Alessandro CECCONELLO

Position
Substitute/Visiting Professor
E-mail
ale.cecconello@unive.it
Website
www.unive.it/people/ale.cecconello (personal record)
Office
Department of Molecular Sciences and Nanosystems
Website: https://www.unive.it/dep.dsmn
Where: Campus scientifico via Torino

EDUCATION

PhD in chemistry (Functional DNA Machines)

2017, The Hebrew University of Jerusalem, Jerusalem, Israel (www.huji.ac.il)

Thesis supervisor: Prof. Itamar Willner (Institute of Chemistry, willnea@vms.huji.ac.il )

 

MSc in Biotechnology (Preliminary Study Aimed to Develop a Gravimetric Biosensor)

2009, University of Padova, Padova – Italy (www.unipd.it).

 

BSc in Biotechnology (Study for the Synthesis of New Zn+2 Chemosensors for Two-photon Microscopy Applications)

2004, University of Padova, Padova – Italy (www.unipd.it).

 

 

WORK AND SCIENTIFIC ACTIVITY

2018-2020

Post-doctoral researcher supported by a European Molecular Biology Organization long-term fellowship (value 72000EUR) at Technical University Munich with a project on the co-transcriptional production of functional RNA nanostructures. Principal investigator: Prof. Friedrich Simmel.

 

2017-2018

Visiting scientist supported by a Federation of European Biochemical Societies fellowship at Queen Mary University of London with a project on DNA nanostructures-carbon nanotube hybrids. Principal investigator: Dr Matteo Palma.

 

2009-2011

Researcher at Tectronik srl, an Italian company involved in developing, producing and selling an amperometric biosensor for the quantitative analysis of ethanol, fructose, and glucose in commercial products (http://www.tectronik.it/en/index.php). 

 

AWARDS

EMBO long-term fellowship 2018 (ALTF 433-2018) with a project on co-transcriptional production of functional RNA nanostructures (value 72000EUR).

 

FEBS short-term fellowship 2017 with a project on DNA-carbon nanotube hybrids in stimuli-responsive systems.

 

Award of excellence as a young scientist at the 2014 Annual Nanoconference (Israel) for experimental research on interlocked DNA nanostructures-plasmonic nanoparticles hybrid architectures.

 

Award for the best poster at the 2014 Minerva Conference (Minerva Center for biohybrid complex systems) German-Israeli Meeting in Kibbutz Tzuba (Israel), for a poster titled Programmed Positioning of AuNPs by Means of Catenated DNA Machines and by A Dumbell AuNP-DNA Rotaxane.

 

 

RESEARCH INTERESTS

My actual research in Prof Simmel group deals with the enzymatic production of RNA from DNA templates and the interaction of these two kinds of nucleic acids for the regulation of transcription/translation processes. The goal of this research is to develop robust bio-mimetic tools for the control of gene expression in the field of synthetic biology. For example, bi-stable platforms, negative feedback loops, and oscillators will provide powerful elements for the implementation into self-regulatory systems that will find applications in several fields. Oscillators can be coupled to drug-delivery systems for time-controlled consistent delivery, bi-stable switches can be used as Boolean biochemical memory units, while negative feedback loops provide stable chemical signals in “noisy” environments and they can decrease the response time in a stimuli-responsive system.

 

Right now such regulatory elements are borrowed from the cell biomolecular machinery or are produced in such a way that they cannot be introduced in cells (unstable structures). An approach that produces fully synthetic regulatory systems maintaining the bio-compatibility, would succeed in generating stable structures for their use in vivo and, at the same time, it would obtain orthogonality (i.e., low undesired interaction with the cell processes). Moreover, the recently introduced RNA fluorescent aptamers will play a major role in this research.

 

Future developments include the research on new therapeutic approaches based on artificial gene expression regulation, a combinatorial approach to RNA aptamer discovery (i.e., the use of self-regulatory loops coupled to stochastic sequence generation and amplification for aptamer enrichment and evolution), multiplex sensing systems based on DNA/DNA, DNA/RNA, or aptamer/ligand complex formation.

 

Additional interests include hybrid nanomaterials such as metal nanoparticles-DNA, chiroplasmonic particles, DNA capsules, metal-organic frameworks, DNA hydrogels, and DNA nanostructures.

 

PUBLICATIONS

1.         Cecconello, A.; Simmel, F.C. Controlling Chirality across Length Scales using DNA. Small 2019, 1805419.

2.         Amoroso, G.; Ye, Q.; Cervantes-Salguero, K.; Fernandez, G.; Cecconello, A.;± Palma, M.± DNA-Powered Stimuli-Responsive Single-Walled Carbon Nanotube Junctions. Chem. Mater. 2019, 31, 1537 (±corresponding authors).

3.         Freeley, M.;  Attanzio, A.;  Cecconello, A.;  Amoroso, G.;  Clement, P.;  Fernandez, G.;  Gesuele, F.; Palma, M. Tuning the Coupling in Single-Molecule Heterostructures: DNA-Programmed and Reconfigurable Carbon Nanotube-Based Nanohybrids. Adv. Sci. 2018, 5, 1800596.

4.         Chen, W. H.; Vazquez-Gonzalez, M.; Kozell, A.; Cecconello, A.; Willner, I. Cu2+-Modified Metal-Organic Framework Nanoparticles: A Peroxidase-Mimicking Nanoenzyme. Small 2018, 14, 1703149.

5.         Chen, W. H.;  Sung, S. Y.;  Fadeev, M.;  Cecconello, A.;  Nechushtai, R.; Willner, I. Targeted VEGF-triggered release of an anti-cancer drug from aptamer-functionalized metal-organic framework nanoparticles. Nanoscale 2018, 10, 4650.

6.         Chen, W. H.;  Liao, W. C.;  Sohn, Y. S.;  Fadeev, M.;  Cecconello, A.;  Nechushtai, R.; Willner, I. Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated Metal-Organic Framework Nanoparticles for Controlled Drug Release. Adv. Funct. Mater. 2018, 28, 1705137.

7.         Yue, L.;  Wang, S.;  Cecconello, A.;  Lehn, J. M.; Willner, I. Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines. ACS Nano 2017, 11, 12027.

8.         Wang, S.;  Yue, L.;  Shpilt, Z.;  Cecconello, A.;  Kahn, J. S.;  Lehn, J. M.; Willner, I. Controlling the Catalytic Functions of DNAzymes within Constitutional Dynamic Networks of DNA Nanostructures. J. Am. Chem. Soc. 2017, 139, 9662.

9.         Vazquez-Gonzalez, M.;  Torrente-Rodriguez, R. M.;  Kozell, A.;  Liao, W. C.;  Cecconello, A.;  Campuzano, S.;  Pingarron, J. M.; Willner, I. Mimicking Peroxidase Activities with Prussian Blue Nanoparticles and Their Cyanometalate Structural Analogues. Nano Lett. 2017, 17, 4958.

10.       Hu, Y. W.;+ Cecconello, A.;+ Idili, A.;+ Ricci, F.; Willner, I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew. Chem., Int. Ed. 2017, 56, 15210 (+equal contributors).

11.       Cipolloni, M.;  Fresch, B.;  Occhiuto, I.;  Rukin, P.;  Komarova, K. G.;  Cecconello, A.;  Willner, I.;  Levine, R. D.;  Remacle, F.; Collini, E. Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex. Phys. Chem. Chem. Phys. 2017, 19, 3171.

12.       Chen, W. H.;  Yu, X.;  Liao, W. C.;  Sohn, Y. S.;  Cecconello, A.;  Kozell, A.;  Nechushtai, R.; Willner, I. ATP-Responsive Aptamer-Based Metal-Organic Framework Nanoparticles (NMOFs) for the Controlled Release of Loads and Drugs. Adv. Funct. Mater. 2017, 27, 1702102.

13.       Chen, W. H.;  Yu, X.;  Cecconello, A.;  Sohn, Y. S.;  Nechushtai, R.; Willner, I. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chem. Sci. 2017, 8, 5769.

14.       Cecconello, A.; Besteiro, L. V.; Govorov, A. O.; Willner, I. Chiroplasmonic DNA-based nanostructures. Nat. Rev. Mater. 2017, 2, 17039.

15.       Baratella, D.;  Magro, M.;  Jakubec, P.;  Bonaiuto, E.;  Roger, J. D.;  Gerotto, E.;  Zoppellaro, G.;  Tucek, J.;  Safarova, K. C.;  Zboril, R.;  Cecconello, A.;  Willner, I.;  Santagata, S.;  Sambo, P.; Vianello, F. Electrostatically stabilized hybrids of carbon and maghemite nanoparticles: electrochemical study and application. Phys. Chem. Chem. Phys. 2017, 19, 11668.

16.       Yu, X.;  Hu, Y. W.;  Kahn, J. S.;  Cecconello, A.; Willner, I. Orthogonal Dual-Triggered Shape-Memory DNA-Based Hydrogels. Chem. Eur. J. 2016, 22, 14504.

17.       Lu, C. H.; Cecconello, A.; Willner, I. Recent Advances in the Synthesis and Functions of Reconfigurable Interlocked DNA Nanostructures. J. Am. Chem. Soc. 2016, 138, 5172.

18.       Liao, W. C.;  Sohn, Y. S.;  Riutin, M.;  Cecconello, A.;  Parak, W. J.;  Nechushtai, R.; Willner, I. The Application of Stimuli-Responsive VEGF- and ATP-Aptamer-Based Microcapsules for the Controlled Release of an Anticancer Drug, and the Selective Targeted Cytotoxicity toward Cancer Cells. Adv. Funct. Mater. 2016, 26, 4262.

19.       Cecconello, A.;  Kahn, J. S.;  Lu, C. H.;  Khorashad, L. K.;  Govorov, A. O.; Willner, I. DNA Scaffolds for the Dictated Assembly of Left-/Right-Handed Plasmonic Au NP Helices with Programmed Chiro-Optical Properties. J. Am. Chem. Soc. 2016, 138, 9895.

20.       Trifonov, A.; Tel-Vered, R.; Fadeev, M.; Cecconello, A.; Willner, I. Metal Nanoparticle-Loaded Mesoporous Carbon Nanoparticles: Electrical Contacting of Redox Proteins and Electrochemical Sensing Applications. Electroanal. 2015, 27, 2150.

21.       Lu, C. H.;+  Cecconello, A.;+  Qi, X. J.;  Wu, N.;  Jester, S. S.;  Famulok, M.;  Matthies, M.;  Schmidt, T. L.; Willner, I. Switchable Reconfiguration of a Seven-Ring Interlocked DNA Catenane Nanostructure. Nano Lett. 2015, 15, 7133 (+equal contributors).

22.       Kahn, J. S.;  Trifonov, A.;  Cecconello, A.;  Guo, W. W.;  Fan, C. H.; Willner, I. Integration of Switchable DNA-Based Hydrogels with Surfaces by the Hybridization Chain Reaction. Nano Lett. 2015, 15, 7773.

23.       Guo, W. W.;  Lu, C. H.;  Orbach, R.;  Wang, F. A.;  Qi, X. J.;  Cecconello, A.;  Seliktar, D.; Willner, I. pH-Stimulated DNA Hydrogels Exhibiting Shape-Memory Properties. Adv. Mater. 2015, 27, 73.

24.       Qi, X. J.;  Lu, C. H.;  Cecconello, A.;  Yang, H. H.; Willner, I. A two-ring interlocked DNA catenane rotor undergoing switchable transitions across three states. Chem. Commun. 2014, 50, 4717.

25.       Lu, C. H.;  Qi, X. J.;  Cecconello, A.;  Jester, S. S.;  Famulok, M.; Willner, I. Switchable Reconfiguration of an Interlocked DNA Olympiadane Nanostructure. Angew. Chem., Int. Ed. 2014, 53, 7499.

26.       Hu, L. Z.;  Liu, X. Q.;  Cecconello, A.; Willner, I. Dual Switchable CRET-Induced Luminescence of CdSe/ZnS Quantum Dots (QDs) by the Hemin/G-Quadruplex-Bridged Aggregation and Deaggregation of Two-Sized QDs. Nano Lett. 2014, 14, 6030.

27.       Shimron, S.; Cecconello, A.; Lu, C. H.; Willner, I. Metal Nanoparticle-Functionalized DNA Tweezers: From Mechanically Programmed Nanostructures to Switchable Fluorescence Properties. Nano Lett. 2013, 13, 3791.

28.       Lu, C. H.; Cecconello, A.; Elbaz, J.; Credi, A.; Willner, I. A Three-Station DNA Catenane Rotary Motor with Controlled Directionality. Nano Lett. 2013, 13, 2303.

29.       Elbaz, J.;+  Cecconello, A.;+  Fan, Z. Y.;  Govorov, A. O.; Willner, I. Powering the programmed nanostructure and function of gold nanoparticles with catenated DNA machines. Nat. Commun. 2013, 4, 2000 (+equal contributors).

30.       Cecconello, A.;  Lu, C. H.;  Elbaz, J.; Willner, I. Au Nanoparticle/DNA Rotaxane Hybrid Nanostructures Exhibiting Switchable Fluorescence Properties. Nano Lett. 2013, 13, 6275.

31.       Balogh, D.;  Zhang, Z. X.;  Cecconello, A.;  Vavra, J.;  Severa, L.;  Teply, F.; Willner, I. Helquat-Induced Chiroselective Aggregation of Au NPs. Nano Lett. 2012, 12, 5835.