On the Multistability and Excitability Paradigms in Climate Dynamics

Stefano Pierini
Department of Science and Technology, Parthenope University of Naples, Napoli, Italy (stefano.pierini@uniparthenope.it)

An important dynamical systems paradigm in climate dynamics is multistability. In this case the system possesses several (typically two) stable states. Transitions from one of these states to another can occur spontaneously if a certain threshold is exceeded, in which case the system exhibits limit cycles or strange attractors. Otherwise, transitions can occur through the action of an external -random or deterministic- forcing, which may induce abrupt shifts and hysteresis behavior.

On the other hand, the paradigm of excitable system also plays an important role in explaining abrupt climate shifts. An excitable system possesses a basic state, which can be either an equilibrium point, a small amplitude limit cycle or even a strange attractor with limited extension in phase space. An abrupt shift leading to an unstable excited state can occur, followed by a spontaneous, slow return to the original state. Such large-amplitude transition, called relaxation oscillation, is self-sustained if a certain tipping point is passed; otherwise, it can be excited by a suitable random or deterministic external forcing (coherence resonance).

Interestingly, in some cases, both paradigms have been invoked in competing theories proposed to explain the same climate phenomenon. This is, for example, the case of (i) the low-frequency fluctuations of western boundary current extensions, such as those of the Kuroshio Extension in the North Pacific Ocean, and of (ii) the glacial-interglacial variability in the late Pleistocene. Here it is shown that the relaxation oscillation-excitable system paradigm, reformulated in terms of the deterministic excitation mechanism, guides the modeling of these two phenomena, with results that are in good agreement with altimeter (i) and proxy (ii) data.

