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A reconstruction of the time series of global technology

from 5500 BC to the 2000s⋆

Antonio Paradisoa,∗

aDepartment of Economics, Ca’ Foscari University of Venice, Italy

Abstract

The aim of this study is to reconstruct the millennial historical series of global
technology level from 5000 BC to the twenty-first century, using the data
collected by Lilley [Men, machines and history, Cobbett Press, London, 1948]
and updating them. The resulting series reveals a similar dynamic to the
millennial series of global real GDP per capita. This finding is supported by
structural changes in the growth dynamics of both series during the period of
proto-industrialization and by the results of estimations from an unobserved
components model, which highlight the effect of technology on global output.
This study contributes to understanding the link between technology and
economic development over the course of millennia.

Keywords: Technology, GDP per capita, economic growth, regression with
breaks, unobserved components model
JEL: O40, N70, C20, C32

1. Introduction

Technological advancements have been the cornerstone of human progress
since the dawn of civilization. Despite this, the historical trajectory of global
technology, spanning from the early Bronze Age in 5500 BC to the modern
era, remains largely uncharted territory in scholarly research. This study
aims to fill this significant gap by reconstructing a comprehensive historical
series of global technology over this extensive period.

⋆Version 1.05. Any errors, if present, are the responsibility of the author.
∗Email address: antonio.paradiso@unive.it. I would like to thank Eric Girardin,

Michael Donadelli, and Mauro Costantini for their valuable comments.



Understanding the long-term evolution of technology is of crucial impor-
tance for several reasons. First, it provides a deeper insight into the roots
and dynamics of technological progress, which is fundamental to economic
growth and societal development (see, for example, Schumpeter, 1942; Solow,
1956; Romer, 1986; Freeman and Louçã, 2001; Perez, 2004). Secondly, con-
ducting such an analysis can shed light on the factors that have influenced
the speed and direction of technological advancements throughout history.
This contributes to a better understanding of the complex relationship be-
tween technology, culture, politics, and the economy (for further insights, see
Bauchspies et al., 2006; Volti, 2017).
The reconstruction of the historical series of technology originates from the
groundbreaking work of Samuel Lilley (1914-1987), a historian of science
from Northern Ireland. In his monograph titled ”Men, Machines and His-
tory” published in 1948 (Lilley, 1948), Lilley extensively examined numerous
significant technological innovations spanning from 5500 BC to the 1940s. He
meticulously ranked these inventions, assigning them numerical scores based
on their overall impact on the development of various industries. Through
the summation of these scores over different years, he successfully constructed
a cumulative series that represents the technological advancements achieved
by humanity up to that particular period.
Following the same approach, I continue the reconstruction of the series to
include the major inventions realized globally from the 1930s to 2000. As
explained in section 2, during the search for significant inventions after 1943,
I discovered that some important innovations of the 1940s were actually
developed a few years earlier. To ensure accuracy, I decided to update the
dataset starting from the 1930s.
The upgrade process is not straightforward, as the number and significance
of inventions, in terms of their overall impact on the economy, tend to in-
crease significantly over the years, especially from the 1990s onwards. For
this reason, I chose to conclude the series at the year 2000. Identifying the
principal inventions became increasingly complex, and there was a risk of
unintentionally omitting some truly significant ones.
To assess the accuracy of the reconstructed series depicting the historical
level of global aggregate technology, I compare this series with the historical
series of world GDP per capita in constant international dollars in the two
versions produced by De Long (1998) and Maddison (2013). According to
the neoclassical growth approach, one would expect the dynamics of the two
series to be aligned.
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To investigate this aspect, I follow two empirical approaches. The first ap-
proach simply involves using the methodology developed by Bai and Perron
(1998, 2003) to examine whether the growth rates of the aforementioned
historical series follow the same process and whether any changes or breaks
occur in the same periods, as suggested by the economic theory of growth.
The second approach entails estimating an unobserved component model
(Harvey, 1989; Durbin and Koopman, 2001) to adequately model the pro-
cess followed by all variables entering the growth equation of the theoretical
model.
The empirical results of these econometric exercises reveal the following: (i)
the structural breaks in the historical series of technology and GDP per capita
align strongly, as expected; (ii) the estimated coefficients of the unobserved
component models are statistically significant and in line with the predictions
of the theoretical model; (iii) the reconstructed series of world GDP per
capita and technology, based on the model estimates, virtually overlap with
the original ones.
The remainder of this paper is structured as follows. Section 2 introduces
and details both Lilley’s original series and its subsequent revision. Follow-
ing this, section 3 delves into the theoretical and econometric methodologies
employed to evaluate the credibility of the updated technology series. Sec-
tion 4 illustrate the results, and finally, section 5 provides a summary and
concluding remarks.

2. Reconstruction of the historical series of global technology

The development of the historical series of technology began by amalgamat-
ing the more than 200 inventions compiled by (Lilley, 1948, p. 207–220),
classified according to a scoring system to be explained shortly, in terms
of importance in the years from 5000 BC to 1943. The inventions consid-
ered are those deemed most important by Lilley (1948) and are the result
of an in-depth analysis conducted by the author himself, who examined and
consulted hundreds of historical books, technical monographs, and journals.
When identifying an invention, the author used a scoring system that ranged
from 0.1 (indicating minimal impact on industry and economy) to 1 (repre-
senting the maximum impact on industry and economy) for each invention
under consideration. The assignment of scores followed the guidance provided
by scientific literature regarding the significance of each invention within the
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system. These scores were then associated with the specific years in which
the invention was developed and/or introduced to the market. In some cases,
the score was distributed across multiple years, reflecting the implementa-
tion of the invention occurring in various stages or spanning different time
periods.
By summing the scores of multiple inventions for each year, Lilley con-
structed a historical series that captures the level of technological advance-
ment achieved by humanity up to that specific point in time. Figure 50 in
Lilley’s work (Lilley, 1948) provides a visual representation of this series.
In pursuing this approach, several challenges arise regarding the potential
risk of (i) omitting significant innovations, (ii) accurately determining the
inception date of a particular invention, and (iii) appropriately assigning a
score to each invention.
Regarding the first point, Lilley himself argued that for omissions to have
a substantial impact on the dynamics of the reconstructed technology, they
would need to be systematic and concentrated within specific historical pe-
riods. However, after an in-depth study, the author asserted that such omis-
sions are highly unlikely. While there may be some omissions, they do not
significantly alter the series’ dynamics.
On the second point, it is worth noting that uncertainty regarding the exact
date of a particular invention tends to decrease as we approach the present.
The greatest uncertainty lies in inventions dating back to BC years up until
approximately 1200-1400 AD. For some of these inventions, Lilley assigned
dates based on common sense criteria. However, it is important to emphasize
that the number of ’approximate dates’ after 1000 AD is limited, and uncer-
tain attribution involved a range of dates spanning a few decades. Therefore,
any possible errors in date attribution do not affect the final dynamics of the
historical technology series.
The third point presents the greatest complexity among the three. While it
is relatively straightforward to assign a score to innovations like the steam
engine or nuclear energy, determining a score for inventions such as the cen-
trifugal pump or variable pitch propeller becomes more challenging. Scientific
literature does not always reach a unanimous consensus regarding the extent
of their impact on the evolution of the global industry. In such situations,
Lilley chose to ’average’ the more extreme positions, assigning a score that
represents a balanced perspective among these viewpoints.
The update I conducted on the historical series of global technology levels,
spanning from the 1930s to 2000, strictly follows the guidelines proposed by
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Lilley (1948). While Lilley’s database concludes in 1943, my research re-
vealed that certain significant inventions emerging towards the end of the
period were not adequately acknowledged by the author. This oversight
likely occurred because the importance and impact of these inventions were
not fully recognized until several decades after their creation. Various fac-
tors could contribute to this, such as the absence of supporting technologies,
regulatory or social constraints, or a lack of clearly identifiable practical ap-
plications at the time of invention. Consider the example of the transistor,
invented in 1947. It was not until many years later that transistors started re-
placing thermionic valves in electronic devices. Subsequently, they paved the
way for the development of microprocessors, which revolutionized the field
of computers. Similarly, let us consider the video game industry. Initially
perceived as solely dedicated to entertainment since the 1970s, this industry
has experienced exponential growth. Over time, it has become a significant
catalyst for technological innovation, driving advancements in areas such as
3D graphics, virtual reality, and artificial intelligence.1

The construction of the global technology time series follows this rule:

At = At−1 +
h∑
i=1

γi,t, γi,t = {0.1, 0.2, . . . , 1} , (1)

where At represents the technology stock at the end of period t, At−1 is the
technology stock at the end of period t − 1, and γi,t are the h innovations
(whose value, by definition, is included in the discrete range of 0.1 to 1) that
contribute to the increase in the technology stock during period t. Of course,
h varies from year to year.
The technology calculated in accordance with equation (1) offers two main

1To be precise, I have also made some minor adjustments to Lilley’s original series
(1948) in the period 1751-1929, using an alternative database collected by (Cole, 1960,
p. 200–221). George D. H. Cole (1889-1959), an English historical economist, in his
work ”Introduction to Economic History: 1750-1950”, conducted a similar study to Lilley
(1948), focusing on the technological evolutionary process that occurred after the industrial
revolution. However, unlike Lilley, Cole did not assign scores to the collected inventions;
he simply listed them chronologically. Approximately 15% of the inventions originally
considered by Lilley have been added to my technological series for completeness, after
being appropriately classified by importance using the same approach as Lilley.
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advantages: (i) to update the historical series, it is sufficient to start from the
most recent value, eliminating the need to recalculate the entire series from
the beginning; (ii) any corrections or adjustments over the years can be easily
implemented by adding or subtracting values from the aggregate series. In
this case, too, there is no need to retroactively recalculate the entire series.
The sources used to update the dataset (that is, to identify the γi,t incresing
the stock of technology in each period according to equation (1)) are nu-
merous. However, providing an exhaustive list would occupy a considerable
amount of space. The primary sources include: Bunch and Hellemans (1993),
Bunch and Hellemans (2004), Pacey and Bray (2021), and Wikipedia. In par-
ticular, Wikipedia was used to gather additional information regarding the
inventors’ names and the dates of introduction and dissemination of new
technologies.
The details of the inventions considered for this update, including the dates of
their creation and/or dissemination, their respective inventors, their impact
on global industry, and their assigned scores, are reported in tables A.12 and
A.13. Specifically, table A.12 presents the inventions that serve to integrate
the dataset developed by Lilley (1948). Table A.13, on the other hand, lists
the inventions used to extend the historical series of technology over the
years.
Certain aspects of the inventions listed in the tables require further clarifica-
tion. One important aspect concerns the assigned dates for each invention,
which may not always correspond to their actual date of creation due to var-
ious factors. For example, the impact of an invention on the industry might
manifest at a different time, such as when it becomes commercially avail-
able. Whenever there is a discrepancy between the assigned date and the
actual invention’s date, this information is indicated in brackets alongside
the respective date.
Furthermore, some inventions are associated with a range of dates instead of
a single date, and it is necessary to provide an explanation for this. In certain
cases, an initial realization date was followed by a subsequent development
phase, resulting in a gradual rather than immediate impact on the industry.
The Colossus, one of the earliest programmable electronic computers, serves
as an example. The Mark I version was invented in late 1943, and within
less than a year, a significant upgrade was made in 1944 with the Mark II
version. In such progressive cases, where the effect on the industry spans
multiple years, the assigned score is distributed evenly across the indicated
years. For instance, both 1943 and 1944 would receive a score of 0.45 in the
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case of the Colossus.
Additionally, it is important to note that the range of dates for certain in-
ventions does not signify periods of realization or improvement but rather
distinct phases, such as market diffusion or practical applications. In these
instances, relevant information is always provided alongside the dates, and
the assigned score is evenly distributed across the specified years.
Examining the inventions in table A.13, a notable observation emerges: there
is a significant increase in the number of fundamental inventions starting
from the 1980s. While the number of inventions identified in the decades
1960-1969 (26) and 1970-1979 (25) shows a balance, it is from the decade
1980-1989 onwards that the number of inventions starts to rise (37), and
further accelerates in the period 1990-1999 (45). In essence, from 1980 to
1999, the number of introduced inventions increased by approximately 60%
compared to the previous two decades. This growth is primarily driven by
substantial innovations, particularly in the Information Technology sector, as
highlighted by researchers such as Fernald and Ramnath (2004); Anderson
et al. (2006); Brynjolfsson and McAfee (2014).
Figure 1 visually illustrates the historical evolution of the global technology
stock, calculated using the methodology described earlier. The gray shaded
area highlights the updates made to the original series by Lilley (1948), incor-
porating the innovations listed in tables A.12 and A.13. Notably, the latter
part of the series shows a significant acceleration in technology dynamics.
The key question is whether this reconstructed series accurately represents
the technological advancements spanning centuries (or perhaps it would be
more appropriate to say, millennia). To answer this question, it is essential
to compare the dynamics of this series with that of the world’s real per capita
GDP.

3. Theoretical Framework and Econometric Strategy

In this section, I outline the theoretical model (section 3.1) and empirical
strategy (section 3.2) needed to analyze the validity of the constructed tech-
nology series.

3.1. Theoretical Framework

In accordance with the principles of growth and development economics,
technology is conceived as the means by which inputs to the production
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Figure 1: The historical series of global technology from 5500 BC to 2000
AD

0

50

100

150

200

250

300

-5000 -4000 -3000 -2000 -1000 0 1000 2000

TIME

T
E

C
H

N
O

L
O

G
Y

 S
T

O
C

K

Integration & Upgrade

     (1930 - 2000)
    Lilley (1948)

(5500 BC - 1929)

BC AD

Notes: Data sources range from 5000 BC to 1929, as compiled by Lilley (1948); from 1930 to 2000, the
data is derived from my own research using various sources including: Bunch and Hellemans (1993), Bunch
and Hellemans (2004), Pacey and Bray (2021), and Wikipedia.

8



process are converted into output. If I consider a Cobb-Douglas production
function with ’Hicks-neutral’ technology, it can be written as follows:

Yt = AtK
α
t L

1−α
t , 0 < α < 1, (2)

where At is the technology, Kt is the capital stock, Lt is the labor, and α
(1− α) represent the capital (labor) share.
The dynamics of technology and per capita output are closely linked. To
illustrate this, let me assume that the ratio of employment to population
(Nt) is equal to ρt, namely:

ρt =
Lt
Nt

. (3)

Then, equation (2) transforms into:

Yt = AtK
α
t (ρtNt)

1−α = At

(
Kt

ρtNt

)α

ρtNt. (4)

By dividing both terms by the population Nt, I derive:

ŷt = Atk
α
t ρt, (5)

where ŷt ≡ Yt/Nt and kt ≡ Kt/Lt, which means output is expressed in per
capita terms, and capital is calculated per worker. By taking logs and time
differences, I obtain:

lnŷt − lnŷt−1 = [lnρt − lnρt−1 + α(lnkt − lnkt−1)] + (lnAt − lnAt−1), (6)

or employing the notation gXt ≡ lnXt − lnXt−1 for a generic variable Xt, I
can write:

gŷt = [gρt + αgkt ] + gAt . (7)

This equation reveals that an increase in output per capita can originate from
three sources: (i) changes in the worker-to-population ratio (gρt ); (ii) shifts in
the capital-to-worker ratio (gkt ); (iii) variations in the level of technology (gAt ).
Based on these results, it is possible to implement two different econometric
strategies that I discuss in section 3.2.
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3.2. Econometric Strategy

The econometric strategy I apply is based on the result obtained in the pre-
vious section and follows two distinct levels. The first level involves verifying
that the growth rate of per capita output and technology are indeed ’coordi-
nated’ over time, as suggested by equation (7). By ’coordinated’, I mean that
any shifts in the average growth of technology are aligned with shifts in the
average growth of per capita output. To analyze this aspect, I will use the
test proposed by Bai and Perron (1998, 2003), which aims to identify mul-
tiple breaks at unknown dates in the series of the growth rate of technology
and per capita output, and I will compare the dates of these breaks.
The second level involves starting from equation (7) itself and modeling
all variables that contribute to the determination of the per capita output
growth rate. Since the factors in square brackets in (7) are not observable
in reality, as the variables comprising them are not readily available, the
method of unobservable components, also known as the state-space model,
can be beneficial.

BP test for detecting mean shifts and comparison of identified break dates.
The starting point of my analysis is the linear regression withm breaks (m+1
regimes):

git = ϕij + uit, t = Tj+1 + 1, . . . , Tj. (8)

Here, the index i corresponds to ŷ, A, and j = 1, . . . ,m+1. In this equation,
ϕij (j = 1, . . . ,m + 1) represents the constant in the j-th regime, and uit is
the regression error at time t. The m-partition (T1, . . . , Tm) delineates the
break points for different regimes (conventionally, T0 = 0 and Tm+1 = T ).
These points, treated as unknown, are estimated following the methodology
outlined by Bai and Perron (1998, 2003) (hereafter BP).
In my application of the BP procedure, I determine the optimal number of
breaks by selecting the one that results in the lowest Bayesian information
criterion (BIC) score. I set the trimming parameter to 0.15, which means
that the minimum fraction of observations between two breaks must account
for at least 15% of all observations. To ensure a robust analysis, the breaks
cannot be positioned in the first or last 15% of the observations, allowing for
a maximum of 5 breaks.
To calculate the test statistic and confidence intervals for the break dates and
regression coefficients, I employ the Heteroscedasticity and Autocorrelation
Consistent (HAC) Newey-West covariance matrix with an automatic band-
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width method. This approach takes into account any autocorrelation and
heteroscedasticity in the residuals of the regression model, providing reliable
and robust results.
After identifying the break points for both the per capita output growth rate
and the technology growth rate, I compare them to verify the alignment of
dates. If the growth of per capita output indeed follows the process indicated
in equation (7), I expect that a change in the growth of technology would
have a corresponding effect on per capita output.

Unobserved component modelling. The equation (7) represents the measure-
ment equation, which describes the relationship between observed and unob-
served variables and serves as the starting point for modeling the state-space
system. To complement this measurement equation, I can introduce another
equation under the assumption that the technology growth rate is not purely
determined by external factors. For instance, I can consider the technol-
ogy growth rate as a function of an unobservable exogenous process and the
growth of output. The assumption (to be empirically tested during estima-
tion) is that the growth of per capita output may potentially stimulate the
introduction of innovations into the economic system. This idea was initially
proposed by Smith (Smith, 1982) and later explored by researchers such as
Young (1928); Verdoorn (1949); Kaldor (1967).2 Naturally, in the case of a
pure neoclassical model of exogenous growth, this effect is expected to be
statistically insignificant.
Once these two measurement equations are specified, I need to define the
two state equations that capture the dynamics of the unobserved state vari-
ables involved in the per capita output equation and the technology equation.
The state equation for the growth rate of per capita output is expressed as
a function of its past values and the unobserved state variable representing
technology. Including the unobserved technological component in the state
equation of output is justified by examining its composition. According to
the theoretical model (equation (7)), the unobserved output variable is influ-
enced by the worker-to-population ratio and the capital-to-worker ratio, both
expressed as growth rates. Changes in technology can impact employment
and living standards, leading to shifts in the so-called organic composition

2These authors argued that higher output growth may have a positive impact on pro-
ductivity trends due to various factors, including dynamic economies of scale linked to
learning-by-doing, expanding markets, and increased division of labor.
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of capital.3 Lastly, the state equation for technology is simply a function of
its past values.
Based on the above discussion, the unobserved component system can be
expressed as follows:

gŷit = svŷit + gAt−1 + eŷit , eŷit ∼ NID(0, σ2
ŷi) (9.1)

gAt = svAt + ψi · gŷit−1 + eAt , eAt ∼ NID(0, σ2
A) (9.2)

svŷit = θ1i · svŷit−1 + θ2i · svAt−1 + esvit , esvit ∼ NID(0, σ2
svi) (9.3)

svAt = ωA · svAt−1 + esvAt , esvAt ∼ NID(0, σ2
svA). (9.4)

Equation (9.1) corresponds to equation (7) for i = BD,AM , where ŷBD
and ŷAM represent per capita output estimates provided by De Long (1998)
and Maddison (2013), respectively. svŷit and svAt are the state variables
associated with the terms inside the square brackets in equation (7) and
technology, respectively. Equation (9.2) represents the equation for the tech-
nology growth rate, while equations (9.3) and (9.4) specify the unobserved
components. The errors are assumed to follow a normal, independent, and
identically distributed (NID) distribution with constant variance.
The estimation procedure for the systems described by equations (9.1)–(9.4)
involves updating the parameter values iteratively to maximize the likelihood
function. To accomplish this, I utilize the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) optimization method with the Marquardt step. This method is well-
suited for adjusting the parameter estimates efficiently, aiming to find the
optimal values that maximize the likelihood.
The iterative filter proposed by Kalman (1960) and Kalman and Bucy (1961)
is employed to evaluate the likelihood. This filter consists of three phases:
the filtering phase (one-step ahead prediction of state variables based on

3For example, (Council of Economic Advisers, 2007, p. 47–48) provides an illustrative
example of increased agricultural productivity over the past two centuries: ”In 1830, it
took 250-300 hours for a farmer to produce 100 bushels of wheat. In 1890, with horse-
drawn machines, it took only 40-50 hours to produce the same amount. By 1975, with
large tractors and combines, a farmer could produce 100 bushels of wheat in only 3-4
hours.” Technological innovation in agriculture led to a reduction in the required number
of workers in the fields and an increased utilization of machinery. Simultaneously, it
facilitated an expansion in available food resources, resulting in improved living standards
and population conditions.
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past and present observations), the smoothing phase (retrospective update
of state variable estimates), and the forecasting phase (prediction of future
state variables). The first two phases are crucial for obtaining parameter
estimates in the model.
To obtain robust and efficient parameter estimates in the presence of het-
eroscedasticity violations, I calculate the covariances of coefficients using the
Huber-White method, also known as robust White estimation.4

One way to evaluate whether the model adequately represents the data is
by calculating the standardized residuals and conducting diagnostic tests to
assess if they satisfy the distributional assumptions. According to Harvey
(1989) and Durbin and Koopman (2001), three essential tests can be em-
ployed: normality (Jarque-Bera test), heteroscedasticity (Goldfeld-Quandt
test), and serial correlation (Ljung-Box test). In our specific case, het-
eroscedasticity is not a concern since robust White covariance is utilized.
However, the other two tests pose challenges due to the characteristics of the
historical series under investigation.
Very long time series can present two primary difficulties: (i) the presence of
outliers, especially for values corresponding to distant periods, and (ii) auto-
correlation resulting from the interpolation necessary to ensure the continuity
or constancy of the series across different time periods. Both the technology
and per capita output series analyzed in our study suffer from outliers and
autocorrelation, especially in the case of distant observations, although there
is a slight difference regarding the source of autocorrelation. In the case of
technology, autocorrelation arises solely because it remained nearly constant
and flat for extended periods. On the other hand, for per capita output (in
both ’BD’ and ’AM’ versions), autocorrelation is also a consequence of the
necessity to the series continuous by interpolating very distant observations.
These characteristics of the underlying data are likely to impact the residuals
of the estimates.
When outliers are present in the series, affecting the normality tests of the
residuals primarily through kurtosis, some researchers suggest paying atten-
tion to skewness (i.e., the asymmetry of the series) since an excess of kurtosis
does not necessarily undermine the reliability of the estimates (see, for exam-
ple, Juselius, 2006, p. 75–76). Alternatively, ’rule of thumb’ guidelines are

4For further details on the estimation procedure, please refer to Anderson and Moore
(1979), Harvey (1989) and Durbin and Koopman (2001).
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provided by certain authors. For example, Field (2013) and Sheard (2018)
propose that a range of ±2 for both skewness and excess kurtosis can be
considered acceptable.
The issue of serial correlation can be strategically addressed as follows. One
can choose to estimate the model by excluding from the sample the portion
(typically the most distant part) that contains data obtained through inter-
polation. By doing so, a substantial number of outliers is also likely to be
excluded, and all the statistical tests (not just the test for autocorrelation
of residuals) are expected to improve accordingly. Naturally, it is important
that the parameter values of the model do not deviate significantly from those
obtained previously using the entire sample, in order to ensure robustness
and enhance the reliability of the results.

4. Empirical results

Before delving into the discussion of the empirical results obtained by ap-
plying the BP methodology (section 4.1) and the unobservable components
model (section 4.2), it is essential to describe the per capita output series
used in all statistical analyses.
I have used two historical series, likely the only two available on a millennial
scale, of global per capita output. The first one is provided by De Long
(1998) (gŷBD) and the second one by Maddison (2013) (gŷAM). Both series
are expressed in constant international dollars. The main distinction lies in
the start date: the historical series produced by De Long (1998) originates in
5000 BC, while the series published by Maddison (2013) begins in the year
1 AD. Despite this, both are available at time intervals that progressively
shorten as we approach the present. For missing data between two dates, we
resorted to linear interpolation to provide a complete time series. The two
series, transformed into natural logarithms after setting the base year 1 AD
= 100, are presented in figure 2.
Three significant aspects emerge from the graph. Firstly, by observing the
’BD’ series from De Long (1998), it is evident that the growth rate of the
per capita GDP in the period BC displays a substantially stable, almost flat,
trend.
The second interesting aspect pertains to the period of economic growth
between the eleventh and fourteenth centuries. During this period, the ’BD’
series exhibits a ’V’ dynamic (initial decline, followed by a low point, and
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then a recovery), while the ’AM’ series shows a more continuous trend. This
difference can be explained by the approach adopted by De Long (1998),
who designed his series to highlight the effects of the European population
boom that occurred in High Middle Ages (see, for example, Russell, 1972;
McEvedy and Jones, 1978; Herlihy, 1989). In that period, economic growth in
Europe was outpaced by demographic growth. Around 1300, the population
reached its peak, and output began to grow faster than the population. On
the contrary, the ’AM’ series from Maddison (2013) does not highlight this
phenomenon, considering the impact of this European event on the global
output as quite limited. According to his estimates, the contribution of the
GDP of Western European countries to the world GDP fluctuated between
10 and 20% from year 1 to around 1700, with China and India together
contributing over 50% (see Maddison, 2007, table A.6, p. 381).
The third aspect concerns the marked acceleration of per capita output that
is evident in both historical series around the eighteenth century, that is, a
few decades before the industrial revolution. This phenomenon, known as
proto-industrialization, is considered by some scholars as the pivotal phase of
change in the economic structure that led to significant shifts in productivity
and economic growth (see, for example, Mendels, 1972; Kriedte et al., 1982).
For the empirical analysis, I will focus on the period from 1 AD to 2000 for
two reasons: firstly, because growth in the pre-Christ era is virtually flat
and exhibits little dynamics; secondly, because the ’AM’ series by Maddison
(2013) only begins from 1 AD. Therefore, in order to maintain homogeneity
in the temporal range of analysis for comparative purposes, I will start from
1 AD.

4.1. BP test and breaks date comparison

The results of the BP test, carried out as explained in section 3.2, are detailed
in table 1. For the period extending from 1 AD to 2000, the results show that
the growth rate of technology exhibits a single break in 1698. The growth
rate of per capita GDP in the version of De Long (1998) (BD) has three
breaks: in 1001, 1301, and 1702. The growth rate of per capita GDP in the
version of Maddison (2013) (AM) also shows a single break in 1702. This
difference can be attributed to the fact that, as discussed in section 4 and
apparent from figure 2, the series from De Long (1998) takes into account the
effect of European population growth during the period 1000-1300 on global
growth, unlike Maddison (2013).
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Figure 2: The historical time series of real global per capita GDP (expressed
in natural logarithms)
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However, it is crucial to note that both measures of global per capita GDP
highlight a significant surge in growth in 1702. This finding is also clearly
visible when visually examining the series (see figure 2). Importantly, this
shift aligns precisely with the change in the growth rate of technology, which
actually precedes the shift in per capita output by several years. This pat-
tern underscores the role of technology as the primary driver of economic
development, consistent with economic theory.

Table 1: BP test of equation (8), 1–2000

Dep. variable Dates of the regimes ϕit × 100 St. Err.×100

gAt
2–1697 0.022∗∗∗ 0.005
1698–2000 0.566∗∗∗ 0.111

gŷBDt

2–1000 0.021∗∗ 0.010
1001–1300 -0.134∗∗∗ 0.017
1301–1701 0.153∗∗∗ 0.039
1702–2000 1.232∗∗∗ 0.302

gŷAMt

2–1701 0.016∗∗∗ 0.003
1702–2000 0.765∗∗∗ 0.216

Notes: The series of variable levels in logarithms start from the period 1 AD, so the first differences (i.e.,
growth rates) begin from the period 2 AD onwards. The test and the confidence intervals for the break
dates and regression coefficients are carried out using the HAC Newey-West covariance matrix with an
automatic bandwidth method. More details can be found in section 3.2.

4.2. Unobserved component model estimation

Tables 2 and 3 present the estimation of the system (9.1)–(9.4) over the entire
sample (1–2000) using the output growth rate calculated by De Long (1998)
and Maddison (2013), respectively. The parameter values have the expected
signs and are statistically significant, except for ψi (with i = BD,AM),
which measures the effect of per capita output on technology. This implies
that the hypothesis of exogeneity of technology, as predicted by the neoclas-
sical Solow model, is plausible. However, upon closer examination of the
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results, issues arise regarding the diagnostic tests on the residuals, as they
do not satisfy the conditions of normality and absence of autocorrelation.
Even when removing the dependence of per capita output on technology (by
imposing ψi = 0, with i = BD,AM), the diagnostic tests yield unsatisfactory
results (see tables 4 and 5). The unsatisfactory nature of the residuals can be
attributed to the presence of outliers and autocorrelation in the time series,
particularly in the more distant periods, for both technology and output gap
variables, as discussed in section 3.2.
By focusing the estimation on the second half of the 1700s, corresponding to
the beginning of industrial capitalism, similar parameter estimates are ob-
tained, as shown in tables 6 and 7. Furthermore, it is once again observed
that ψi is not statistically significant, indicating the robustness of the exo-
geneity hypothesis over time. Imposing ψi = 0 leads to similar results, as
depicted in tables 8 and 9. In comparison to the more general case of esti-
mation over the entire sample, the only difference is that the diagnostic tests
on the residuals are greatly improved. The skewness values are in line with
the values suggested by Field (2013) and Sheard (2018), and the Ljung-Box
test is satisfactory.
As a final econometric exercise, an attempt is made to estimate the model
starting from 1820, corresponding to the era of ’mature’ industrial capitalism.
As shown in tables 10 and 11, the parameter values are similar, and the tests
on residuals yield satisfactory results.5

In conclusion, I present in figure 3 the historical series of the logarithm of
technology and global per capita GDP (in both ’BD’ and ’AM’ versions) along
with their estimated counterparts obtained from the smoothed component
derived from the model presented in table 4 and 5. As seen in the graph, the

5Attentive readers may have noticed that in the estimates reported in tables 2–11,
the coefficient ωA is consistently equal to one. This implies that technology is an I(2)
process, and consequently, so is the per capita output series. Theoretically, this implies
that the neoclassical growth model still retains the structure described in section 3.1, with
the clarification that both technology and per capita GDP are I(2), and naturally, their
growth rates are I(1). Authors who explicitly model GDP as an I(2) process within the
state space models class include Clark (1987), Harvey and Jaeger (1993), and Tóth (2021).
Importantly, this result does not impact my discussion, which simply aims to identify a
connection between the millennia-long technology series and the per capita output series
to assess the adequacy of its reconstruction. Whether technology and per capita GDP are
I(1) or I(2) is of little importance: what matters is that they are empirically ’linked’, as
suggested by growth theories.
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estimates obtained over the entire period are highly accurate.

Table 2: Estimation results of system (9.1)–(9.4) with growth variable gŷBDt .
Period 1–2000.

Variable Parameters

ψBD θ1BD θ2BD ωA ln(σ2
ŷBD) ln(σ2

A) ln(σ2
svBD) ln(σ2

svA)

0.008 0.855*** 0.184** 1.000*** -11.945*** -11.900*** -13.303*** -18.084***

(0.066) (0.069) (0.090) (0.000) (0.173) (0.157) (0.594) (0.409)

(FS) svŷBDt 0.010***

[0.002]

(FS) svAt 0.012***

[0.000]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷBDt 11.701(×10−5) -2.963 40.010 1.880 11.339

{0.391} {0.023}

gAt 18.867(×10−5) 5.626 49.248 8.903 11.794

{0.012} {0.019}

Log Lik. 17703

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷBD) = 0;

ψBD = 0.1; ln(σ2
A) = 0; θ1BD = 0.5; θ2BD = 0.2; ln(σ2

svBD) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical

significance levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively.
Standard errors of the parameters (reported in parentheses beneath the coefficient values) are calculated
using the Huber-White method. (FS) denotes the final state of the unobserved component, and the
square brackets beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for
non-normality. The critical value of JB corresponding to a 5% significance level with a large number of
observations (n→ ∞) is approximately 5.99. ’ske’ and ’kur’ represent skewness and kurtosis, respectively.
Q(2) and Q(4) represent the Ljung–Box test based on serial correlation with 2 and 4 lags, respectively.
The values in curly braces beneath the Ljung–Box test indicate the p-values of the statistics. ’Log. Lik.’
indicates the log likelihood of the estimation.
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Table 3: Estimation results of system (9.1)–(9.4) with growth variable gŷAMt .
Period 1–2000.

Variable Parameters

ψAM θ1AM θ2AM ωA ln(σ2
ŷAM) ln(σ2

A) ln(σ2
svAM) ln(σ2

svA)

-0.007 0.838*** 0.077 1.000*** -11.648*** -11.903*** -13.422*** -17.909***

(0.059) (0.084) (0.048) (0.000) (0.172) (0.156) (0.514) (0.392)

(FS) svŷAMt 0.008***

[0.002]

(FS) svAt 0.013***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷAMt 19.675(×10−5) -0.492 51.592 4.223 14.681

{0.121} {0.005}

gAt 18.940(×10−5) 5.647 49.341 7.985 11.753

{0.018} {0.019}

Log Lik. 17508

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷAM ) = 0;

ψAM = 0.1; ln(σ2
A) = 0; θ1AM = 0.5; θ2AM = 0.2; ln(σ2

svAM ) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical

significance levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively.
Standard errors of the parameters (reported in parentheses beneath the coefficient values) are calculated
using the Huber-White method. (FS) denotes the final state of the unobserved component, and the
square brackets beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for
non-normality. The critical value of JB corresponding to a 5% significance level with a large number of
observations (n→ ∞) is approximately 5.99. ’ske’ and ’kur’ represent skewness and kurtosis, respectively.
Q(2) and Q(4) represent the Ljung–Box test based on serial correlation with 2 and 4 lags, respectively.
The values in curly braces beneath the Ljung–Box test indicate the p-values of the statistics. ’Log. Lik.’
indicates the log likelihood of the estimation.
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Table 4: Estimation results of system (9.1)–(9.4) with growth variable gŷBDt

under the restriction ψBD = 0. Period 1–2000.

Variable Parameters

ψBD θ1BD θ2BD ωA ln(σ2
ŷBD) ln(σ2

A) ln(σ2
svBD) ln(σ2

svA)

= 0 0.853*** 0.182** 1.000*** -11.946*** -11.900*** -13.298*** -18.053***

(0.069) (0.088) (0.000) (0.172) (0.157) (0.593) (0.341)

(FS) svŷBDt 0.010***

[0.002]

(FS) svAt 0.012***

[0.000]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷBDt 11.685(×10−5) -2.966 39.983 1.922 11.201

{0.382} {0.024}

gAt 18.887(×10−5) 5.630 49.256 9.065 12.113

{0.011} {0.017}

Log Lik. 17708

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷBD) = 0;

ln(σ2
A) = 0; θ1BD = 0.5; θ2BD = 0.2; ln(σ2

svBD) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with a large number of observations (n→ ∞) is
approximately 5.99. ’ske’ and ’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent
the Ljung–Box test based on serial correlation with 2 and 4 lags, respectively. The values in curly braces
beneath the Ljung–Box test indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood
of the estimation.
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Table 5: Estimation results of system (9.1)–(9.4) with growth variable gŷAMt

under the restriction ψAM = 0. Period 1–2000.

Variable Parameters

ψAM θ1AM θ2AM ωA ln(σ2
ŷAM) ln(σ2

A) ln(σ2
svAM) ln(σ2

svA)

= 0 0.835*** 0.079** 1.000*** -11.651*** -11.905*** -13.401*** -21.146***

(0.067) (0.035) (0.001) (0.180) (0.153) (0.459) (0.658)

(FS) svŷAMt 0.009***

[0.002]

(FS) svAt 0.014***

[0.000]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷAMt 19.330(×10−5) -0.579 51.161 4.318 14.810

{0.115} {0.005}

gAt 18.746(×10−5) 5.366 49.200 7.329 11.418

{0.026} {0.022}

Log Lik. 17524

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷAM ) = 0;

ln(σ2
A) = 0; θ1AM = 0.5; θ2AM = 0.2; ln(σ2

svAM ) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with n ≈ 200 is approximately 5.728. ’ske’ and
’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent the Ljung–Box test based on
serial correlation with 2 and 4 lags, respectively. The values in curly braces beneath the Ljung–Box test
indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood of the estimation.
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Table 6: Estimation results of system (9.1)–(9.4) with growth variable gŷBDt .
Period 1770–2000.

Variable Parameters

ψBD θ1BD θ2BD ωA ln(σ2
ŷBD) ln(σ2

A) ln(σ2
svBD) ln(σ2

svA)

0.030 0.763*** 0.319*** 1.000*** -10.649*** -10.406*** -10.936*** -16.242***

(0.072) (0.079) (0.122) (0.001) (0.225) (0.100) (0.341) (0.671)

(FS) svŷBDt 0.010**

[0.005]

(FS) svAt 0.011***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷBDt 65.260 -0.489 5.413 1.236 2.892

{0.539} {0.576}

gAt 84.289 1.238 4.620 2.717 4.054

{0.257} {0.399}

Log Lik. 1685

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷBD) =

0; ψBD = 0.1; ln(σ2
A) = 0; θ1BD = 0.5; θ2BD = 0.2; ln(σ2

svBD) = 0; ωA = 0.5; ln(σ2
svA) = 0.

Statistical significance levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance,
respectively. Standard errors of the parameters (reported in parentheses beneath the coefficient values)
are calculated using the Huber-White method. (FS) denotes the final state of the unobserved component,
and the square brackets beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera
test for non-normality. The critical value of JB corresponding to a 5% significance level with n ≈ 200
is approximately 5.728. ’ske’ and ’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4)
represent the Ljung–Box test based on serial correlation with 2 and 4 lags, respectively. The values in
curly braces beneath the Ljung–Box test indicate the p-values of the statistics. ’Log. Lik.’ indicates the
log likelihood of the estimation.
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Table 7: Estimation results of system (9.1)–(9.4) with growth variable gŷAMt .
Period 1770–2000.

Variable Parameters

ψAM θ1AM θ2AM ωA ln(σ2
ŷAM) ln(σ2

A) ln(σ2
svAM) ln(σ2

svA)

-0.012 0.835*** 0.081 1.000*** -9.970*** -10.414*** -11.271*** -15.929***

(0.059) (0.095) (0.057) (0.000) (0.221) (0.134) (0.569) (0.462)

(FS) svŷAMt 0.010*

[0.005]

(FS) svAt 0.013***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷAMt 388.508 0.747 9.175 0.966 3.915

{0.617} {0.418}

gAt 83.938 1.247 4.580 2.616 4.670

{0.270} {0.346}

Log Lik. 1642

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷAM ) =

0; ψAM = 0.1; ln(σ2
A) = 0; θ1AM = 0.5; θ2AM = 0.2; ln(σ2

svAM ) = 0; ωA = 0.5; ln(σ2
svA) = 0.

Statistical significance levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance,
respectively. Standard errors of the parameters (reported in parentheses beneath the coefficient values)
are calculated using the Huber-White method. (FS) denotes the final state of the unobserved component,
and the square brackets beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera
test for non-normality. The critical value of JB corresponding to a 5% significance level with n ≈ 200
is approximately 5.728. ’ske’ and ’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4)
represent the Ljung–Box test based on serial correlation with 2 and 4 lags, respectively. The values in
curly braces beneath the Ljung–Box test indicate the p-values of the statistics. ’Log. Lik.’ indicates the
log likelihood of the estimation.
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Table 8: Estimation results of system (9.1)–(9.4) with growth variable gŷBDt

under the restriction ψBD = 0. Period 1770–2000.

Variable Parameters

ψBD θ1BD θ2BD ωA ln(σ2
ŷBD) ln(σ2

A) ln(σ2
svBD) ln(σ2

svA)

= 0 0.760*** 0.302*** 1.000*** -10.652*** -10.407*** -10.931*** -16.123***

(0.076) (0.106) (0.001) (0.226) (0.096) (0.340) (0.587)

(FS) svŷBDt 0.010**

[0.005]

(FS) svAt 0.012***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷBDt 65.714 -0.491 5.421 1.258 2.900

{0.533} {0.575}

gAt 83.176 1.237 4.586 2.917 4.479

{0.233} {0.345}

Log Lik. 1685

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷBD) = 0;

ln(σ2
A) = 0; θ1BD = 0.5; θ2BD = 0.2; ln(σ2

svBD) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with n ≈ 200 is approximately 5.728. ’ske’ and
’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent the Ljung–Box test based on
serial correlation with 2 and 4 lags, respectively. The values in curly braces beneath the Ljung–Box test
indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood of the estimation.
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Table 9: Estimation results of system (9.1)–(9.4) with growth variable gŷAMt

under the restriction ψAM = 0. Period 1770–2000.

Variable Parameters

ψAM θ1AM θ2AM ωA ln(σ2
ŷAM) ln(σ2

A) ln(σ2
svAM) ln(σ2

svA)

= 0 0.836*** 0.082 1.000*** -9.970*** -10.413*** -11.272*** -15.960***

(0.095) (0.058) (0.001) (0.222) (0.135) (0.568) (0.443)

(FS) svŷAMt 0.009*

[0.005]

(FS) svAt 0.013***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷAMt 388.638 0.748 9.176 0.964 3.915

{0.618} {0.418}

gAt 85.312 1.252 4.611 2.557 4.341

{0.278} {0.362}

Log Lik. 1642

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷAM ) = 0;

ln(σ2
A) = 0; θ1AM = 0.5; θ2AM = 0.2; ln(σ2

svAM ) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with n ≈ 200 is approximately 5.728. ’ske’ and
’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent the Ljung–Box test based on
serial correlation with 2 and 4 lags, respectively. The values in curly braces beneath the Ljung–Box test
indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood of the estimation.
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Table 10: Estimation results of system (9.1)–(9.4) with growth variable gŷBDt

under the restriction ψBD = 0. Period 1820–2000.

Variable Parameters

ψBD θ1BD θ2BD ωA ln(σ2
ŷBD) ln(σ2

A) ln(σ2
svBD) ln(σ2

svA)

= 0 0.719*** 0.359*** 1.000*** -10.556*** -10.282*** -10.683*** -16.020***

(0.096) (0.133) (0.001) (0.286) (0.109) (0.386) (0.671)

(FS) svŷBDt 0.011*

[0.006]

(FS) svAt 0.012***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷBDt 34.234 -0.477 4.904 1.109 4.154

{0.714} {0.722}

gAt 47.162 1.109 4.154 2.510 3.422

{0.285} {0.490}

Log Lik. 1295

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷBD) = 0;

ln(σ2
A) = 0; θ1BD = 0.5; θ2BD = 0.2; ln(σ2

svBD) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with n ≈ 200 is approximately 5.728. ’ske’ and
’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent the Ljung–Box test based on
serial correlation with 2 and 4 lags, respectively. The values in curly braces beneath the Ljung–Box test
indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood of the estimation.
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Table 11: Estimation results of system (9.1)–(9.4) with growth variable gŷAMt

under the restriction ψAM = 0. Period 1820–2000.

Variable Parameters

ψAM θ1AM θ2AM ωA ln(σ2
ŷAM) ln(σ2

A) ln(σ2
svAM) ln(σ2

svA)

= 0 0.826*** 0.092 1.000*** -9.784*** -10.287*** -11.053*** -15.847***

(0.103) (0.065) (0.001) (0.232) (0.144) (0.588) (0.468)

(FS) svŷAMt 0.010*

[0.005]

(FS) svAt 0.013***

[0.001]

Diagnostic tests

JB ske. kur. Q(2) Q(4)

gŷAMt 184.758 0.676 7.761 0.532 2.901

{0.767} {0.574}

gAt 47.103 1.107 4.157 2.276 3.359

{0.321} {0.500}

Log Lik. 1258

Notes: The series of variable levels in logarithms starts from period 1 AD, so the first differences (i.e.,
growth rates) begin from period 2 AD onwards. The loglikelihood function is optimized using the BFGS
algorithm with a Marquardt step. The starting values of the parameters are as follow: ln(σ2

ŷAM ) = 0;

ln(σ2
A) = 0; θ1AM = 0.5; θ2AM = 0.2; ln(σ2

svAM ) = 0; ωA = 0.5; ln(σ2
svA) = 0. Statistical significance

levels are denoted by *, **, and ***, indicating 10%, 5%, and 1% significance, respectively. Standard
errors of the parameters (reported in parentheses beneath the coefficient values) are calculated using the
Huber-White method. (FS) denotes the final state of the unobserved component, and the square brackets
beneath (FS) estimates indicate the Root MSE. JB refers to the Jarque-Bera test for non-normality. The
critical value of JB corresponding to a 5% significance level with n ≈ 200 is approximately 5.728. ’ske’ and
’kur’ represent skewness and kurtosis, respectively. Q(2) and Q(4) represent the Ljung–Box test based on
serial correlation with 2 and 4 lags, respectively. The values in curly braces beneath the Ljung–Box test
indicate the p-values of the statistics. ’Log. Lik.’ indicates the log likelihood of the estimation.
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Figure 3: Actual vs estimated series

(a) Growth variable: gŷBDt
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(b) Growth variable: gŷAMt
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Notes: Variables are expressed in natural log. Estimates are obtained from table 4 (for the ’BD’ version)
and 5 (for the ’AM’ version).

5. Concluding remarks

In this study, I reconstructed the historical series of technology stocks at
an aggregate level. To accomplish this, I used a database provided by Lil-
ley (1948) and updated the series from the 1930s to the year 2000. This
updated historical series is unique as it covers a thousand-year period, span-
ning from 5000 BC to the present day. The approach followed Lilley (1948)’s
methodology, which collected the major inventions that had an impact on
global industry and its growth, assigning a representative score reflecting
their importance.
The resulting historical series exhibits a robust statistical relationship with
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the historical series of global real per capita GDP. Notably, periods of sig-
nificant technology growth, corresponding to the proto-industrialization era,
precede the ’leap’ in per capita output growth by only a few years, consis-
tent with growth theory. By employing a bivariate model with unobserved
components and leveraging the theoretical connections between per capita
output and technology, I ascertain that technology serves as the exogenous
component influencing the underlying process of output, as expected accord-
ing to theory. These econometric exercises strengthen the validity of the
millennium-long technology series reconstruction.
I conclude by noting that the approach followed in reconstructing the millennium-
long technology series can potentially be extended at the country level or to
a group of countries. A notable example is Joseph Needham, an English
biochemist and scholar of science, who embarked on an extensive project
starting in 1954. His monumental work aimed to document the major tech-
nological discoveries in China, dating back to the earliest days of its civi-
lization. Specifically, volumes 4 to 6 of Needham’s comprehensive series were
dedicated to describing the significant inventions introduced in various scien-
tific and technological fields throughout China’s history. Drawing upon this
valuable resource, it would be feasible to undertake the reconstruction of a
millennium-long technology series focused specifically on China.
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Tóth, M. (2021). A multivariate unobserved components model to estimate
potential output in the Euro Area: A production function based approach.
Working Paper 2523.

33

http://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2013
http://www.rug.nl/ggdc/historicaldevelopment/maddison/releases/maddison-project-database-2013


Verdoorn, P. J. (1949). Fattori che regolano lo sviluppo della produttivita’
del lavoro. L’Industria, 1:3–10.

Volti, R. (2017). Society and technological change. Worth Publishers, New
York.

Young, A. A. (1928). Increasing returns and economic progress. The Eco-
nomic Journal, 38(152):527–542.

34



Appendix A. Timeline of Innovations 1930–2000

Table A.12: Integration of the dataset from Lilley (1948) for the period
1930–1943

Fiberglass (1930–1940, mass production)
Inventors: Various contributors
Industry Use: Construction, aerospace industry, automotive, naval
Importance for the Industry: 0.8

Walkie–Talkie (1940, widely used from 1943)
Inventors: Donald L. Hings, Alfred J. Gross, and their team
Industry Use: Military communications, security, teamwork in industrial
environments
Importance for the Industry: 0.7

Nuclear reactor (Chicago Pile-1, 1942–1943)
Inventors: Enrico Fermi and his team
Industry Use: Nuclear power, research
Importance for the Industry: 0.8

Inertial Navigation Device (1942–1945)
Inventors: Charles Stark Draper and his team
Industry Use: Air, space and marine navigation, missile guidance systems
Importance for the Industry: 0.8

Penicillin synthesis (1943, industrial-level production)
Inventors: Howard Florey, Ernst Boris Chain and their team
Industry Use: Antibiotic production, medicine
Importance for the Industry: 0.9

Colossus (1943–1944)
Inventors: Tommy Flowers and his team
Industry Use: Decryption, data processing and communication systems
Importance for the Industry: 0.9

Table A.13: Inventions 1944–2000. Upgrade of the original dataset by Lilley
(1948)

Jet airplane (1944, year of mass production)
Inventors: Various engineers and scientists, including Frank Whittle and
Hans von Ohain
Industry Use: Air transport, defense, aerospace industry
Importance for the Industry: 0.9
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Radioactive Nucleic Acid (1944)
Inventors: George Beadle and Edward Tatum
Industry Use: Genetic research, biotechnology, medicine
Importance for the Industry: 0.8

Solar cell (1945–1946)
Inventors: Russell Ohl and other scientists at Bell Labs
Industry Use: Light sensors, light measurement, solar panels, telecommu-
nications
Importance for the Industry: 0.8

ENIAC (1946)
Inventors: John Mauchly and J. Presper Eckert
Industry Use: Electronic calculation, data processing, software develop-
ment
Importance for the Industry: 1.0

Tupperware (1946)
Inventor: Earl Silas Tupper
Industry Use: Food preservation, household products
Importance for the Industry: 0.6

Transistor (1947)
Inventors: John Bardeen, Walter Brattain, and William Shockley
Industry Use: lectronics, telecommunications, computers
Importance for the Industry: 1.0

Holography (1947)
Inventor: Dennis Gabor
Industry Use: Three-dimensional display, art, medicine, scientific research
Importance for the Industry: 0.7

Manchester Mark 1 (1948)
Inventors: Frederic C. Williams, Tom Kilburn, and Geoff Tootill
Industry Use: Electronic calculation, data processing, software develop-
ment
Importance for the Industry: 0.9

Velcro (1948)
Inventor: Georges de Mestral
Industry Use: Textile, fashion, aerospace sector, medical devices
Importance for the Industry: 0.7

Jet Aircraft (1944, series production year)
Inventors: Various engineers and scientists, including Frank Whittle and
Hans von Ohain
Industry Use: Air transportation, defense, aerospace industry
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Importance for the Industry: 0.9

Radioactive Nucleic Acid (1944)
Inventors: George Beadle and Edward Tatum
Industry Use: Genetic research, biotechnology, medicine
Importance for the Industry: 0.8

Solar Cell (1946)
Inventors: Russell Ohl and other scientists at Bell Labs
Industry Use: Light sensors, light measurement, solar panels, telecommu-
nications
Importance for the Industry: 0.8

Tupperware (1946)
Inventor: Earl Silas Tupper
Industry Use: Food storage, household products
Importance for the Industry: 0.6

ENIAC (1946)
Inventors: John Mauchly and J. Presper Eckert
Industry Use: Electronic computing, data processing, software develop-
ment
Importance for the Industry: 1.0

Holography (1947)
Inventor: Dennis Gabor
Industry Use: Three-dimensional visualization, art, medicine, scientific
research
Importance for the Industry: 0.7

Transistor (1947)
Inventors: John Bardeen, Walter Brattain, and William Shockley
Industry Use: Electronics, telecommunications, computers
Importance for the Industry: 1.0

Velcro (1948)
Inventor: Georges de Mestral
Industry Use: Textile, fashion, aerospace sector, medical devices
Importance for the Industry: 0.7

Manchester Mark 1 (1948)
Inventors: Frederic C. Williams, Tom Kilburn, and Geoff Tootill
Industry Use: Electronic computing, data processing, software develop-
ment
Importance for the Industry: 0.9

Instant Polaroid Camera (1948, widely commercialized in 1950)
Inventor: Edwin Land
Industry Use: Photography, entertainment, professional applications
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Importance for the Industry: 0.6

Inertial Navigation Systems (1950–1960)
Inventors: Charles Stark Draper and his team at MIT
Industry Use: Aviation, space, military vehicles
Importance for the Industry: 0.7

Bipolar Junction Transistor (1951)
Inventors: John Bardeen, Walter Brattain, and William Shockley
Industry Use: Electronics, communications, computing
Importance for the Industry: 1.0

IBM 701 (1952)
Inventor: IBM
Industry Use: Electronic computing, data processing, software develop-
ment
Importance for the Industry: 0.7

Optical Fibers (1952, first light transmission experiment)
Inventor: Narinder Singh Kapany
Industry Use: Telecommunications, high-speed data transmission, medical
and industrial applications
Importance for the Industry: 0.9

Magnetic Core Memory (1953)
Inventor: Jay Forrester
Industry Use: Computer memory, data processing
Importance for the Industry: 0.8

Frequency Modulation Multiplexing (1953)
Inventor: Edwin Armstrong
Industry Use: Radio broadcasting, communications
Importance for the Industry: 0.6

Doppler Radar (1954)
Inventor: Bernard Gordon
Industry Use: Aviation, meteorology, security
Importance for the Industry: 0.7

Teflon (1954, household applications)
Inventor: Roy Plunkett
Industry Use: Non-stick coatings, corrosion-resistant components, engi-
neering and aerospace applications
Importance for the Industry: 0.7

Photovoltaic Cell (1954, first silicon solar cell)
Inventors: Daryl Chapin, Calvin Fuller, and Gerald Pearson
Industry Use: Solar energy production, electronics and communications
applications
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Importance for the Industry: 0.8

Polypropylene (1954)
Inventors: Giulio Natta and Karl Ziegler
Industry Use: Plastics, packaging, textiles, automotive components
Importance for the Industry: 0.8

20-High Rolling Mill (1954, widespread adoption)
Inventor: Tadeusz Sendzimir (invented in 1933)
Industry Use: Steel production, cost reduction, and improved steel quality
Importance for the Industry: 0.7

Videotape Recorder (1956)
Inventors: Charles Ginsburg and his team at Ampex Corporation
Industry Use: Television broadcasting, video recording, film production
Importance for the Industry: 0.7

Hard Disk Drive (1956)
Inventors: Reynold B. Johnson and his team at IBM
Industry Use: Computer memory, data processing
Importance for the Industry: 0.9

FORTRAN Programming Language (1957, compiler released)
Inventors: John Backus and his team at IBM
Industry Use: Computer programming, engineering, scientific research
Importance for the Industry: 0.8

Pulse Code Modulation (PCM) for Telephone Transmission
(1957, first commercial system)
Inventors: Paul M. Rainey (conceived in 1921), Alec Reeves (further de-
veloped in 1937)
Industry Use: Telecommunications, digital data transmission
Importance for the Industry: 0.8

Electronic Fuel Injection (1957–1959)
Inventor: Bosch (company)
Industry Use: Automotive, improved efficiency of internal combustion en-
gines
Importance for the Industry: 0.7

Microchip (1958)
Inventors: Jack Kilby and Robert Noyce (independently)
Industry Use: Electronics, computers, telecommunications
Importance for the Industry: 1.0

Super Glue (1958)
Inventor: Harry Coover
Industry Use: Industrial and household adhesives
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Importance for the Industry: 0.6

LISP Language (1958)
Inventor: John McCarthy
Industry Use: Programming language for artificial intelligence and re-
search
Importance for the Industry: 0.7

ALGOL Language (1958)
Inventors: International group of researchers, including John Backus and
Peter Naur
Industry Use: Programming language, foundation for many other pro-
gramming languages
Importance for the Industry: 0.7

First Commercial Nuclear Power Plant (1958)
Inventors: Various scientists and engineers involved in the design and
construction of the plant
Industry Use: Electricity production
Importance for the Industry: 0.8

Alkaline Batteries (1959, widespread distribution)
Inventor: Lewis Urry
Industry Use: Electronics, portable devices, toys
Importance for the Industry: 0.7

Hovercraft (1959, application)
Inventor: Sir Christopher Cockerell
Industry Use: People and cargo transportation, military vehicles, research
and rescue vehicles
Importance for the Industry: 0.6

COBOL Language (1959)
Inventors: Grace Hopper and her team (CODASYL)
Industry Use: Computer programming, business and government applica-
tions
Importance for the Industry: 0.8

Laser (1960)
Inventor: Theodore H. Maiman
Industry Use: Communications, medicine, research, industry
Importance for the Industry: 0.9

First Oral Contraceptive Pill (1960, widespread use)
Inventors: Gregory Pincus, Min Chueh Chang, and John Rock
Industry Use: Birth control, pharmaceuticals
Importance for the Industry: 0.7

Transit Satellite Navigation System (1960, first satellite launched)
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Inventors: Research team from the Johns Hopkins University Applied
Physics Laboratory
Industry Use: Navigation, telecommunications, weather and climate mon-
itoring
Importance for the Industry: 0.7

Artificial Heart Valves (1960)
Inventors: Dr. Albert Starr and Lowell Edwards
Industry Use: Cardiovascular surgery, medical devices, treatment of heart
diseases
Importance for the Industry: 0.7

COBOL programming language (1961)
Inventors: Grace Hopper and her team (CODASYL)
Industry Use: Computer programming, database management, business
applications
Importance for the Industry: 0.8

Videodisc (1961)
Inventors: David Paul Gregg and his team at MCA/Philips
Industry Use: Video playback, home entertainment, data storage
Importance for the Industry: 0.6

LED (Light Emitting Diode) (1962)
Inventor: Nick Holonyak Jr.
Industry Use: Lighting, displays, electronic signaling
Importance for the Industry: 0.9

Quartz clock (1962)
Inventors: Warren Marrison (initial development in 1927), Seiko (first
quartz wristwatch in 1969)
Industry Use: Watchmaking, precision equipment, timing systems
Importance for the Industry: 0.8

Semiconductor laser (1962, first prototype) (1966, first commercial
model)
Inventors: Robert N. Hall (prototype), Nick Holonyak Jr. (commercial)
Industry Use: Telecommunications, barcode readers, laser surgery
Importance for the Industry: 0.8

BASIC programming language (1964)
Inventors: John Kemeny and Thomas Kurtz
Industry Use: Computer programming, educational and scientific applica-
tions
Importance for the Industry: 0.7

Geostationary satellite navigation system (1964, first satellite
launched)
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Inventors: NASA and MIT research team
Industry Use: Navigation, telecommunications, weather and climate mon-
itoring
Importance for the Industry: 0.8

Integrated Circuit Computer (1964, first commercial model)
Inventors: Robert Noyce and Jack Kilby
Industry Use: Computers, electronics, telecommunications
Importance for the Industry: 1.0

PL/I programming language (1964)
Inventors: IBM and SHARE (a consortium of IBM users)
Industry Use: Computer programming, business and scientific applications
Importance for the Industry: 0.6

Mouse (1964, first prototype) (1968, public demonstration)
Inventor: Douglas Engelbart
Industry Use: Computers, input devices, human-computer interaction
Importance for the Industry: 0.8

Portable Video Camera (1965)
Inventors: Charles Ginsburg and his team at Ampex Corporation
Industry Use: Film production, television broadcasting, video recording
Importance for the Industry: 0.7

Kevlar Synthetic Fiber (1965)
Inventor: Stephanie Kwolek
Industry Use: Strong material for bulletproof vests, helmets, cables, tires
Importance for the Industry: 0.9

SRAM (Static Random Access Memory) (1965)
Inventor: John Schmidt
Industry Use: Computer memory, electronic devices, microcontrollers
Importance for the Industry: 0.7

Fiber optic cable (1966)
Inventors: Charles K. Kao and George Hockham
Industry Use: Telecommunications, data transmission, communication
networks
Importance for the Industry: 0.9

DRAM (Dynamic Random Access Memory) (1966, first prototype)
(1968, first commercial model)
Inventor: Robert H. Dennard at IBM
Industry Use: Computer memory, electronic devices, storage devices
Importance for the Industry: 0.9

ATM (Automated Teller Machine) (1967, first installed model)
Inventor: John Shepherd-Barron
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Industry Use: Banking services, electronic payments, retail commerce
Importance for the Industry: 0.8

ALGOL 68 programming language (1968)
Inventors: ALGOL Committee (international group of computer science
experts)
Industry Use: Computer programming, scientific research, academic ap-
plications
Importance for the Industry: 0.6

QWERTY keyboard (1968, electronic version)
Inventors: Christopher Latham Sholes (mechanical version in 1868), IBM
(electronic version)
Industry Use: Computers, input devices, typewriters
Importance for the Industry: 0.8

Liquid Crystal Display (LCD) (1968, first prototype) (1972, first com-
mercial model)
Inventors: George H. Heilmeier and his team at RCA Laboratories
Industry Use: Computer screens, TVs, mobile devices, clocks
Importance for the Industry: 0.9

Laptop computer (1968)
Inventor: Alan Kay (concept)
Industry Use: Computers, mobile devices, business and personal applica-
tions
Importance for the Industry: 0.8

Magnetic stripe credit card (1969)
Inventor: IBM
Industry Use: Electronic payments, banking services, retail commerce
Importance for the Industry: 0.8

UNIX operating system (1969)
Inventors: Ken Thompson, Dennis Ritchie and their team at Bell Labs
Industry Use: Computer operating systems, server applications, research
and development
Importance for the Industry: 0.9

Excimer laser (1970)
Inventors: Nikolai Basov and Yuri Popov
Industry Use: Eye surgery, microfabrication, scientific research
Importance for the Industry: 0.7

Pascal programming language (1970)
Inventor: Niklaus Wirth
Industry Use: Computer programming, computer education, software ap-
plications
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Importance for the Industry: 0.7

E-mail (1971)
Inventor: Ray Tomlinson
Industry Use: Communications, collaboration, internet services
Importance for the Industry: 0.9

Microprocessor (1971, invention of the Intel 4004 processor)
Inventors: Ted Hoff, Federico Faggin, Stanley Mazor, and Masatoshi
Shima at Intel
Industry Use: Computers, electronics, telecommunications, industrial au-
tomation
Importance for the Industry: 1.0

Magnetic resonance imaging (MRI) (1971, first prototype) (1973,
first experiment on a human)
Inventors: Raymond Damadian and Paul Lauterbur
Industry Use: Medical imaging diagnostics, biomedical research, neuro-
science
Importance for the Industry: 0.9

C programming language (1972)
Inventor: Dennis Ritchie at Bell Labs
Industry Use: Computer programming, operating systems, software ap-
plications
Importance for the Industry: 0.9

Ethernet (1973)
Inventors: Robert Metcalfe and his team at Xerox PARC
Industry Use: Computer networks, communications, data transmission
Importance for the Industry: 0.9

PET bottle (1973)
Inventor: Nathan Weith, Du Pont employee
Industry Use: Beverage and liquid storage
Importance for the Industry: 0.8

Three-way automotive catalyst (1973)
Inventor: Engelhard Corporation
Industry Use: Reduction of pollutant emissions in internal combustion
engines, environmental protection
Importance for the Industry: 0.8

SQL programming language (1974, developed) (1979, standardized)
Inventors: Donald D. Chamberlin e Raymond F. Boyce at IBM
Industry Use: Database managing, enterprises applications, computer pro-
gramming
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Importance for the Industry: 0.9

PostScript (1975, developed)
Inventors: John Warnock and Charles Geschke at Adobe Systems
Industry Use: Vector graphics, digital printing, electronic publishing
Importance for the Industry: 0.8

DNA sequencing (1975)
Inventors: Frederick Sanger and his team
Industry Use: Genetic research, medical diagnostics, biotechnology
Importance for the Industry: 0.9

Apple I computer (1976)
Inventors: Steve Wozniak and Steve Jobs
Industry Use: Personal computer, productivity, software development
Importance for the Industry: 0.8

Photovoltaic technology (1976, first large-scale installation)
Inventors: Various, based on semiconductor technology
Industry Use: Renewable energy, electricity generation, CO2 emissions
reduction
Importance for the Industry: 0.9

Fuel cell technology (1977, first commercial prototype)
Inventors: Various, based on previous research
Industry Use: Energy production, transportation, CO2 emissions reduc-
tion
Importance for the Industry: 0.8

Commodore PET computer (1977)
Inventors: Chuck Peddle and his team at Commodore International
Industry Use: Personal computer, productivity, software development
Importance for the Industry: 0.7

TRS-80 computer (1977)
Inventors: Don French and Steve Leininger at Tandy Corporation
Industry Use: Personal computer, productivity, software development
Importance for the Industry: 0.7

Apple II computer (1977)
Inventors: Steve Wozniak and Steve Jobs
Industry Use: Personal computer, productivity, software development
Importance for the Industry: 0.8

Atari 2600 computer (1977)
Inventors: Joe Decuir, Jay Miner, and the Atari team
Industry Use: Video game console, entertainment, video game industry
Importance for the Industry: 0.6

Free-electron laser (1977)
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Inventors: John Madey and his team at Stanford University
Industry Use: Scientific research, medicine, industry
Importance for the Industry: 0.6

In vitro fertilization (IVF) (1978, first application)
Inventors: Patrick Steptoe, Robert Edwards, and Jean Purdy
Industry Use: Reproductive medicine, fertility therapies, genetic research
Importance for the Industry: 0.9

Recombinant DNA technology (1978)
Inventors: Herbert Boyer and Stanley Cohen
Industry Use: Biotechnology, medicine, genetic research
Importance for the Industry: 1

Walkman (1979)
Inventor: Sony Corporation
Industry Use: Portable audio devices, personal entertainment, music in-
dustry
Importance for the Industry: 0.8

High Electron Mobility Transistor (HEMT) (1979, initial develop-
ment)
Inventors: Takashi Mimura
Industry Use: Electronics, telecommunications, radar
Importance for the Industry: 0.8

VisiCalc (1979, release date)
Inventors: Dan Bricklin and Bob Frankston
Industry Use: Spreadsheet software, productivity, financial analysis
Importance for the Industry: 0.8

C++ programming language (1980, developed) (1983, published)
Inventor: Bjarne Stroustrup
Industry Use: Computer programming, operating systems, software ap-
plications, video games
Importance for the Industry: 0.9

Scanning Tunneling Microscope (STM) (1981)
Inventors: Gerd Binnig and Heinrich Rohrer
Industry Use: Scientific research, nanotechnology, materials research
Importance for the Industry: 0.8

IBM PC (1981)
Inventors: IBM development team
Industry Use: Personal computers, productivity, software development
Importance for the Industry: 0.9

Osborne 1 Portable Computer (1981)
Inventor: Adam Osborne
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Industry Use: Portable personal computers, productivity, software devel-
opment
Importance for the Industry: 0.7

Compact Disc (CD) (1982)
Inventors: Philips and Sony
Industry Use: Data storage, video playback, home entertainment
Importance for the Industry: 0.7

Grid Compass 1101 Laptop (1982)
Inventor: Bill Moggridge
Industry Use: Portable personal computers, productivity, software devel-
opment
Importance for the Industry: 0.4

ARPANET (1982, TCP/IP protocol definition)
Inventors: Vint Cerf, Bob Kahn, and their team
Industry Use: Computer network, communications, data transmission
Importance for the Industry: 0.9

Musical Instrument Digital Interface (MIDI) (1983)
Inventors: Dave Smith and Ikutaro Kakehashi
Industry Use: Communication between electronic musical instruments,
music production, performance
Importance for the Industry: 0.8

C programming language (ANSI C Standard) (1983, standardized)
Inventor: Dennis Ritchie
Industry Use: Computer programming, operating systems, software ap-
plications
Importance for the Industry: 0.9

3.5-inch Hard Disk Drive (1983)
Inventors: IBM development team
Industry Use: Data storage, productivity, software development
Importance for the Industry: 0.8

Cellular Phones (1983, first commercial mobile phone, Motorola Dy-
naTAC 8000X)
Inventors: Martin Cooper and the Motorola team
Industry Use: Telecommunications, mobile communication, mobile inter-
net
Importance for the Industry: 1

Microsoft Word (1983)
Inventors: Microsoft development team
Industry Use: Word processing, productivity, documentation
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Importance for the Industry: 0.8

Polymerase Chain Reaction (PCR) (1983)
Inventor: Kary Mullis
Industry Use: Genetic research, medical diagnostics, biotechnology
Importance for the Industry: 0.9

Ethernet (IEEE 802.3 Standard) (1983, standardized)
Inventors: Robert Metcalfe, David Boggs, and the Xerox PARC team
Industry Use: Computer networks, data transmission, IT infrastructure
Importance for the Industry: 0.9

Nintendo Entertainment System (NES) (1983, launch in Japan;
1985, launch in the United States)
Inventors: Masayuki Uemura and the Nintendo development team
Industry Use: Video game console, entertainment, video game industry
Importance for the Industry: 0.6

Apple Macintosh (1984)
Inventors: Jef Raskin, Burrell Smith, Bill Atkinson, Andy Hertzfeld, and
the Apple development team
Industry Use: Personal computer, productivity, software development
Importance for the Industry: 0.8

Adobe PostScript (1984)
Inventors: John Warnock and Charles Geschke
Industry Use: Vector graphics, printing, desktop publishing
Importance for the Industry: 0.9

3D printing (1984)
Inventor: Charles Hull
Industry Use: Rapid prototyping, additive manufacturing, 3D modeling
Importance for the Industry: 0.8

Microsoft Windows operating system (1985)
Inventors: Microsoft development team
Industry Use: Operating systems, productivity, software development
Importance for the Industry: 0.9

Amiga 1000 (1985)
Inventors: Commodore development team
Industry Use: Personal computer, music and video production, video game
development
Importance for the Industry: 0.4

Cray-2 Supercomputer (1985)
Inventors: Seymour Cray and the Cray development team
Industry Use: Scientific research, weather forecasting, nuclear weapons
simulation
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Importance for the Industry: 0.8

DNA Fingerprinting (1985, first application)
Inventor: Sir Alec Jeffreys
Industry Use: Law, forensic medicine, genetic research
Importance for the Industry: 0.8

High Definition Television (HDTV) (1986, Japanese standard)
Inventors: NHK Science & Technology Research Laboratories
Industry Use: Television broadcasting, entertainment, advertising
Importance for the Industry: 0.9

High-Speed DNA Sequencing (1986)
Inventors: Leroy Hood and Lloyd Smith
Industry Use: Genetic research, medicine, biotechnology
Importance for the Industry: 0.9

Mammalian Cloning from Embryonic Cells (1986, first successful in
a sheep)
Inventor: Steen Willadsen
Industry Use: Genetic research, medicine, agriculture
Importance for the Industry: 0.8

Atomic Force Microscope (1986)
Inventors: Gerd Binnig, Calvin Quate, Christoph Gerber
Industry Use: Scientific research, nanotechnology, medicine
Importance for the Industry: 0.8

MP3 (1987, initial development; released 1994)
Inventors: Fraunhofer Institute development team
Industry Use: Digital audio, music, entertainment
Importance for the Industry: 0.9

Antivirus Software (1987, first antivirus software for PC)
Inventor: Bernd Fix
Industry Use: Cybersecurity, data protection, IT infrastructure
Importance for the Industry: 0.9

Prozac (1987)
Inventors: Eli Lilly development team
Industry Use: Pharmaceuticals, mental health, depression treatment
Importance for the Industry: 0.9

Statins (1987, FDA approval for lovastatin)
Inventors: Akira Endo and his team
Industry Use: Pharmaceutical, hypercholesterolemia treatment
Importance for the Industry: 0.9

High-Field Magnetic Resonance Imaging (MRI) (1987, market dif-
fusion)
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Inventors: Paul C. Lauterbur, Peter Mansfield, and others
Industry Use: Medical diagnostics, medical research
Importance for the Industry: 0.9

Digital Cellular Technology (GSM) (1988, finalized specification)
Inventors: Groupe Spécial Mobile
Industry Use: Mobile communications, telecommunications
Importance for the Industry: 1

Humanized Monoclonal Antibody (1988)
Inventors: Greg Winter and his team at the MRC Laboratory of Molecular
Biology
Industry Use: Medicine, immunotherapy, medical research
Importance for the Industry: 0.9

Macintosh Portable Laptop (1989)
Inventors: Apple development team
Industry Use: Portable personal computers, productivity, software devel-
opment
Importance for the Industry: 0.7

World Wide Web (1989, proposed)
Inventor: Tim Berners-Lee
Industry Use: Communication, e-commerce, entertainment
Importance for the Industry: 1

Game Boy (1989)
Inventors: Gunpei Yokoi and the Nintendo development team
Industry Use: Portable video game console, entertainment, video game
industry
Importance for the Industry: 0.6

Global Positioning System (GPS) (1989, full operational capability)
Inventors: U.S. Department of Defense
Industry Use: Navigation, transportation, geolocation
Importance for the Industry: 1

Microsoft Windows 3.0 (1990)
Inventors: Microsoft development team
Industry Use: Operating systems, productivity, software development
Importance for the Industry: 0.9

Microsoft Office (1990, first version)
Inventors: Microsoft development team
Industry Use: Productivity, word processing, presentations
Importance for the Industry: 0.9

Functional Magnetic Resonance Imaging (fMRI) (1990, initial de-
velopment)
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Inventor: Seiji Ogawa
Industry Use: Neuroscience, medical diagnosis, research
Importance for the Industry: 0.8

Python Programming Language (1990)
Inventor: Guido van Rossum
Industry Use: Software development, artificial intelligence, web develop-
ment
Importance for the Industry: 0.9

Sega Mega Drive (Genesis in North America) (1990, launch in
Europe and diffusion)
Inventors: Sega
Industry Use: Entertainment, video games
Importance for the Industry: 0.5

HTML (HyperText Markup Language) (1990, proposed; first publi-
cation 1993)
Inventor: Tim Berners-Lee
Industry Use: Web development, e-commerce, communication
Importance for the Industry: 1

Linux (1991)
Inventor: Linus Torvalds
Industry Use: Operating systems, servers, supercomputers
Importance for the Industry: 0.9

Wi-Fi (1991, initial development)
Inventors: NCR Corporation/AT&T
Industry Use: Communication, internet, wireless technology
Importance for the Industry: 1

GSM (Global System for Mobile Communications) Network
(1991, first operational system)
Inventors: Mobile Standards Group of the European Telecommunications
Standards Institute
Industry Use: Communication, mobile telephony, mobile data
Importance for the Industry: 1

SIM Card (GSM) (1991, first commercial introduction) (widespread
global adoption starting from 1998)
Inventors: Giesecke & Devrient for the GSM consortium
Industry Use: Mobile telephony, user identification, security
Importance for the Industry: 1

SMS (Short Message Service) (1992, first message sent)
Inventors: Friedhelm Hillebrand and Bernard Ghillebaert
Industry Use: Communication, marketing, social media
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Importance for the Industry: 0.9

Super Nintendo Entertainment System (SNES) (1992, global dis-
tribution)
Inventors: Nintendo
Industry Use: Entertainment, video games
Importance for the Industry: 0.6

PDF (Portable Document Format) (1993)
Inventors: Adobe development team
Industry Use: Document sharing, printing, publishing
Importance for the Industry: 0.9

Windows NT 3.1 (1993)
Inventors: Microsoft development team
Industry Use: Operating systems, productivity, software development
Importance for the Industry: 0.9

Mosaic Web Browser (1993)
Inventors: Marc Andreessen and Eric Bina
Industry Use: Web browsing, e-commerce, communication
Importance for the Industry: 0.9

Yahoo! (1994)
Inventors: Jerry Yang and David Filo
Industry Use: Internet search, advertising, information
Importance for the Industry: 0.9

Amazon (1994)
Inventor: Jeff Bezos
Industry Use: E-commerce, distribution, cloud computing
Importance for the Industry: 0.9

QR Code (1994)
Inventors: Masahiro Hara at Denso Wave
Industry Use: Marketing, product traceability, mobile connectivity
Importance for the Industry: 0.8

SSL (Secure Sockets Layer) (1994–1995)
Inventors: Netscape Communications
Industry Use: Internet security, e-commerce, data protection
Importance for the Industry: 1

DVD (Digital Versatile Disc) (1995, initial development)
Inventors: Philips, Sony, Toshiba, Panasonic
Industry Use: Entertainment, data storage, computer
Importance for the Industry: 0.9

Java (programming language) (1995)
Inventor: James Gosling at Sun Microsystems
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Industry Use: Software development, web applications, embedded systems
Importance for the Industry: 0.9

Apache HTTP Server (1995)
Inventors: Robert McCool and the Apache development team
Industry Use: Web hosting, web development, e-commerce
Importance for the Industry: 0.9

PlayStation (1995, Europe and US launch)
Inventors: Sony Computer Entertainment
Industry Use: Entertainment, video games, multimedia
Importance for the Industry: 0.6

Sega Saturn (1995, global release)
Inventors: Sega
Industry Use: Entertainment, video games, multimedia
Importance for the Industry: 0.5

RealAudio (1995)
Inventors: RealNetworks
Industry Use: Audio streaming, entertainment, communication
Importance for the Industry: 0.6

JavaScript (1995)
Inventor: Brendan Eich at Netscape Communications
Industry Use: Web development, web interactivity, web applications
Importance for the Industry: 0.9

Cloning of mammals from adult cells (1996, first success in a sheep)
Inventors: Team led by Ian Wilmut at the Roslin Institute
Industry Use: Genetic research, medicine, agriculture
Importance for the Industry: 0.8

USB (Universal Serial Bus) (1996)
Inventors: Ajay Bhatt, Bala Cadambi, Shaun Knoll, Shelagh Callahan
Industry Use: Hardware connectivity, data transfer, device charging
Importance for the Industry: 1

Palm Pilot (1996, realization)
Inventors: Palm, Inc.
Industry Use: Productivity, personal digital assistants (PDAs), organiza-
tion
Importance for the Industry: 0.6

Flash Memory (1996, standardization)
Inventors: Fujio Masuoka at Toshiba, with significant contributions from
Samsung and others
Industry Use: Data storage, consumer electronics, mobile devices
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Importance for the Industry: 0.9

Nokia 9000 Communicator (1996)
Inventors: Nokia
Industry Use: Communication, productivity, mobile telephony
Importance for the Industry: 0.7

XML (eXtensible Markup Language) (1996, initial development)
Inventors: W3C
Industry Use: Data transfer, web development, system integration
Importance for the Industry: 0.9

Adobe Flash (originally FutureSplash Animator, 1996)
Inventors: Jonathan Gay, Robert Tatsumi, Michelle Welsh, Charlie Jack-
son
Industry Use: Web development, animation, online games
Importance for the Industry: 0.8

Wi-Fi (802.11 Standard) (1997)
Inventor: IEEE
Industry Use: Communication, internet, wireless technology
Importance for the Industry: 0.6

Six Degrees (1997, first social networking site)
Inventor: Andrew Weinreich
Industry Use: Social media, communication, marketing
Importance for the Industry: 0.7

Google Search Engine (1998)
Inventors: Larry Page and Sergey Brin
Industry Use: Internet search, advertising, information
Importance for the Industry: 1

MP3 Player (1998, first commercial player)
Inventor: Tomislav Uzelac at Advanced Media Products
Industry Use: Entertainment, digital music
Importance for the Industry: 0.8

PayPal (1998)
Inventors: Peter Thiel, Max Levchin, Luke Nosek, Elon Musk
Industry Use: Finance, online payments, e-commerce
Importance for the Industry: 0.9

Hypersonic Sound Technology (1998)
Inventor: Elwood ”Woody” Norris
Industry Use: Audio, advertising, defense technology
Importance for the Industry: 0.7

Apple iMac G3 (1998)
Inventor: Apple Inc.
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Industry Use: Computing, design, multimedia
Importance for the Industry: 0.6

Wi-Fi (802.11b Standard) (1999)
Inventor: IEEE
Industry Use: Communication, internet, wireless technology
Importance for the Industry: 0.6

Bluetooth (1999, standard release)
Inventor: Ericsson
Industry Use: Communication, device connectivity, Internet of Things
(IoT)
Importance for the Industry: 1

TiVo (1999)
Inventors: Jim Barton and Mike Ramsay
Industry Use: Entertainment, digital television, digital video recording
Importance for the Industry: 0.8

Blogging (1999, opening of Blogger)
Inventor: Pyra Labs
Industry Use: Communication, social media, marketing
Importance for the Industry: 0.8

File Sharing (Napster) (1999)
Inventors: Shawn Fanning, Sean Parker, John Fanning
Industry Use: Entertainment, music, digital distribution
Importance for the Industry: 0.7

BlackBerry (2000)
Inventor: Research in Motion
Industry Use: Communication, mobile email, productivity
Importance for the Industry: 0.7

PlayStation 2 (2000, global release)
Inventors: Sony Computer Entertainment
Industry Use: Entertainment, video games, multimedia
Importance for the Industry: 0.7

Windows 2000 (2000)
Inventor: Microsoft
Industry Use: Operating systems, productivity, software development
Importance for the Industry: 0.8

Human Genome Project (2000, complete sequencing)
Inventors: International collaboration of scientists led by the National
Institutes of Health and the Wellcome Trust
Industry Use: Biomedical research, genetics, personalized medicine
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Importance for the Industry: 1

GPS (Global Positioning System) for Civilian Use (2000)
Inventor: United States Department of Defense
Industry Use: Navigation, geolocation, mapping, telecommunications
Importance for the Industry: 1
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