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1 The Model

1.1 State Variables

We assume that the economy is driven by five latent factors, three of which are country-

specific factors and two are eurozone global factors. In particular, the country-specific factors

are: (i) a variance factor, denoted v, that accounts for dynamics of the conditional volatility

of the other two variables; (ii) a level factor `, that approximately corresponds to the level of

yields (i.e., the first principal component of yields); (iii) a slope factor s, that proxies the slope

of the yield curve (i.e., the second principal component of yields). The two global factors are

represented by the eurozone instantaneous expected inflation rate, π, and expected output

growth rate, µ. The five state variables are collected in the state vector X = (X1 X2)
′, where

X1 contains the three country-specific factors, X1 = (v ` s)′, and X2 the global factors,

X2 = (π µ)′. The dynamics of the state vector follows a A1(5) process of the Dai and

Singleton (2000) type dXt = K(Θ−Xt)dt+ Σ
√

ΞtdZt, which can also be written as:(
dX1t

dX2t

)
=

(
K11 K12

K21 K22

)(
Θ1 −X1t

Θ2 −X2t

)
dt+

(
Σ11 0

0 Σ22

)(
Ωt 0

0 I

)(
dZ1t

dZ2t

)
, (1)

where K11, K12, K21 and K22 are full matrices, Θ1 and Θ2 are full vectors, Σ11 and Σ22 are

diagonal matrices, Ωt is a diagonal matrix with all elements equal to
√
vt, I is an identity

matrix, and dZ1t and dZ2t are vectors of independent Brownian motions.

In sum, we model the first factor v as a square-root process that enters the diffusion

term of the other two country-specific, conditionally Gaussian factors, ` and s. Instead, the

global factors π and µ in X2t follow a Gaussian process and potentially interact with each

other and with the country-specific factors through the drift term. We assume that they are

linked to the exogenously-given price level p and the real production output q through the

process:

dMt = X2tdt+ ΣMdZMt, (2)

where dM ′
t =

(
dpt
pt

dqt
qt

)
, ΣM is a diagonal matrix and dZMt a vector of independent Brownian

motions.

We characterize the dynamics under the risk-adjusted probability measure Q by using

an “essentially affine” specification of the instantaneous market price of risk of the Duffee

(2002) type Ψt =
√

Ξ−t (Λ0 + Λ1Xt), i.e.:(
Ψ1t

Ψ2t

)
=

(
Ω−1t 0

0 I

)[ (
Λ01

0

)
+

(
Λ11 Λ12

0 0

)(
X1t

X2t

) ]
, (3)

where Λ01 is a full vector and Λ11 and Λ12 are full matrices.
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We then impose the constraint that the global factors in X2t are unspanned, i.e., they

affect short-rate expectations and risk premia in an exactly offsetting way and, therefore,

influence the dynamics of bond yields under the historical measure but not under the risk-

adjusted probability measure (see, for example, Duffee (2011) and Joslin et al. (2014)). Such

constraint requires (i) that the instantaneous interest rate rt does not depend on X2t:

rt = δ0 +
(
δ′1 0

)( X1t

X2t

)
, (4)

where δ0 is a constant and δ1 is a full vector, and that (ii):

Λ12 = −Σ−111K12. (5)

The second constraint implies that in the risk-adjusted process of the state vector X, i.e.,

dXt = (K̃Θ̃− K̃Xt)dt+ Σ
√

ΞtdZ̃t, where dZ̃t = dZt + Ψtdt, the drift of the country-specific

factors in X1t does not depend on the global factors in X2t:(
dX1t

dX2t

)
=

[ (
K11Θ1 +K12Θ2 − Σ11Λ01

K21Θ1 +K22Θ2

)
−

(
K11 + Σ11Λ11 0

K21 K22

)(
X1t

X2t

) ]
dt

+

(
Σ11 0

0 Σ22

)(
Ωt 0

0 I

)(
dZ̃1t

dZ̃2t

)
(6)

1.2 Yields and Yield Components

The equilibrium price of a unit discount bond with time to maturity τ at time t, Pt(τ), has

an exponentially affine closed-form solution, namely:

Pt(τ) = exp {A(τ)−B′(τ)Xt} , (7)

where A(τ) and B(τ) solve a system of ordinary differential equations (see, for example,

Piazzesi (2010)) and, because of the unspanned nature of the global factors, we have B′(τ) =

(B′1(τ), 0). The term structure of interest rates is therefore affine in the country-specific

factors and the time-t yield on a tau-maturity zero coupon bond, Yt(τ), can be expresses as:

Yt(τ) = a(τ) + b′(τ)Xt, (8)

where a(τ) = −A(τ)/τ and b′(τ) = B′(τ)/τ = (b′1(τ), 0).

The diffusion term in the risk-adjusted dynamics of X is a function of v, which implies

that yield volatilities are time-varying and are driven by that factor. In particular, the time-t
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instantaneous variance of changes in a τ -maturity yield, Vt(τ), is affine in v and is given by:

Vt(τ) = b′(τ) (Σ ΞtΣ
′) b(τ). (9)

Equation (8) relates yields with the state vector through a linear function, whose coefficients

embed both a risk-adjustment and the expectation of the future path of the short rate, plus

a Jensen inequality term. To see this more formally, we follow Berardi et al. (2019) and

consider the time-t instantaneous forward rate for date t + τ , ft(τ) = 1
Pt(τ)

∂Pt(τ)
∂t

, which can

be expressed as:

ft(τ) = rt +B′(τ)K(Θ−Xt)−B′(τ)Σ(Λ0 + Λ1Xt)−
1

2
B′(τ) (Σ ΞtΣ

′)B(τ). (10)

Rearranging terms, this expression for the instantaneous forward rate can be written as the

sum of four components, i.e., the instantaneous (i) expectation of the short rate at t + τ

under the P measure, EP [rt(τ)], (ii) expected excess return on a τ -maturity bond, et(τ), (iii)

convexity, ct(τ), and (iv) a “duration adjustment”, dt(τ):

ft(τ) = EP [rt(τ)] + et(τ) + ct(τ) + dt(τ), (11)

where

EP [rt(τ)] = rt +B′G(τ)K(Θ−Xt), (12)

et(τ) = −B′(τ)Σ(Λ0 + Λ1Xt), (13)

ct(τ) = −1

2
B′(τ) (ΣStΣ

′)B(τ), (14)

dt(τ) = [B′(τ)−B′G(τ)]K(Θ−Xt). (15)

The term BG(τ) is the expression for the B(τ) coefficient in a Gaussian framework with

constant market price of risk, B′G(τ) = δ′K−1(I− e−Kτ ). The difference (B′(τ)−B′G(τ)) can

be interpreted as an adjustment in the B(τ) “duration” coefficient due to both stochastic

volatility and the essentially affine specification, which in fact goes to zero if St = I and

Λ1 = 0.

The convexity term is proportional to the variance of yields and, therefore, is an affine

function of the variance factor v:

ct(τ) = −1

2
τ 2Vt(τ). (16)

The difference between the instantaneous forward rate and short rate expectation in

equation (11) is generally defined as the “forward term premium” (see, for example, Dai and

Singleton (2002) and Kim and Wright (2005)). However, in order to separate from the term
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premium component the “mechanical” effect of bond convexity – which can be significant

for long-term yields in a stochastic volatility environment –, we adopt a more restricted

definition for the time-t forward term premium on a τ -maturity bond, FTPt(τ):1

FTPt(τ) = et(τ) + dt(τ). (17)

Taking the integral of both sides of equation (17) and dividing by τ , we obtain an expression

for the yield term premium, Y TPt(τ):

Y TPt(τ) =
1

τ

∫ t+τ

t

FTPt(u)du. (18)

Similarly, we define the average expected short rate between time t and t+ τ as ESRt(τ) =
1
τ

∫ t+τ
t

EP [rt(u)du] and the average convexity between t and t+τ as CVXt(τ) = 1
τ

∫ t+τ
t

ct(u)du.

The yield on a τ -maturity zero coupon bond can thus be written as the sum of these three

elements:

Yt(τ) = ESRt(τ) + Y TPt(τ) + CVXt(τ). (19)

Therefore, different from other term structure models (see, for example, Kim and Wright

(2005) and Adrian et al. (2013)), we decompose yields by considering the convexity term as

distinct from the other two components.

1Empirically, we observe that the term dt(τ) in equation (17) is relatively low in size and therefore has a limited impact on the
estimated forward term premium.
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2 Data and Estimation

2.1 Data

The model is estimated using monthly data on country-specific yields and yield volatilities

and data on eurozone macroeconomic expectations starting in January 2000. Ten countries

of the euro area are considered: Germany, France, Netherlands, Austria, Finland, Belgium,

Italy, Spain, Portugal and Ireland. Moreover, we provide estimates for the Euro Area as a

whole. We use yields with maturities between 2 and 10 years and yield variances, which are

obtained by calculating the realized within-month variance of daily changes in yields. The

data source is Bloomberg for the ten countries and the ECB website for the Euro Area.2

For macro expectations, we use the average 1- and 5-year ahead forecasts of annual CPI

growth and annual real GDP growth rates obtained from the ECB Survey of Professional

Forecasters. As these data are available on a quarterly basis, we interpolate the series with

a spline technique to derive monthly observations.

2.2 Estimation Method

The parameters of the state-space representation of the model are estimated by the quasi

maximum likelihood method, with an approximate Kalman filter algorithm being used to

calculate the values of the unobserved state variables. The use of approximate linear filtering

is necessary in the cases in which the state vector has affine dynamics but is not Gaussian. In

this scenario, an approximate transition equation can be obtained by exploiting the existence

of an analytical expression of the first two conditional moments of the state vector (see, for

example, Christoffersen et al. (2014)).

The estimation is performed in two steps. In the first step, we estimate the model for the

Euro Area by fitting fifteen series, i.e., the 2- to 10-year yields, the 5- and 10-year realized

yield variances, and the average 1- and 5-year ahead forecasts of inflation and real GDP

growth.

In the second step, we keep fixed the parameters estimated for the stochastic processes

of the global factors, i.e., the eurozone instantaneous expected inflation rate π and expected

output growth rate µ (equation (1)) and the related price level p and real production output q

(equation (2)). Then, we fit separately for each country the eleven country-specific variables,

i.e., the 2- to 10-year yields and the 5- and 10-year realized yield variances.

2As the ECB data start only in September 2004, for the period January 2000 to August 2004 the yield curve is calculated as
the simple average of the yield curves of the ten countries considered.
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