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GLOSSARY OF ACRONYMS 

Acronym Definition 

ABM Aquaculture Biomass Monitor 

API Application Programming Interface 

DO Dissolved Oxygen 

FastPCPImputer fast principal component projection imputer 

FCR Feed Conversion Ratio 

GAM Generalised Additive Model 

GUI Graphical User Interface 

HAB Harmful Algal Bloom 

IoT Internet of Things 

LRImputer Low rank imputer 

LSTM Long short-term memory 

ML Machine Learning 

MLP Multilayer Perceptron 

MQTT Message Queue Telemetry Transport 

RF Random Forest 

RNN Recurrent Neural Networks 

XGB Extreme Gradient Boosting 
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Executive summary 

This document describes the final release of the GAIN Information Management System – a 

cloud platform to help better manage aquaculture farms. The platform integrates sensor data 

from each pilot partner site into a secure cloud service and complements this with access to 

additional data streams such as weather, satellite or external model data. A suite of machine 

learning models were developed to address specific industry pain points and to add value to IoT 

sensor. The system interfaces with aquaculture-specific nodes developed by LLE and UNIVE. 

We present the user-experience of the service and the development of models that are 

provisioned to better inform aquaculture stakeholders. 
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1. Introduction 

This deliverable describes the final release of the GAIN Information Management System 

(IMS). It describes the components that comprise the system and how external users (pilot site 

partners) interact with the service. Further, it considers how the current system serves to 

improve the management of data collected, generated and pertinent to aquaculture farms. It 

builds on D1.5 presenting a first release of the platform (Fearghal O’Donncha et al., 2019) and 

user feedback collected at month 15 and 36 of the project for Milestones 6 (O’Donncha and 

Gormally, 2019) and 13 (O’Donncha and Akhriev, 2021) respectively. 

The GAIN IMS was designed as a distributed system that allowed different components to 

interact in a flexible and dynamic manner. At the end of GAIN, the IMS consists of three 

different components: 

• A Big Data and AI component that ingests data from disparate sensor data and external 

sources to a unified cloud platform and processes using Artificial Intelligence (AI). 

This serves as the core for data ingestion and processing and is interfaced with other 

components or nodes. 

• AquaSense: a component that provides dedicated service and decision support for 

shellfish aquaculture. 

• AQUARADAR: a mechanistic modelling and data assimilation framework for land-

based aquaculture systems. 

GAIN considered the IMS in terms of two nodes (AquaSense and AQUARADAR) that 

provided dedicated aquaculture-specific management capabilities, interfaced with a data and 

AI platform. Extensibility was a core part of the development roadmap and additional nodes 

can be readily added to address specific user needs and to allow a flexible development 

ecosystem where many parties can develop (and commercialise) independently.    

The document provides an overview of the GAIN  Information Management System (IMS) and 

builds on the user’s perspective presented in the MS13 document. We focus on the core data 

and AI platform to simplify technical presentation. Details on the AquaSense and 

AQUARADAR nodes are provided in our exploitation deliverables, namely D4.7 (“Website 

applying sensor data from WP1to model growth and environmental effects for key finfish and 

shellfish species”) and D6.6 (“Industry focused website built on AquaSense engine, with a rich 

UI/UX”). To provide a more streamlined description of work (and avoid repetition), this 

deliverable focuses on the technical finalisation and release of the big data and AI platform. 

D4.7 and D6.6 describes the nodes developed as part of the commercialisation activities. 

A key consideration for the GAIN IMS is relating data to operational conditions and farms and 

translating that information to improved decision making. The GAIN IMS provides a cloud-

based data integration, analysis, and forecast service platform for aquaculture. The objectives 

of the data platform primarily relate to: 

1. integration of data from disparate sources into a single unified cloud platform, 

2. standardisation of IoT integration across all datatypes, data sources and data 

formats. 
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3. empowerment of standardised data analysis (e.g., anomaly detection, statistical 

analysis) and bespoke model development (e.g., deep learning modelling, 

mechanistic models), and 

4. dissemination of insight in a rapid, agile process. 

This deliverable provides a general overview of the GAIN IMS and specifically how it impacts 

aquaculture activities; we focus on the core data and AI platform, with the distributed nodes of 

the system described in D4.7 and 6.6. Building on user feedback presented in MS13 report, this 

deliverable focuses on 1) the modelling and forecasting aspects and how they impact 

aquaculture activities and 2) the interaction of different stakeholders with the platform to 

amplify impact.  

2. Structure and functionalities of the GAIN IMS 

The GAIN project considers multiple aquaculture types from multiple geographical regions. 

Consequently, the data collected, and associated pain points of aquaculture farms were varied. 

We worked with partners to identify industry pain points (for marine finfish, shellfish, and land-

based pond and raceway culture) and how an IoT (Internet of Things) and modelling framework 

could ameliorate those issues. Subsequently, we worked to identify commonality across 

aquaculture types and geographical locations: these commonalities served to guide 

development of a core service that considered data integration, curation, and forecasting of 

pertinent environmental variables such as temperature, dissolved oxygen, and Chlorophyll-a. 

This environmental forecasting service is in effect a scalable forecasting model, that ingests 

measurements from sensor (e.g. temperature sensor), parses and contextualises the data (by 

means of a contextual layer that allows the user to add meta-descriptors to the data to aid the 

development of models), and trains and stores a machine learning model to generate predictions 

at the requisite time-scale. The main features of the system are: (1) an efficient pipeline for 

ingesting IoT time series data in real time; (2) a scalable, hybrid data management service for 

both time series and contextual data; (3) a versatile semantic model for contextual information 

which can be easily adapted to different application domains; (4) an abstract framework for 

interacting with the system in R or Python; (5) deployment services which automatically train 

and/or score predictive models upon user-defined conditions.  

The architecture of the data platform  is composed of cloud-based microservices and provides 

an efficient pipeline for real-time data ingestion, time series, and model data management based 

on unified and intuitive application programming interfaces (APIs) to interact with the data and 

models.  

Both the data scientist and the end user interact with the system using IBM Watson® Studio 

(Miller, 2019). This provides a unified user interface where the data scientist, the subject-matter 

expert, and the end user can collaborate and iterate to visualise and analyse (automated) time 

series forecasts, and augment with bespoke modelling systems that address specific farm 

requirements (as an example, in a related paper we describe how the system was used to 

interrogate the relationships between environmental data and hydroacoustic estimates of 

distribution of caged salmon (O’Donncha et al., 2021). Figure 1 presents an overview of the 

different components of the service.  
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Figure 1: Overview of the system presenting IoT data integration, connectors to external data, microservices 

and automated model training and scheduling, and user interaction with the system in terms of bespoke (species 

and farm specific) model development, and dissemination to end user. Interaction with the end user is outlined 

on the right-hand side and is supported by robust data science and enterprise tools. Python and R packages 

allow the user to interact using open-source (e.g. Jupyter Notebooks) or commercial tools (e.g. IBM Watson 

Studio, Google Collab). AutoAI provides a “no-code” approach to allow non-data scientists apply AI to their 

datasets. External nodes (AQUARADAR, AQUASENSE) can upload and download data to the cloud to enable 

different levels of connectivity between different services (i.e. one-way connection where data such as sensor or 

model forecasts are downloaded from the cloud or two-way connection where data is downloaded and model 

forecasts uploaded and stored in the service). 

The fundamental approach can be considered a series of steps: 

1. Data integration from the farm to the cloud 

2. Data pre-processing and cleansing 

3. Machine learning model forecasting 

4. Model deployment at the nodes, monitoring, and management. 

5. The final step considers the dissemination of data to end user and is described in detail 

in Section 3  

Data Integration 

Data integration is described in detail in Deliverable 1.3 (O’Donncha and Purcell, 2019) and 

summarised briefly here. The Watson IoT platform provides a single point of ingress for all 

sensor data generated by the GAIN project. It utilizes the MQTT protocol for lightweight data 

transport and is designed to scale to thousands of devices in parallel with each device providing 

periodic or intermittent data updates. 

The transfer of data to the cloud service was bespoke to each site adapting to the exact sensor 

configurations deployed. 

https://www.ibm.com/cloud/watson-iot-platform
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• The preferred approach was to push the data using Message Queue Telemetry 

Transport (MQTT), to the IBM cloud service, which is the standard pattern when 

handling IoT data.  

• For data that were part of proprietary sensor ecosystem and did not facilitate 

publishing to an IoT service, we developed bespoke API adapters to pull data from 

vendors’ cloud platform and push it into the IBM cloud service.  

The approach provided lightweight access to farm data while developing a library of API 

connectors to widely used aquaculture sensor products (e.g. RealTimeAquaculture, CageEye). 

Data Pre-processing and Cleansing 

A key objective of our work is to enable forecasting with minimal human interaction. This 

requires the ability to request data based on a given context, automatically process and cleanse 

the data, and forward to an appropriate machine learning pipeline for model training and 

forecasting (or scoring in machine learning parlance). Data preparation is a core component of 

an applied data scientist's role with an oft-repeated trope that 80% of their time is spent cleaning 

data. 

A core part of data cleansing is handling missing data. This is particularly true in time series 

applications where the fidelity of the signal depends on having complete coverage over the 

period. Many machine learning approaches such as recurrent neural networks (RNN) (Connor 

et al., 1994) or LSTM (Gers et al., 2000) require data at regular intervals to accurately learn the 

time series patterns (since they learn historical dependencies in the signal). Elementary masking 

functionality for LSTM is provided in libraries such as Keras but these simply skip the masked 

timesteps thereby corrupting time series fidelity (i.e. the autoregressive signal of regularly-

spaced data). 

As part of a more automated machine learning framework, we require the ability to impute 

missing data and rank the performance of different imputation algorithms. This is particularly 

true for aquaculture where missing data is an inherent part of marine sensor data. The 

fundamental structure involves requesting data from the GAIN service for a given instance, 

entity, and signal. The appropriate data cleansing and imputation approaches are then applied 

to those datasets and the processed data proceeds to a given machine learning forecasting 

pipeline. In the IoT contextual information domain, instance, entity, and signal refer to the 

different hierarchies of data meta descriptors.  In our case, instance was a unique identifier for 

each farm, entity represented a given sensor id or descriptor, and signal denoted a unique 

variable (e.g., water temperature or dissolved oxygen).  

The data imputation approaches considered the different characteristics of data quality issues 

in aquaculture. The reality of operating in a chaotic environment result in multiple classes of 

data quality issues: failures in power and connectivity results in data gaps of hours to days; 

sensor fouling and damage impedes data quality and often demands bias and error corrections; 

while the multiple temporal and spatial scales of ocean processes often require robust post-

processing and noise removal strategies. These issues are amplified by the fact that collecting 

sufficient data is often difficult and one is rarely able to discount significant portions of data 

due to data quality issues – one instead desires to repair the data. 

While a fundamental and long-studied problem, it is not straightforward to devise a formal 

protocol and to categorise the “best” imputation system. The difficulty primarily stems from 

https://www.innovasea.com/
https://www.cageeye.com/
https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
https://hbr.org/2018/08/what-data-scientists-really-do-according-to-35-data-scientists
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the fact that one requires a representative model of the original timeseries signal to enable 

reconstruction of a robust imputation – of course this is generally not available in practise. We 

considered a variety of data imputation approaches to augment model accuracy. These were: 

• A Simple Imputer from Scikit-Learn Python package that substitutes a median value 

instead of a missing one, 

• Linear interpolation 

• Quadratic interpolation. 

• Cubic interpolation and 

• Polynomial interpolation of order 5. 

We extended these imputation choices with two new imputers: 

1. A fast principal component projection imputer (FastPCPImputer) and a  

2. Low rank imputer (LRImputer) 

Instead of interpolation at missing values, these imputers try to substitute the missing portion 

of a signal from other, uncorrupted parts of the same sequence. This is done via low-rank 

matrix approximation. Namely, we put the signal into a square matrix progressively row by 

row (possibly padding by NaNs at the end of last row). We call this matrix a data matrix. The 

rank of low-rank approximation is chosen as a square root of matrix size in either dimension. 

The first imputer (FastPCPImputer) elaborates the idea described in the paper (Rodríguez and 

Wohlberg, 2013). The fundamental rationale of the approach considers recovering a low-rank 

matrix (the principal components) from a high-dimensional data matrix despite the presence 

of sparse errors (Zhou et al., 2010). This has natural applicability for time series data where 

one may expect repeated patterns at different frequencies such as day (solar radiation), week 

(traffic volumes) or year (annual or seasonal cycles). We adopt a brute-force grid search 

approach to select value  of regularization parameter λ to achieve best match at uncorrupted 

entries of the time series. 

The second imputer (LRImputer) extends our paper (Akhriev et al., 2020), where low-rank 

approximation was achieved by decomposition of the data matrix into a product of two low-

rank ones 𝐿 ⋅ 𝑅 (hence the name LR). We use robust loss function with a regularizer that 

promotes smoothness of the imputation result.  

Both imputers are relatively fast. The Python implementation usually takes less than 10 

seconds (often 2-3 seconds) on single-core CPU on time series with 10,000+ observations. This 

approach allows us to standardise data processing for machine learning models (since missing 

values are handled in an equivalent manner for every sensor), which helps the automation of 

these processes. Of course, there are many text books written on data cleansing and imputation. 

Our intention was not to reinvent the wheel but instead provide a pragmatic approach that 

allows us select from a library of imputation algorithms and choose the one that gives best 

performance. In our case, best performance was defined as the best performing forecasting 

model – in effect, we don’t need a perfect reconstruction of the signal but such that the training 

of machine learning model is not hampered by data gaps (or biased by unrealistic imputations).  
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Machine learning model forecasting 

Machine learning and forecasting is a key component of the GAIN IMS. The user requests a 

specific dataset (based on farm and sensor context) for a given time period; that data is passed 

to the data cleansing pipeline above before being forward to the machine learning service.  

Given sufficient data, ML models have the potential to successfully detect, quantify, and 

predict various phenomena in aquaculture. While physics-based modelling involves providing 

a set of inputs to a model which generates the corresponding outputs based on a non-linear 

mapping encoded from a set of governing equations, supervised machine learning instead 

learns the requisite mapping by being shown large number of corresponding inputs and outputs. 

In ML parlance, the model is trained by being shown a set of inputs (called features) and 

corresponding outputs (termed labels) from which it learns the prediction task -- in our case, 

given information on drivers of aquaculture or ocean variability (atmospheric conditions, 

historical values, etc.) we wish to predict specific variables, such as temperature or DO.  With 

availability of sufficient data (of appropriate quality), the challenge reduces to selecting the 

appropriate ML model or algorithm and prescribing suitable model settings or 

hyperparameters.  A model hyperparameter is a characteristic of a model that is external to the 

model and whose value cannot be estimated from data. In contrast, a parameter is an internal 

characteristic of the model, and its value can be estimated from data during training. 

Machine learning  

Classical works in machine learning and optimisation, introduced the "no free lunch" theorem 

(Wolpert and Evolutionary, 1997), demonstrating that no single machine learning algorithm 

can be universally better than any other in all domains – in effect, one must try multiple models 

and find one that works best for a particular problem.  

The uncertainties inherent to any model algorithm means that the model provides an estimate 

of the true state. Ensembles generated either by perturbing model inputs or combining different 

models or algorithms can serve to better capture the true solution state. Considering different 

model algorithms allows flexibility in terms of final model to select or implementation of 

ensemble aggregation (O’Donncha et al., 2018; F. O’Donncha et al., 2019) or uncertainty 

quantification approaches. 

Ensemble approaches enhances robustness. Further, our microservices-based platform aligns 

naturally with multi-model approach, where different algorithms are different choices to the 

system with the final decision based on which model performs best. In GAIN we considered 

four different machine learning algorithms to predict ocean variables: Generalised Additive 

Models (GAM), Random Forest (RF) XGBoost, and Multi-Layer Perceptron (MLP). Extensive 

details on these algorithms are provided in many statistical and machine learning textbooks 

(Friedman, Hastie and Tibshirani, 2001; Goodfellow, Bengio and Courville, 2016), and 

considerations for their application to ocean datasets are described in (Wolff, O’Donncha and 

Chen, 2020). The models are briefly summarised here. 

Generalised Additive Models (GAMs) extend on linear models by relating the outcome to 

unknown smooth functions of the features or inputs.  Predicting y from the vector of covariates 

x, at time t is as (Hastie and Tibshirani, 1986): 

g(y)  = α + f1(x1) +  f2(x2)+ . . . +fi(xi) + ϵ 
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where each fi(⋅) is an unspecified function and 𝑔(⋅) is a link function defining how the response 

variable relates to the linear predictor of explanatory variables (e.g. binomial, normal, Poisson) 

(Wijaya, Sinn and Chen, 2015).  

Random Forest (RF) is a classification and regression method based on the aggregation of 

many decision trees. Decision trees are a conceptually simple yet powerful prediction tool that 

breaks down a dataset into smaller and smaller subsets while at the same time an associated 

decision tree is incrementally developed. The resulting intuitive pathway from explanatory 

variables to outcome serves to provide an easily interpretable model.  In RF  (Breiman, 2001), 

each tree is a standard Classification or Regression Tree (CART) that uses what is termed node 

"impurity" as a splitting criterion and selects the splitting predictor from a randomly selected 

subset of predictors. Each node in the regression tree corresponds to the average of the response 

within the subdomains of the features corresponding to that node. The node impurity gives a 

measure of how badly the observations at a given node fit the model. In regression trees, this 

is typically measured by the residual sum of squares within that node. Each tree is constructed 

from a bootstrap sample drawn with replacement from the original data set, and the predictions 

of all trees are finally aggregated through majority voting (Boulesteix et al., 2012).  

While XGBoost shares many characteristics and advantages with RF (namely interpretability, 

predictive performance, and simplicity), a key difference facilitating performance gain is that 

decision trees are built sequentially rather than independently.  The tree ensemble model 

follows a similar framework to RF with prediction of the form (Chen et al., 2016): 

𝑦�̂� ϕ(xi) =  ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

,   fk ∈  Ϝ 

where we consider K trees, Ϝ = f(x) = 𝑤𝑞(𝑥) represents a set of classification and regression 

trees (CART), q represents each independent decision-tree structure, and 𝑤𝑞(𝑥) is the weight 

of the leaf which is assigned to the input x. 

An MLP model is organised in sequential layers made up of interconnected neurons, each 

consisting of a weight and bias term that allows the network to learn highly nonlinear patterns 

in data (shown schematically in Figure 2).  A loss function is defined in terms of the squared 

error between the observations and the machine-learning prediction (plus a weights 

regularisation contribution). By minimising the loss function, the supervised machine learning 

algorithm identifies the mapping between the predictors and the predictands.  The machine 

learning model is trained on a data set to establish the weights parameterising the space of 

nonlinear functions mapping from X to y. 

𝜗 =
1

𝑛
∑(𝒚�̂� − 𝒚𝑖 )

2

𝑛

𝑖=1

+ 𝜆𝑅(Θ), 

Where 𝒚�̂� denotes observations or labels, 𝒚𝑖 represents our model prediction and  R(Θ), 
represents our regularisation term (parameterised by  λ). The regularization term 

penalizes complex models by enforcing weight decay, which prevents the magnitude of the 

weight vector from growing too large because large weights can lead to overfitting. 
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Figure 2: Schematic of an MLP machine learning network. 

ML Model deployment, monitoring, and management 

The machine learning algorithms described in the previous section were applied to the data 

collected at each pilot site (Service et al., 2019). The model training, deployment, and 

monitoring were managed by a flexible model management cloud infrastructure described in 

detail in (Chen et al., 2018). For each model implementation, pertinent data was requested from 

the server, preprocessed as described above to remove outliers and impute missing values, 

converted into appropriate time-aligned matrices for the model implementation, and used to 

train the machine learning model (or update a previously trained model). The trained model 

was then stored in a model management database and deployed in forecasting mode against a 

verification dataset to evaluate performance metrics and goodness-of-fit. Trained models are 

tagged and stored allowing flexibility to select different model iterations (e.g., roll back to a 

model that we know gives a certain level of performance while also testing new model 

implementations). At all stages, a variety of preprocessing and forecasting algorithms are 

available to the system to enhance forecasting skill and allow us to address many different 

variables and conditions. 

This flexible approach that simplified model training and deployment, allowed us to rapidly 

test many different model implementations and scenarios. Hyperparameter optimisation (the 

tuning of model parameters external to the model learning algorithm) was done using a greedy 

grid search approach that searched over a user-defined range of hyperparameters with an 

embarrassingly parallel approach. Pywren (Jonas et al., 2017) managed the search, which then 

returned the parameters that minimised MSE for the training dataset, using a MapReduce 

operation. 

The entire process is guided by relatively simple configuration files. An example is provided in 

the following for our UNIVE trout farm in Italy. Basic details are provided regarding farm and 

sensor identifiers. This is coupled with information such as how long to make forecast (here we 

make forecast for 12, 24, 60, and 240 hour horizons), what imputer properties to adopt 
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(lowrank), and specialised details regarding the algorithm choice itself. Of key importance here 

is standardisation across all sites, and that the approach lends itself to automation.   

#------------------------------------------------- 

visible_model_name: model6_xgb_2021.07.08_22.25.44 

 

instance: UNIVE # Identifier for the farm site 

entity: FARM_SENSOR # Context identifier for sensor 

signal: WATER_TEMPERATURE # Context identifier for variable 

geography: GIS_POINT , latitude: 46.045 , longitude: 10.759 

 

distribution_name: gain-models # Cloud space to store models 

# details on model training and update 

train_repeat: None 

train_task: train 

train_time: 2021-07-08T22:25:44+00:00 

# details on model scoring or forecasting 

score_repeat: 1_hours 

score_task: score 

score_time: 2021-07-08T22:25:44+00:00 

 

# parameters passed to the machine learning model 

user_parameters: 

{ 

'algo_params': {'algorithm': 'xgb', 

                 'collect_feature_importance': 0, 

                 'lag_nsteps': 36, 

                 'learning_rate': 0.05, 

                 'max_depth': 10, 

                 'n_estimators': 500, 

                 'num_jobs': 1, 

                 'reg_lambda': 0.5, 

                 'scale_y_labels': True}, 

 'deep_learning_env': True, 

 'forecast_horizons': [12, 24, 60, 240], 

 'frequency': 'H', 

 'historical': None, 

 'imputer': {'return_lowrank': True, 

             'seasonality': 24, 

             'skip_long_gaps': True, 

             'type': 'pcp2'}, 

'min_train_nsamples': 1000, 

 'retrain_period_hours': 72, 

 'run_locally': False, 

 'timezone': 'Europe/Rome', 

 'train_ndays': 365, 

 'verbose': 1, 

 'visible_model_name': 'model6_xgb_2021.07.08_22.25.44' 

}  

Figure 3: Sample configuration file for the GAIN modelling service. The key factors the user needs to consider 
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are the data we provide to the model (given sensor or data context information), imputer properties to handle 

missing or corrupted data, and selection of algorithm (or use the default choice of random forest). 

The above allows for a simple deployment scheme for models. A related topic is management 

of the different models. What we required was a framework that simplified the development 

and deployment of machine learning models, as well as information on performance of the 

different models to guide development. Model monitoring consisted of both a programmatic 

and graphical approach. The service API allowed to readily access different model ids and 

versions and interrogate performance against most recent observations. Simple metrics such as 

Root Mean Square Error were returned to the user to provide summary metrics. A Gain 

graphical user interface (GUI) was used to help the scientist rapidly compare different models 

visually. Figure 4 presents a screenshot from this GUI giving an overview of some of the 

information contained.  

 

Figure 4: Screenshot from beta GAIN GUI that allowed users to visualise forecast results against observations. 

The panel on left hand side allows users to select a particular instance (or farm site) and period, while the upper 

panel provides dropdown list of entity (sensor) and signal (variable). The panel on the bottom left primarily 

relates to model management and can be considered a tool of the data scientist rather than the end user. This 

presents information on the different models that are trained (for this example it reports different machine 

learning models including Generalised Additive Model (GAM), XGBoost, and Random Forest), as well as 

different versions of those models to allow for iterative improvement and fine tuning of those models. It allows 

the user to easily select different model algorithms, as well as different implementations and versions of these 

models. This combination of complexity (many different models with different configurations) and simplicity (an 

easy comparison and analysis of which models performs well) provided us with a valuable tool for rapid and 

iterative application of machine learning to aquaculture.  

We considered the combination of graphical and programmatic approach provide a unique 

selling point to allow us to adapt to the complexity of aquaculture across different species, 

regions, and scales. The GUI above provides a high-level overview of the system to the 

developer while we developed and extended a Python (and R) package that allows external 

users to interact with data in similar manner. While the python and R package can be deployed 

any local system (one simply installs Python/R and the relevant libraries), we used IBM Watson 

Studio (IBM, 2021) for all analysis. The primary advantage of this approach is it provides a 
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unified environment where the data scientist and domain expert can collaborate to address 

specific challenges. We discuss these applications in detail in the next section. 

3. Results and dissemination 

The GAIN project focused on developing a flexible data integration, processing and forecasting 

system that was specialised to the requirements of aquaculture (many different data streams, 

noisy uncertain and missing data, multiple forecasting variables and pain points). Of utmost 

importance here is the ability to interface GAIN forecasting models and assets within existing 

operations and software assets employed on the farm (e.g., using forecasts of environmental 

variables for fish growth estimates, integrating analysis of fish welfare with veterinary decision 

making).  

For all deployments, we used IBM Watson Studio since it’s a widely used IBM product across 

many industries. Users create an account on Watson Studio (using the free “Lite” plan) and log-

in through that system. We then create a unique space for each different GAIN pilot site. All 

data and GAIN model forecasts pertinent to that farm are accessible within that space (but users 

cannot access data from another pilot site) and we extend those with site-specific interrogation 

and analysis that addresses the complexities of different farms and species.  

In this section, we consider different examples of these.  

Trout farm management 

At the trout raceway farm in Preore, Italy, inlet freshwater that flows through the raceways 

comes from the Sarca river. If this ensures quite constant levels of Dissolved Oxygen it must 

be noticed that inlet water presents high dynamics in terms of temperature due to short-term 

(daily irradiance oscillation) and long-term (seasonal rhythm) influences. 

From such a perspective, and in conjunction with our pilot site partners, we identified a need 

for 10-14 day-ahead forecasts of water temperature to support decision in terms of: 

• Fish vaccination: The main pathogen impacting trout during their growth is a bacterium, 

Lactococcus garvieae, which development became more aggressive when daily 

minimum temperature is higher than 15°C. 

• Disease mitigation: Disease mitigation in fingerlings is primarily based on the control 

of viral pathogens development which are strongly influenced by water temperature. 

• Feed quantity: Day to day high variations in water temperature sometimes occurs due 

to meteorological events and can have high negative impacts on trouts’ ability to 

correctly assimilate supplied feed. 

• Fish growth forecasts: GAIN partners have extensive expertise and a diverse portfolio 

of fish growth models. These models require reliable estimates of water temperature as 

inputs. 

Forecasts of water temperature are available through Watson Studio with an example provided 

here. Figure 5 presents a snapshot of observed and forecasted values of temperature for a 10-

day ahead forecast. The basic structure is (for a given sensor) to interrogate the model database 

for models attached to this sensor; we then request data for those forecasts and visualise.  

https://eu-de.dataplatform.cloud.ibm.com/registration/stepone?context=cpdaas&apps=all
https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/e88de3d7-8593-4208-bcf2-9f4824fa0a7d/view?access_token=8305d67f2a797ec4d91c01000d72b9500c2252dc27129a2c321c6bf457bd2f43
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Figure 5: Comparison of observed temperature against modelled values from the UNIVE trout farm. Blue curve 

denotes sensor observations while red indicate model estimate 

One of the key advantages of this approach is extensibility. We can readily collaborate with 

domain experts, iterate on different models and analysis, and any updates are applied 

immediately.  

Data driven insight into fish behaviour 

In a recent paper (O’Donncha et al., 2021), we presented a scientific analysis of the 

environmental drivers of fish behaviour in a cage. Data from hydroacoustic and environmental 

sensors were interrogated using statistical and machine learning approaches.  

Hydroacoustic methods provide a proxy measure for density and distribution of marine animals 

in form of acoustic backscattering (Foote, 2009). The fundamental principle is based on 

emitting a signal of known type and power level from a transducer. As it encounters regions of 

the medium with differing properties, also called heterogeneities, the sound is generally 

redistributed, or scattered, in all directions. This makes possible detection of the scattered sound 

with transducer and suitable receiver electronics. Advantages linked to hydroacoustic sampling 

techniques include, high spatial and temporal resolution, autonomous long-term sampling 

duration, range (especially during poor visibility when visual-based methods tend to fail), and 

a non-invasive surveying approach (Scherelis et al., 2020). Given these advantages, 

hydroacoustics is increasingly used to characterise animal behaviour in the marine environment, 

and considered a promising system to improve management of aquaculture farms (Juell, 

Furevik and Bjordal, 1993).  

In GAIN, hydroacoustic data were collected by one of two sensors ``CageEye" (Scherelis et al., 

2020) or “Aquaculture Biomass Monitor”. Broadly speaking, processed hydroacoustic data 

generates two metrics: volume backscattering strength (Sv), is often considered as a proxy for 

fish biomass; while target strength (TS) is an acoustic measure of fish length (Simmonds and 

MacLennan, 2008)si. TS is a measure of the acoustic reflectivity of a fish, which varies 

depending on the presence of a swim bladder and on the size, behaviour, morphology, and 

physiology of the fish.  These outputs can be used to generate estimates of fish density and 

biomass (Boswell, Wilson and Wilson, 2007) within a cage. 

https://www.biosonicsinc.com/products/aquaculture-biomass-monitor/
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Figure 6 presents a density plot of daytime and nighttime fish positions for both CAN and NOR 

(due to lack of nighttime observations, SCO was excluded). To remove the effects of long 

sunshine hours during June and July in NOR these two months were excluded from the plot. 

Results demonstrated a clear difference between daytime and night-time behaviour for the CAN 

site and a similar but much less pronounced difference for the NOR site. In Canada, fish 

congregated at about 3.6m depth and the spread around this was quite narrow during the day, 

while at night, fish were distributed more widely across the water column with a mean depth of 

2.8m. Similar trends were observed in Norway (although not as pronounced). The mean 

difference between daytime and night-time positions were 0.52m while fish were also more 

uniformly spread across the water column at night. 

 

Figure 6: Distribution of fish depth data for the NOR (left) and CAN (right) farm over the duration of the study 

period. The data is split into daytime and nighttime periods to explore how behaviours vary between those 

periods. The dashed vertical lines denote the mean for both periods  

We interrogated relationships between vertical distribution of fish in a cage (as sampled by the 

CageEye system or the Aquaculture Biomass Monitor system), and environmental variables at 

the three GAIN salmon sites (Norway, Scotland, and Canada). Statistical analysis explored the 

diel patterns, and how data distributions varied over the duration of the study, while IBM 

AutoAI was used to quantify the effects of environmental variations on the vertical movement 

of the fish. 

Gartner -- the respected research and advisory firm for enterprise -- identified the automation 

of ML model deployments as one of the ten key technology trends for 2020 (Cearley et al., 

2019). Termed AutoML or AutoAI, these approaches aims to help automate the steps and 

processes involved in the life cycle of creating, deploying, managing, and operating AI models 

(Dickson, 2020). Gartner highlighted its capabilities for "democratizing AI" by enabling 

development of low-code ML models that do not require high levels of data science experience 

to setup and parametrise the models (Cearley et al., 2019). A variety of AutoML or AutoAI 

products exist with the most prominent being IBM's AutoAI, Google's autoML, and H20.ai’s 

H2O.  

https://www.ibm.com/cloud/watson-studio/autoai
https://cloud.google.com/automl/
https://www.h2o.ai/
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The fundamental idea of AutoAI approaches can be considered as "AI for AI". Using machine 

learning, it aims to interrogate user data and discover the optimal structures, data 

transformation, and tunable parameters (or hyperparameters) for machine learning regression 

and classification. AutoAI approaches are particularly valuable for benchmarking studies since 

they can be easily replicated by others, and don't require high levels of data science expertise. 

Many of the tools such as IBM AutoAI offer free plans that are particularly amenable towards 

scientific and academic studies. 

Sensor and pertinent model data (of environmental variables) are extracted from the GAIN 

cloud service and fed to the AutoAI framework via a “one-click” deployment. AutoAI 

interrogates various transformations on the data (normalisation, logarithmic scaling, principal 

component analysis, etc.) and different machine learning algorithms (Random Forest, Gradient 

Boosting, XGBoost, etc.). The system then returns the optimal model pipeline and user can 

view via a simple relationship map summarising the different pipelines and predictive skill.   

 

Figure 7: Visualisation of AutoAI results interrogating fish response to environmental conditions at the Norway 

site. The relationship map illustrates the different “pipelines” (data transformation and machine learning 

algorithms) that were explored while the Pipeline leaderboard displays the best performing model. Results 

comparable to what can be achieved by a skilled data scientist can be achieved without need for any code. 

For the machine learning interrogation, we provided input features that literature suggests 

influence salmon behaviour (and were available at the study sites). For our study, these were 

temperature, DO, current speed, wind speed, and salinity, together with hour-of-day. The 

resultant model explained 59%, 64% and 61% of variance for the Norway, Scotland, and 

Canada sites, respectively.  

Figure 8 summarises model performance at the Canada site. It illustrates that the model captures 

data trends quite well reporting correlation score of 0.78. Visually, the model captures observed 

fish depth quite well considering the highly dynamic nature of the signal. In particular, trends 

in the data are adequately tracked and the model accurately replicates whether the fish move up 

or down in the cage in response to the provided model inputs. While this provides information 
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on the predictability of the signal, our objective is to use this information to interrogate key 

drivers of fish response. 

 

Figure 8: Scatter plot of model predicted fish depth plotted against observed values for the CAN site. Inputs to 

the model are environmental data time-aligned with the target data, and hour of day to represent temporal 

variations 

We analyse this in detail using feature importance analysis and Accumulated Local Effects 

(ALE) interrogation (see our paper (O’Donncha et al., 2021) for details on the ALE analysis 

which are omitted here for brevity). Feature importance measure computes the contribution or 

importance of each feature by calculating the increase of the model's prediction error after 

permuting the feature. A feature is “important” if permuting its values increases the model error, 

because the model relied on the feature for the prediction. A feature is “unimportant” if 

permuting its values keeps the model error unchanged, because the model ignored the feature 

for the prediction (Breiman, 2001).  

Figure 9 presents the variable importance computed for the three locations in Norway, Scotland, 

and Canada. While there were similarities in the drivers that influenced fish position at the three 

sites, pronounced variations existed based on the different geography and characteristics of each 

site. As suggested by both feature importance analysis and boxplot visualisation, time-of-day 

was a primary driver, particularly at the Canadian farm. At all sites, physical oceanographic 

variables represented an important driver. Physical mixing by current speeds and wind forcing 

were particularly critical at the Canada site and three of the five most important variables 

represented physical stresses and mechanical mixing, namely  current direction, wind direction, 

and wind speed, respectively (in order of influence). Wind stress did not represent an important 

driver of fish depth variance at the Norway site. This is likely due to the increased depth of cage 

and fish position serving to shelter from local surface dynamics.  
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Interestingly, salinity was the primary driver of fish position at the Norway site which illustrates 

both fish sensitivities and local bay characteristics. Analysis of temperature data illustrated a 

pronounced thermal stratification during the summer months, that breaks down into a well-

mixed water column in spring and autumn. Variations of vertical salinity were more complex 

illustrating relatively low surface salinity values in September, which may be influenced by 

precipitation or freshwater runoff. Literature indicates that Atlantic salmon are influenced by 

salinity variations when younger than three months and during spawning periods, while 

indifferent to salinity at other times (Oppedal et al., 2010). The behavioural influence detected 

in this study may be a result of salmon expressing preference for lower salinity waters in spring, 

during the return migration period of salmon towards freshwater. However, analysis indicated 

that the vertical variation in salinity was relatively small, and additional study is necessary to 

understand the influence this may have on salmon variations. 

 

Figure 9: Feature importance reported at the (a) Norway, (b) Scotland, and (c) Canada sites. The y-axis reports 

the ranked list of features that contributed the most to variation in fish depth measurements, while the x-axis 

presents relative magnitude of those contributions. Ranking predictors in this manner can quickly help sift 

through large datasets and understand data trends (Kuhn and Johnson, 2013) 

We implemented this bespoke analysis in Watson Studio (summarised here) that allowed us 1) 

collaborate with domain experts in GIFAS, UoS and DAL to enhance the data science analysis 

and 2) disseminate results rapidly in a flexible manner. 

We also worked to open source the analysis (and the data). Since the data was commercial and 

sensitive in nature, we were not able to release data from all the farms. Instead, we made public 

all data from one site: GIFAS – which being a research and operational farm had more 

flexibility towards open science approaches.  

The code and data are available here with complete instructions on how to install and run. We 

extended this further as part of WP5 activities around skills development. Hence, we also 

developed introductory data science courses that allows one with no data science experience to 

learn the basics and implement the analysis on real world aquaculture datasets (ideally using 

similar structure but applying to their own data). These code lessons are available here with a 

complete overview provided in our open.edu course here 

https://eu-de.dataplatform.cloud.ibm.com/analytics/notebooks/v2/f0c34cbb-89c2-44d7-b7b7-2b20eb0ad478/view?access_token=45c80c23823bb8cffda2da87a286495df4a39415c87db2ad5f63f3c8e50d5bfa
https://github.com/IBM/PrecisionAquaculture.jl/tree/main/DataDrivenAquaculture
https://github.com/IBM/PrecisionAquaculture.jl/tree/main/JuliaWorkshop
https://www.open.edu/openlearncreate/course/view.php?id=7821
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Event forecasting for shellfish aquaculture  

Adverse water quality events are a major factor for shellfish farms. GAIN involves two shellfish 

farms with quite different characteristics. While both are subject to toxins from external sources 

that pose significant challenge for farmers, the sources of those are quite different: 

• For SGM, harmful algal bloom events are the primary source of adverse water 

quality events. These are closely connected to upwelling conditions emanating 

from offshore drivers.  

• Currently HABs are less of a concern at the AFBI site in Northern Ireland 

although this may change because of climate change. Instead, toxin events at 

AFBI farms are highly dependent on runoff from agricultural and urban 

processes. In turn these are driven by precipitation, river levels, and land surface 

information. 

While forecasts of environmental variables are valuable for shellfish farm decision making, we 

are especially interested in how we can use this data to inform decision making. Working with 

SGM and AFBI pilot partners, we identified the forecasting of harmful algal blooms a key 

concern. 

Obviously, the forecasting of algal blooms is extremely complex involving highly non-linear 

physical, chemical, and biological processes. While research on forecasting of HABs is 

extensive, deploying in operations is challenging. We took a more pragmatic approach that aims 

to identify conditions that lead to closure of shellfish sites due to measured toxins in shellfish. 

This data is collected by operators and historical data is provided by the Portuguese Institute 

for Sea and Atmosphere (IPMA) going back to 2014 (available here). 

We developed a preliminary forecasting model to provide early warning of closure due to toxins 

in shellfish. The training label data was historical information on closures above while a variety 

of environmental data were provided as features or inputs to the models. These data included 

sensor data collected at both sites (combined with time series forecasting models), open-ocean 

model data from E.U. Copernicus Marine Service, and wind data from IBM Weather Operations 

Center. Machine learning forecasting of environmental variables were used to “fill in the gaps” 

when there was missing data in the sensor time series (and naturally it’s a key step to allow this 

to deployment as forecasting tool). We use this information to develop a classification model 

to forecast the likelihood that the farm will be closed due to toxins (based on historical closures).  

A preliminary demonstration is available here reporting accuracy of 87% on the test data.   

A key consideration for these complex machine learning deployments is interpretability. We 

wish to also know why model makes a particular forecast. Figure 10 presents the feature 

importance for the above model. The model predicts the likelihood of shellfish site closure due 

to presence of toxins while Figure 10 ranks the environmental drivers that influence this event 

occurring. The below results suggest that the main environmental variables that influence 

closures are water temperature, salinity, net primary productivity, water levels, and 

Chlorophyll-a.  

 

https://www.ipma.pt/en/bivalves/historico/index.jsp?zone=L7c&type=L
https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/c43d9af9-840f-4051-b9eb-98e1e1f265b4/view?access_token=55ae4f99f5b920cc2208d09433b8fd7412e5ad25145a36e6965edf12be87fce5
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Figure 10: Feature importance for the occurrence of toxins at the SGM shellfish site in Portugal 

Conclusion 

This document provides an overview of the GAIN cloud service for aquaculture. The document 

summarises key functionality supported by the service and how those address farmers’ needs. 

Further, user interaction with the service is described which presents a valuable roadmap to 

dissemination of results to aquaculture stakeholders. In particular, the disparate needs of 

aquaculture are described and different strategies to address these needs presented.  

The management system developed as part of GAIN make a number of contributions towards 

extracting actionable insight using IoT and operational aquaculture data: 

• Interoperability poses a significant challenge as sensors currently cover a wide range 

of types, suppliers, and levels of sophistication. This extends from legacy sensors 

storing data in on-board data loggers, to modern sensor stacks reporting in 

proprietary format, to dedicated cloud platforms. GAIN is committed to an open-

standards approach based on standard IoT protocol, that enables rapid extraction of 

data using common programming environments (Python, R, MATLAB, etc.). 

• The fragmented nature of the sensor industry can be significantly enhanced by a 

unified cloud service to enable access to all datasets and empower users with data 
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sovereignty. Currently, much of the data being collected on farms are in proprietary 

formats (e.g., HAC format is a common format for hydroacoustic data for which 

data readers are not readily available), which means users have limited access to 

data. Indeed, it took quite a lot of effort on the part of GAIN partners to gain access 

to the data collected by the CageEye and ABM sensor as “vendor lock-in” meant 

that data was only accessible (visually) through proprietary software. The GAIN 

service provides users with complete sovereignty over all data being collected on 

farms in a standardised, interoperable format. 

• Interoperability with different services is a key necessity. GAIN presents a roadmap 

in that direction with different nodes (AQUARADAR, AquaSense) addressing 

different parts of the aquaculture industry. Precisions aquaculture is dependent on 

connecting disparate data and innovations to better inform all parts of the 

aquaculture value chain 

• The large variety of aquaculture types and different challenges facing different 

geographies makes a “one-size-fits-all” solution challenging. Instead, it requires a 

solution that is modular and extendable, while being interoperable with different 

aquaculture services.  

• At its core, precision aquaculture is dependent on leveraging IoT technologies to 

move beyond data towards insight. By integrating data from heterogeneous, 

disparate sources into a unified cloud platform, it allows the extraction of insight 

from data. 

Deriving from these key objectives, this document (and indeed the core GAIN cloud service) 

focuses on four fundamental components: 

1. Data integration from the farm to the cloud  

2. Data pre-processing and cleansing to convert to format amenable towards machine 

learning interrogation 

3. Machine learning model development, deployment, monitoring, and management,  

4. Results dissemination to end users and interoperability with existing aquaculture and 

enterprise management software 

These contributions can enable farms better manage their operations, while also enhancing data 

sovereignty, interoperability and standardisation. At its core is modularity and extensibility 

which allows different components of the GAIN stack be applied at farms and that can readily 

be extended with bespoke analysis. The GAIN roadmap for industry impact extends on this 

deliverable in D4.7 and D6.6. 
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