1974 1982 1987 1991 1999 2005 or later

House, (semi-)detached G F D C C C B B A
Flat/Apartment G E F C C C B B A
Terraced House F E C C C C B A A

Notes: This table presents the energy rating distribution across property types and construction years.
RVO’s rating categories are obtained from http://energielabelatlas.nl/info/index.html and adjusted
according to the property type definition in the mortgage dataset. Property type “residential detached/semi-
detached house” in ED’s dataset corresponds to property types “vrijstaande woning” and “twee/één kap-
woning” in RVO’s table, ED’s “apartment” corresponds to RVO’s “flat/appartement”, and ED’s “terraced
house” corresponds to RVO’s “rijwoning tussen”.
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Table 2: Energy Rating distribution

Rating category All Defaulted

A 14.88 0.25
B 17.73 0.38
C 27.22 0.48
D 9.55 0.69
E 3.99 1.05
F 11.23 0.71
G 15.39 0.81

Total 100 0.55

Notes: This table presents the energy rating distribution of all and defaulted Dutch loans. Column 2 provides
the percentage share of each rating category within the total sample of loans. Column 3 states the share of
defaulted loans within each rating category. The total number of unique buildings is 126,036.
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Table 3: Geographic distribution

All Defaulted

Land Province NUTS 2 Code % by province % EE within province % non-EE % EE

Northern Netherlands Groningen NL11 3.08 27.2 0.96 0.38
Friesland NL12 3.39 27.83 0.71 0.17
Drenthe NL13 2.59 32.4 1.27 0.38

Eastern Netherlands Overijssel NL21 6.79 34.35 0.53 0.24
Gelderland NL22 10.92 33.38 0.52 0.22
Flevoland NL23 2.6 56.17 1.19 0.54

Western Netherlands Utrecht NL31 7.7 37.98 0.53 0.14
North Holland NL32 15.6 30.27 0.61 0.37
South Holland NL33 24.02 32.35 0.8 0.45
Zeeland NL34 2.43 29.12 0.55 0.11

Southern Netherlands North Brabant NL41 15.34 32.74 0.51 0.25
Limburg NL42 5.55 25.34 0.59 0.45

Total 100 32.61 0.66 0.32

Notes: This table presents the geographical distribution of all and defaulted loans according to the NUTS
2 statistical regions of the Netherlands. Column 4 provides the percentage share of each province within
the total sample of loans. Column 5 states the share of energy efficient buildings (defined as A or B-rated
buildings) within each province. Columns 6 and 7 depicts the percentage share of defaulted non-energy
efficient and energy efficient mortgages with a province. The total number of unique buildings is 126,036.
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Table 4: Descriptive statistics of the Loan Characteristics

Panel A: Non-defaulted

EE Mean Median Std. Min Max N

Borrower age 0 39.1 38 10.63 19 70 84,379
1 39.03 37 10.16 18 70 40,964

Borrower income, total 0 53,159 48,637 22,392 21,254 203,112 84,379
1 62,039 58,320 23,874 21,266 203,606 40,964

Construction Year 0 1961 1969 24.17 1900 1991 84,379
1 2003 2004 6.4 1992 2016 40,964

DSCR, current 0 4.9 4.28 2.22 1.98 14 84,379
1 5.02 4.46 2.26 1.98 13.99 40,964

DTI 0 3.65 3.67 1.33 0 59.27 84,379
1 3.7 3.7 1.37 0 30.93 40,964

Interest rate 0 3.97 4.25 1.12 0.64 7.1 84,379
1 3.91 4.14 1.07 0.65 7.2 40,964

LTV, current 0 0.73 0.76 0.24 0.12 1.2 84,379
1 0.67 0.69 0.22 0.12 1.2 40,964

LTV, original 0 0.86 0.92 0.22 0.23 1.24 83,409
1 0.81 0.84 0.21 0.23 1.24 40,612

Mortgage term (in years) 0 32.75 30.08 9.55 2.58 79.81 84,379
1 33.72 30.08 10.3 4 78.42 40,964

Original balance, total 0 201,119 185,000 85,885 55,000 620,000 84,379
1 242,683 232,812 94,475 55,000 620,000 40,964

Panel B: Defaulted

EE Mean Median Std. Min Max N

Borrower age 0 35.32 34 9.05 20 66 560
1 35.53 35 8.59 21 59 133

Borrower income, total 0 42,546 38,550 17,680 21,282 138,936 560
1 55,582 49,794 22,482 24,789 141,602 133

Construction Year 0 1959 1964 22.81 1900 1991 560
1 2002 2002 6.34 1992 2016 133

DSCR, current 0 3.74 3.44 1.3 2.05 12.6 560
1 3.53 3.33 1.02 1.99 7.57 133

DTI 0 4.73 4.58 1.48 0.98 18.02 560
1 5.06 4.79 1.59 0.5 11.29 133

Interest rate 0 4.38 4.65 1.01 1 6.2 560
1 4.17 4.4 1.09 1.62 5.75 133

LTV, current 0 0.93 0.98 0.17 0.17 1.2 560
1 0.86 0.86 0.16 0.17 1.18 133

LTV, original 0 0.99 1.04 0.15 0.31 1.24 556
1 0.92 0.96 0.15 0.49 1.17 133

Mortgage term (in years) 0 29.83 30.08 4.75 12.05 75 560
1 29.92 30.08 5.48 11.5 62.98 133

Original balance, total 0 181,850 165,874 71,216 57,135 620,000 560
1 248,635 219,501 107,582 102,101 587,100 133

Notes: This table presents the summary statistics of loan and borrower variables for non-defaulted (Panel
A) and defaulted (Panel B) loans, respectively. Column 2 differentiates between energy efficient (EE = 1)
and energy inefficient (EE = 0) buildings. The presented loan and borrower variables in the category EE =
0 are as of the latest poolcutoffdate. The values in the EE = 1 category are as of the date of default.
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Table 5: Logistic regression

Dependent variable: Default dummy

(1) (2) (3) (4)

EE (A/B rating) -0.7150*** -1.3408* -1.6523* -1.6523**
[0.0966] [0.7977] [0.8515] [0.7319]

Current LTV 2.4457*** 2.8159*** 2.8159***
[0.3838] [0.4403] [0.4080]

DSCR -0.1154* -0.0891 -0.0891*
[0.0597] [0.0628] [0.0514]

Mortgage term -0.1340 -0.3912 -0.3912
[0.2997] [0.3340] [0.2786]

IncQ2 0.5144*** 0.4486** 0.4486***
[0.1622] [0.1844] [0.1738]

IncQ3 1.2706*** 1.2311*** 1.2311***
[0.1782] [0.2006] [0.1773]

Dwelling controls No Yes Yes Yes
Household controls No Yes Yes Yes
Market controls No No Yes Yes
Region FE No Yes Yes Yes
Year FE No Yes Yes Yes
SE Rob. Rob. Rob. Region Cl.
Observations 126,036 125,560 125,560 125,560
Pseudo R-squared 0.00729 0.267 0.412 0.412

Notes: This table presents logistic regression estimates to determine the propensity to default on mortgages
backed by energy efficient buildings. The dependent variable is a dummy indicating if a mortgage is in
default (i.e., in arrears for at least three months) or not. The explanatory variables are (i) the dummy
variable EE that equals to one if a building’s energy efficiency rating is A or B-rated and zero otherwise, (ii)
the current loan to value ratio, (iii) mortgage term in months weighted by original balance, (iv) the average
interest rate weighted by original balance, and (v) the total household income tercile mid and low groups,
IncQ2 and IncQ3. Dwelling controls are property type and building age category (five year-bins). Household
controls include income and borrower’s age at mortgage origination. Additional control variables are year
fixed effect and region fixed effects (NUTS 3 region dummy). Standard errors are either robust or clustered
at regional level and reported in squared brackets. Statistical significance is denoted by ***, **, and * at
the 1%, 5%, and 10% level, respectively.
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Table 6: Logistic regression - robustness of results

Dependent variable: Default dummy

Model EE s.e.

Spec. 1 -1.7570** [0.7542]
Spec. 2 -1.5310** [0.7346]
Spec. 3 -0.7290** [0.3535]
Spec. 4 -1.6977** [0.7346]
Spec. 5 -1.6481** [0.7072]
Spec. 6 -1.6274** [0.7235]
Spec. 7 -1.6475** [0.7433]
Spec. 8 -1.6162** [0.7370]

Notes: This table presents the results for various Logistic model specification. The dependent variable is a
dummy indicating if a mortgage is in default (i.e., in arrears for at least three months) or not. The baseline
model specification is the model presented in Table 5, column (4). The model specifications 1 to 8 in this
table differ from the baseline model according to the following changes. Spec. 1: the two explanatory
variables current LTV and current total income tertile groups are replaced by the original LTV and total
income tertile groups that was available at the earliest date in the sample. Spec. 2: 3-year-building age
category is replaced by actual building age. Spec. 3: 3-building age category is replaced by 9-year-building
age category. Spec. 4: 5-year-borrower age category is replaced by actual borrower age at origination of
earliest loan component. Spec. 5: 5-year-borrower age category is replaced by 15-year-borrower age category.
Spec. 6: current DTI is added to the baseline model. Spec. 7: original balance is added to the baseline
model. Spec. 8: current DTI and original balance are added to the baseline model. Column 2 (3) of the table
reports the estimated regression coefficient (standard error) for the EE (A/B) dummy variable. Statistical
significance is denoted by ***, **, and * at the 1%, 5%, and 10% level, respectively.
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Table 7: Extended Cox model

Dependent variable: Default dummy

(1) (2) (3) (4)

EE (A/B rating) -0.5652*** -0.8707** -0.8715** -0.8715**
[0.0976] [0.3457] [0.3453] [0.3590]

Current LTV 3.8877*** 3.8531*** 3.8531***
[0.2972] [0.2960] [0.2701]

DSCR 0.0010 0.0068 0.0068
[0.0430] [0.0430] [0.0369]

Mortgage term -1.1565*** -1.0853*** -1.0853***
[0.2631] [0.2694] [0.2562]

IncQ2 0.3824*** 0.3832*** 0.3832***
[0.1220] [0.1221] [0.1341]

IncQ3 0.8755*** 0.8771*** 0.8771***
[0.1367] [0.1369] [0.1276]

Dwelling controls No Yes Yes Yes
Household controls No Yes Yes Yes
Market controls No No Yes Yes
Mortgage controls No Yes Yes Yes
Region FE No Yes Yes Yes
Year FE No Yes Yes Yes
SE Rob. Rob. Rob. Region Cl.
Observations 1,173,551 1,114,609 1,114,609 1,114,609
Pseudo R-squared 0.00271 0.0465 0.0471 0.0471

Notes: This table presents extended Cox estimates of the probability of mortgage default (log hazard ratios).
The dependent variable is a dummy indicating if a mortgage is in default (i.e., in arrears for at least three
months) or not. The explanatory variables are (i) the dummy variable EE that equals to one if a building’s
energy efficiency rating is A or B-rated and zero otherwise, (ii) the current loan to value ratio, (iii) mortgage
term in months weighted by original balance, (iv) the average interest rate weighted by original balance,
and (v) the total household income tercile mid and low groups, IncQ2 and IncQ3. Dwelling controls are
property type and building age category (five year-bins). Household controls include and borrower’s age
category at mortgage origination (five year-bins). Additional control variables are year fixed effect and
region fixed effects (NUTS 3 region dummy). Standard errors are either robust or clustered at regional level
and reported in squared brackets. Statistical significance is denoted by ***, **, and * at the 1%, 5%, and
10% level, respectively.
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Table 8: Extended Cox model - robustness of results

Dependent variable: Default dummy

Model EE s.e.

Spec. 2 -1.4532** [0.6556]
Spec. 3 -0.4316* [0.2562]
Spec. 4 -0.8729** [0.3567]
Spec. 5 -0.8739** [0.3577]
Spec. 6 -0.9394*** [0.3521]
Spec. 7 -0.8728** [0.3594]
Spec. 8 -0.9396*** [0.3529]

Notes: This table presents the results for various Cox model specification (log hazard ratios). The dependent
variable is a dummy indicating if a mortgage is in default (i.e., in arrears for at least three months) or not.
The baseline model specification is the model presented in Table 7, column (4). The model specifications 1 to
8 in this table differ from the baseline model according to the following changes. Spec. 2: 3-year-building age
category is replaced by actual building age. Spec. 3: 3-building age category is replaced by 9-year-building
age category. Spec. 4: 5-year-borrower age category is replaced by actual borrower age at origination of
earliest loan component. Spec. 5: 5-year-borrower age category is replaced by 15-year-borrower age category.
Spec. 6: current DTI is added to the baseline model. Spec. 7: original balance is added to the baseline
model. Spec. 8: current DTI and original balance are added to the baseline model. Column 2 (3) of the table
reports the estimated regression coefficient (standard error) for the EE (A/B) dummy variable. Statistical
significance is denoted by ***, **, and * at the 1%, 5%, and 10% level, respectively.

Table 9: Energy Rating distribution according to the income tercile group

Overall INCQ1 INCQ2 INCQ3

Rating category All Defaulted All Defaulted All Defaulted All Defaulted

A 14.88 0.25 20.57 0.22 14.16 0.24 9.89 0.34
B 17.73 0.38 22.88 0.25 18.50 0.39 11.82 0.64
C 27.22 0.48 22.12 0.29 30.63 0.41 28.92 0.71
D 9.55 0.69 7.52 0.25 10.92 0.61 10.22 1.09
E 3.99 1.05 1.67 0.28 2.84 0.42 7.46 1.47
F 11.23 0.71 8.87 0.38 9.81 0.66 15.03 0.93
G 15.39 0.81 16.37 0.23 13.14 0.67 16.66 1.50

Total 100.00 0.55 100.00 0.26 100.00 0.46 100.00 0.93

Notes: This table presents the energy rating distribution of all and defaulted Dutch loans according to
the income tercile group (INCQ1=high, INCQ2=medium and INCQ3=low). Column 2-4-6-8 provide the
percentage share of each rating category within the total sample of loans. Column 3-6-9-12 state the share
of defaulted loans within each rating category.
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Table 10: Logistic regression according to the income tercile group

Dependent variable: Default dummy

(1) (2) (3) (4)

IncQ1×EE -0.1806 -1.1425 -1.4613* -1.4613*
[0.1956] [0.8148] [0.8689] [0.7566]

IncQ2×EE -0.5048*** -1.3979* -1.7147** -1.7147**
[0.1718] [0.7936] [0.8469] [0.7330]

IncQ3×EE -0.7319*** -1.4155* -1.7450* -1.7450**
[0.1575] [0.8531] [0.9272] [0.8224]

Current LTV 2.4312*** 2.8041*** 2.8041***
[0.3854] [0.4412] [0.4061]

DSCR -0.1158* -0.0893 -0.0893*
[0.0598] [0.0628] [0.0516]

Mortgage term -0.1338 -0.3914 -0.3914
[0.3000] [0.3345] [0.2775]

IncQ2 0.6337*** 0.5971*** 0.5327** 0.5327**
[0.1472] [0.1905] [0.2175] [0.2077]

IncQ3 1.3153*** 1.3483*** 1.3135*** 1.3135***
[0.1338] [0.1966] [0.2241] [0.2132]

Dwelling controls No Yes Yes Yes
Household controls No Yes Yes Yes
Market controls No No Yes Yes
Region FE No Yes Yes Yes
Year FE No Yes Yes Yes
SE Rob. Rob. Rob. Region Cl.
Observations 126,036 125,560 125,560 125,560
Pseudo R-squared 0.0246 0.268 0.412 0.412

Notes: This table presents logistic regression estimates to determine the propensity to default on mortgages
backed by energy efficient buildings according to the income tercile group. The dependent variable is a
dummy indicating if a mortgage is in default (i.e., in arrears for at least three months) or not. The explanatory
variables are (i) the dummy variable IncQi×EE that equals to one if a building’s energy efficiency rating is
A or B-rated belonging to the tercile group i and zero otherwise, (ii) the current loan to value ratio, (iii)
mortgage term in months weighted by original balance, (iv) the average interest rate weighted by original
balance (five year-bins), and (v) the total household income tercile mid and low groups, IncQ2 and IncQ3.
Dwelling controls are property type and building age category. Household controls include and borrower’s
age at mortgage origination. Additional control variables are year fixed effect and region fixed effects (NUTS
3 region dummy). Standard errors are either robust or clustered at regional level and reported in squared
brackets. Statistical significance is denoted by ***, **, and * at the 1%, 5%, and 10% level, respectively.
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Table 11: Extended Cox model according to the income tercile group

Dependent variable: Default dummy

(1) (2) (3) (4)

IncQ1×EE -0.1743 -0.8078** -0.8097** -0.8097**
[0.1765] [0.3682] [0.3678] [0.4002]

IncQ2×EE -0.5223*** -1.0256*** -1.0268*** -1.0268**
[0.1742] [0.3771] [0.3768] [0.4032]

IncQ3×EE -0.5952*** -0.7462* -0.7458* -0.7458**
[0.1681] [0.3818] [0.3812] [0.3473]

Current LTV 3.8915*** 3.8569*** 3.8569***
[0.2985] [0.2972] [0.2713]

DSCR 0.0000 0.0059 0.0059
[0.0431] [0.0431] [0.0368]

Mortgage term -1.1572*** -1.0860*** -1.0860***
[0.2633] [0.2695] [0.2557]

IncQ2 0.4457*** 0.4349*** 0.4355*** 0.4355***
[0.1301] [0.1405] [0.1407] [0.1379]

IncQ3 0.8900*** 0.8780*** 0.8790*** 0.8790***
[0.1200] [0.1490] [0.1491] [0.1285]

Dwelling controls No Yes Yes Yes
Household controls No Yes Yes Yes
Market controls No No Yes Yes
Mortgage controls No Yes Yes Yes
Region FE No Yes Yes Yes
Year FE No Yes Yes Yes
SE Rob. Rob. Rob. Region Cl.
Observations 1,173,551 1,114,607 1,114,607 1,114,607
Pseudo R-squared 0.00781 0.0466 0.0472 0.0472

Notes: This table presents extended Cox estimates of the probability of mortgage default (log hazard ratios).
The dependent variable is a dummy indicating if a mortgage is in default (i.e., in arrears for at least three
months) or not. The explanatory variables are (i) the dummy variable IncQi×EE that equals to one if a
building’s energy efficiency rating is A or B-rated belonging to the tercile group i and zero otherwise, (ii)
the current loan to value ratio, (iii) mortgage term in months weighted by original balance, (iv) the average
interest rate weighted by original balance, and (v) the total household income tercile mid and low groups,
IncQ2 and IncQ3. Dwelling controls are property type and building age category (five year-bins). Household
controls include and borrower’s age category at mortgage origination (five year-bins). Additional control
variables are year fixed effect and region fixed effects (NUTS 3 region dummy). Standard errors are either
robust or clustered at regional level and reported in squared brackets. Statistical significance is denoted by
***, **, and * at the 1%, 5%, and 10% level, respectively.
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A Data Appendix

A comprehensive overview of all loan-level variables that are provided by ED can be obtained

from ECB’s website. The template for residential mortgage-backed securities (RMBS) lists

the characteristics and detailed descriptions of all variables. We employ for the analysis

a subset of the available variables and available loan-level observations. In particular, we

restrict the type of borrower to “individual” (field number in ECB’s RMBS template: AR15

= 1) and require the primary income (AR26) to range between EUR 20,000 and 1,000,000.

The property type is “residential detached/semi-detached house”, “apartment” or “terraced

house” (AR131 = 1,2, or 4). The building’s occupancy type is restricted to “owner-occupied”

(AR130 = 1) and the construction year of the building (AR133) ranges between 1900 and

2016. We further focus on fixed-interest rate mortgages only (AR107 = 3 or 4) and exclude

repurchased ones (AR166 = 1 to 4). Additionally, we employ following explanatory variables

in the regression analyses: current loan balance (AR67), DTI (AR73), geographical location

at NUTS 3 level (AR128), interest rate (AR109), LTV (AR135), maturity date (AR67), and

secondary income (AR28).

To control for the overall macroeconomic conditions, we obtain following variables from

Bloomberg: Dutch quarterly unemployment rate (Bloomberg code EHUPNL), German bond

yields (GTDEM10YR), and 10- and 1-year EUR swap rates (EUSA10, EUSA1).
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B Additional Findings: Degree of Energy Efficiency

So far, the above analyses focused on the question if there exists any significant relation

between a building’s energy efficiency and the probability of mortgage default. Given the

affirmative findings, it seems reasonable to go one step further and take into account the

actual degree of energy efficiency. Following the findings of Kaza et al. (2014), we hypothesize

that the more efficient buildings are associated with a relatively lower risk of default.

We construct for the analysis a new categorical variable that aggregates the energy effi-

ciency rating according to four efficiency classes. Efficiency class 1 assumes energy ratings A

and B, class 2 is assigned to ratings C and D, class 3 is assigned to rating E and F, and class

4 is reserved to G-rated buildings. All other explanatory variables remain unchanged. Table

12 presents the regression results for both regression methodologies. We can observe that

the findings are less pronounced compared to the main analysis. Overall, the estimated log

odd ratios for rating classes 1 to 3 exhibit an increasing pattern with the degree of energy

inefficiency: the higher the rating, the lower the associated risk of default. However, the

explanatory power of these results diminishes with the inclusion of additional control vari-

ables. This might be attributed to the inherent imprecision of the ratings in the constructed

dataset. In the main analysis we can assume that the general classification of buildings into

the two categories “energy efficient” and “energy inefficient” is more or less accurate. Any

misspecifications are likely to arise only at the B- and C-rating threshold and due to the law

of large numbers they are negligible as long as the number of observations is large enough. In

the analysis on the degree of efficiency, however, two additional rating thresholds are added

(at the D/E and the F/G threshold). This leaves additional room for misspecification and

can, thus, lower significance of the estimated findings. That is, the presented findings are

indicative of a relation between the degree of energy efficiency and credit risk. However, only

an exact matching between the mortgage data and the building’s energy rating will provide

true insights into this issue. We leave this for future research.
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Table 12: Degree of Energy Efficiency

Dependent variable: Default dummy

Logistic model Extended Cox model

(1) (2) (3) (4) (5) (6) (7) (8)

A/B rating -0.9280*** -4.9912*** -4.8916*** -0.6789 -0.7037*** -0.1693 -0.1583 -0.1975
[0.1180] [1.1912] [1.1647] [1.4659] [0.1205] [0.6427] [0.6390] [0.6380]

C/D rating -0.4191*** -1.4768** -1.4250** 0.5623 -0.3186*** 0.6989 0.7003 0.6580
[0.1021] [0.7141] [0.6997] [1.0738] [0.1033] [0.5237] [0.5189] [0.5234]

E/F rating -0.0215 -1.0007 -0.9237 -0.0052 0.0862 0.4501 0.4534 0.4270
[0.1095] [0.1139] [0.6745] [0.6617] [0.9094] [0.4664] [0.4626] [0.4679]

Dwelling controls No Yes Yes Yes No Yes Yes Yes
Household controls No Yes Yes Yes No Yes Yes Yes
Market controls No No No Yes No No No Yes
Mortgage controls No Yes Yes Yes No Yes Yes Yes
Region FE No No Yes Yes No No Yes Yes
Year FE No No No Yes No No No Yes
SE Rob. Rob. Rob. Rob. Rob. Rob. Rob. Rob.

Observations 126,036 125,813 125,813 125,813 1,173,515 1,123,653 1,123,653 1,123,653
Pseudo R-squared 0.0100 0.137 0.144 0.519 0.00407 0.0439 0.0466 0.0479

Notes: This table presents logistic regression (columns 2 to 5) and extended Cox regression (columns 6 to
9) estimates to determine the propensity to default on mortgages backed by energy efficient buildings with
different degrees of energy efficiency. The dependent variable is a dummy indicating if a mortgage is in
default (i.e., in arrears for at least three months) or not. The main explanatory variables are four energy
efficiency categories: (i) dummy variable if a building’s energy efficiency rating is A or B-rated and zero
otherwise, (ii) dummy if the rating is C or D, (iii) dummy if the rating is E or F, and (iv) dummy if the
rating is G (the omitted category in the regressions) and zero otherwise. All other control variables are
defined as in Tables 5 and 7 for the logistic and extended Cox regression, respectively. Robust standard
errors are reported in squared brackets. Statistical significance is denoted by ***, **, and * at the 1%, 5%,
and 10% level, respectively.
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